Takaaki Kakinami,* Yasuaki Urabe, Irwan Hermawan,
Hiroko Yamanishi, Tsuyoshi Okamoto, and Shoji Kajigaeshi*,†
Department of Chemical and Biological Engineering,
Ube Technical College, Tokiwadai, Ube 755

† Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering,
Yamaguchi University, Tokiwadai, Ube 755

(Received March 2, 1992)

Synopsis. The reaction of aromatic acetyl derivatives with 2 molar amounts of benzyltrimethylammonium tetrachloroiodate in acetic acid at 70 °C for several hours gave dichloroacetyl derivatives in good yields.

We have previously reported on the halogenation of aromatic acetyl derivatives (1) by the use of several ammonium polyhalides. That is, reaction of 1 with an equimolar amount of tetrabutylammonium tribromide (TBA Br₃)²⁾ or benzyltrimethylammonium tribromide (BTMA Br₃)³⁾ gave bromoacetyl derivatives, and reaction with 2 molar amounts of BTMA Br₃ gave dibromoacetyl derivatives.³⁾ Further, the reaction of 1 with 2 molar amounts of benzyltrimethylammonium dichloroiodate (BTMA ICl₂)⁴⁾ gave chloroacetyl derivatives. These products were obtained in good yields in all cases.

Incidentally, aromatic dichloroacetyl derivatives (2) have been prepared from arylacetylenes with ethyl hypochlorite in carbon tetrachloride⁵⁾ and with chlorine gas in alcohol.⁶⁾ As a synthesis of 2 from 1, 2,2-dichlorophenylethanone (2a) has been prepared by the reaction of acetophenone (1a) with chlorine.⁷⁾ Chlorination of 3,3-dimethyl-2-butanone (1p) with chlorine gave 1-chloro-3,3-dimethyl-2-butanone as the main product and a small amount of 1,1-dichloro-3,3-dimethyl-2-butanone (2p).⁸⁾ However, chlorine is not always easy to use as a chlorinating agent in the laboratory because of its toxic gaseous character.

We have recently found that stable solid benzyl-trimethylammonium tetrachloroiodate (BTMA ICl₄) is an effective chlorinating agent.⁹⁻¹⁶ In this paper we wish to report the synthesis of 2 from 1 by the use of BTMA ICl₄.

Results and Discussion

The reaction of 1 with 2 molar amounts of BTMA ICl₄ in acetic acid at 70°C for several hours gave 2 in good yields. The results are summarized in Table 1.

Ar-COCH₃
$$\xrightarrow{\text{2 BTMA ICl}_4}$$
 Ar-COCHCl₂

In these reactions, the main active chlorinating species is probably acetyl hypochlorite that may be produced from a reaction of BTMA ICl₄ with acetic acid. The reaction scheme leading to 2 can be presented as follows:

$$2PhCH_2(CH_3)_3N^+ICl_4^- + 2CH_3COOH \longrightarrow$$

$$2\text{PhCH}_{2}(\text{CH}_{3})_{3}\text{N}^{+}\text{ICl}_{2}^{-} + 2\text{CH}_{3}\text{COOCl} + 2\text{HCl}$$
 (1)

$$1 + 2CH_3COOCl \longrightarrow 2 + 2CH_3COOH$$
 (2)

overall:

$$1 + 2PhCH2(CH3)3N+ICl4 \longrightarrow$$

$$2 + 2PhCH2(CH3)3N+ICl2 + 2HCl$$
(3)

The by-product, BTMA ICl₂, produced is so insoluble in acetic acid at room temperature that it is easily separable from the reaction mixture.

We have already reported that the reaction of 1 with equimolar BTMA ICl₄ in refluxing 1,2-dichloroethane—methanol gave chloroacetyl derivatives (3) in good yields, and the main active species in these reactions was methyl hypochlorite (CH₃OCl).²³⁾ However, we noticed that the reaction of 1 with 2 molar amounts of BTMA ICl₄ in 1,2-dichloroethane—methanol under reflux afforded 3 as main products and only a small amount of 2, even though the reaction was carried out for many hours. Thus, it should be realized that the chlorinating reactivity of acetyl hypochlorite is stronger than that of methyl hypochlorite.

We believe that the procedure for the dichlorination of aromatic acetyl derivatives including 3,3-dimethyl-2-butanone by the use of BTMA ICl₄, a stable solid chlorinating agent, is efficient owing to its ease, simplicity, generality and good product yields. Furthermore, the by-product, BTMA ICl₂, is easily converted to BTMA ICl₄ by treatment with chlorine in dichloromethane.⁹⁾

Experimental

2,2-Dichloro-1-phenyl-1-ethanone (2a); Typical Procedure: BTMA ICl₄ (4.18 g, 10 mmol) was added to a solution of acetophenone (1a) (0.60 g, 5 mmol) in acetic acid (50 ml), and the mixture was heated at 70 °C with stirring for 5 h. After the reaction mixture was cooled to room temperature, the precipitate, which was BTMA ICl₂, was filtered off. The filtrate was concentrated in vacuo and the residue was treated with 5% NaHSO₃ (10 ml) and with 5% NaHCO₃ (80 ml), and then extracted with ether (40 ml×4). The ether layer was dried (MgSO₄), filtered and evaporated in vacuo to give the product 2a (Table 1).

2,2-Dichloro-1-*m***-tolyl-1-ethanone (2b):** Colorless oil; ^1H NMR (CDCl₃) δ =2.37 (3H, s, CH₃), 6.70 (1H, s, CHCl₂), and 6.92—8.28 (4H, m, H_{arom}). Found: C, 53.12; H, 3.82%. Calcd for C₉H₈OCl₂: C, 53.23; H, 3.97%.

2,2-Dichloro-1-*p***-ethylphenyl-1-ethanone (2d):** Colorless oil; ¹H NMR (CDCl₃) δ =1.25 (3H, t, J=8 Hz, CH₂C<u>H</u>₃), 2.73

Table 1. α.α-Dichlorination of Aromatic Acetyl Derivatives with BTMA ICl₄ in AcOH

Substrate	Reaction time	Product ^a	Yield ^{b)}	IR (KBr or neat)	Mp (°C) or Bp (°C)/Torr ^{d)}	
(1)	h	(2)	%	$\nu_{\rm C=O}/{\rm cm}^{-1}$	Found ^{c)}	Reported
а О-сосн	3 5	COCHC12	90	1675 (neat)	243/760	245/7607)
b Me_co	сн ₃ 5	MeCOCHCl2	87	1685 (neat)	205/760	_
c Me-(-)-C	осн ₃ 5	Me-COCHC12	91	1685 (KBr)	53.5—54	55.5—56.5 ¹⁷⁾
d Et-O-C	осн ₃ 6	Et-O-COCHC12	90	1700 (neat)	175/760	
e MeO-	сосн ₃ 3	MeO-COCHC1 ₂	78	1680 (KBr)	77—78	75—7618)
f Br—co	осн ₃ 6	-cochc1 ₂	87	1680 (neat)	199/760	_
g Br-O-O	осн ₃ 6	Br-OCHC12	90	1695 (KBr)	63—64	_
h c1-(-)-0	сосн ₃ 6	C1-COCHC1 ₂	79	1675 (KBr)	60—61.5	61—62.519)
i c1-(C1	осн ₃ 6	C1-COCHC1 ₂	90	1725 (neat)	161/760	_
	сосн ₃ 4	с1———-соснс1 ₂	91	1690 (KBr)	64.5—65	_
k 02N	осн ₃ 3	COCHC1 ₂	96	1695 (KBr)	51.5—53.5	57—58 ²⁰⁾
$l O_2N - \bigcirc -C$ ACO,	осн ₃ 3	O ₂ N-O-COCHCl ₂ Aco.	90	1680 (KBr)	96	
m Aco	сосн ₃ 6	Aco - COCHC12	93	1705 (KBr)	85—87	_
n OO	осн ₃ 6	COCHC1 ₂	88	1705 (KBr)	81—82.5	8384 ²¹⁾
о сн3со-	-сосн ₃ 3	Cl ₂ CHCO-COCHCl	2 ⁷⁷	1740 (KBr)	153—156	143 ²²⁾
Me I p Me-C-Co I Me	осн ₃ 3	Me-C-COCHCl ₂ Me-Me	47	1725 (KBr)	48—49	50—518)

a) Known products were characterized by comparison with authentic material (1H NMR and IR spectra and mp or bp). b) Yield of isolated product. c) Melting and boiling points are all uncorrected. d) 1 Torr=133.322 Pa.

(2H, q, J=8 Hz, CH_2CH_3), 6.70 (1H, s, $CHCl_2$), 7.07 (2H, d, J=8 Hz, 3,5- H_{arom}), and 7.98 (2H, d, J=8 Hz, 2,6- H_{arom}). Found: C, 55.30; H, 4.50%. Calcd for $C_{10}H_{10}OCl_2$: C, 55.33; H, 4.64%.

1-m-Bromophenyl-2,2-dichloro-1-ethanone (2f): Colorless oil; ${}^{1}H$ NMR (CDCl₃) δ =6.58 (1H, s, CHCl₂) and 7.12—8.40 (4H, m, H_{arom}). Found: C, 35.64; H, 1.95%. Calcd for C₈H₅OBrCl₂: C, 35.86; H, 1.88%.

1-p-Bromophenyl-2,2-dichloro-1-ethanone (2g): Colorless crystals; 1 H NMR (CDCl₃) δ =6.58 (1H, s, CHCl₂), 7.55 (2H, d, J=9 Hz, 3,5-H_{arom}), and 7.88 (2H, d, J=9 Hz, 2,6-H_{arom}). Found: C, 35.97; H, 1.85%. Calcd for C₈H₅OBrCl₂: C, 35.86; H, 1.88%.

- **2,2-Dichloro-1-(2,4-dichlorophenyl)-1-ethanone** (2i): Colorless oil; ¹H NMR (CDCl₃) δ =6.88 (1H, s, CHCl₂) and 6.92—7.78 (3H, m, H_{arom}). Found: C, 37.32; H, 1.76%. Calcd for C₈H₄OCl₄: C, 37.25; H, 1.56%.
- **2,2-Dichloro-1-(3,4-dichlorophenyl)-1-ethanone** (2j): Colorless crystals; ${}^{1}H$ NMR (CDCl₃) δ =6.50 (1H, s, CHCl₂) and 7.43—8.30 (3H, m, H_{arom}). Found: C, 37.46; H, 1.66%. Calcd for C₈H₄OCl₄: C, 37.25; H, 1.56%.
- **2,2-Dichloro-***p***-nitrophenyl-1-ethanone** (2l): Colorless crystals; ${}^{1}H$ NMR (CDCl₃) δ =6.67 (1H, s, CHCl₂) and 8.28 (4H, s, H_{arom}). Found: C, 41.18; H, 2.31; N, 5.91%. Calcd for C₈H₅NO₃Cl₂: C, 41.06; H, 2.15; N, 5.99%.
- 1-(3,5-Diacetoxyphenyl)-2,2-dichloro-1-ethanone (2m): Colorless crystals; ${}^{1}H$ NMR (CDCl₃) δ =2.30 (6H, s, OCOCH₃), 6.60 (1H, s, CHCl₂), and 6.70—7.77 (3H, m, H_{arom}). Found: C, 47.19; H, 3.26%. Calcd for C₁₂H₁₀O₅Cl₂: C, 47.24; H, 3.30%.

References

- 1) Part XXXI, T. Okamoto, T. Kakinami, H. Fujimoto, and S. Kajigaeshi, Bull. Chem. Soc. Jpn., 64, 2566 (1991).
- 2) S. Kajigaeshi, T. Kakinami, T. Okamoto, and S. Fujisaki, Bull. Chem. Soc. Jpn., 60, 1159 (1987).

- 3) S. Kajigaeshi, T. Kakinami, H. Tokiyama, T. Hirakawa, and T. Okamoto, *Bull. Chem. Soc. Jpn.*, **60**, 2667 (1987).
- 4) S. Kajigaeshi, T. Kakinami, M. Moriwaki, S. Fujisaki, K. Maeno, and T. Okamoto, *Synthesis*, 1988, 545.
- 5) S. Goldschmidt, R. Endres, and R. Dirsch, *Ber.*, **58**, 572 (1925).
 - 6) E. L. Jackson, J. Am. Chem. Soc., 56, 977 (1934).
- 7) J. G. Aston, J. D. Newkirk, D. M. Jenkins, and J. Dorsky, Org. Synth., Coll. Vol. III, 538 (1955).
- 8) N. Rabjohn and E. R. Rogier, J. Org. Chem., 11, 781 (1946).
- 9) S. Kajigaeshi, T. Kakinami, M. Moriwaki, T. Tanaka, and S. Fujisaki, *Tetrahedron Lett.*, 1988, 5783.
- 10) S. Kajigaeshi, Y. Shinmasu, S. Fujisaki, and T. Kakinami, *Chem. Lett.*, **1989**, 415.
- 11) S. Kajigaeshi, Y. Ueda, S. Fujisaki, and T. Kakinami, Bull. Chem. Soc. Jpn., 62, 2096 (1989).
- 12) S. Kajigaeshi, Y. Shinmasu, S. Fujisaki, and T. Kakinami, *Chem. Express*, **5**, 141 (1990).
- 13) S. Kajigaeshi, Y. Shinmasu, S. Fujisaki, and T. Kakinami, *Bull. Chem. Soc. Jpn.*, **63**, 941 (1990).
- 14) T. Kakinami, T. Nozu, S. Yonemaru, T. Okamoto, Y. Shinmasu, and S. Kajigaeshi, *Nippon Kagaku Kaishi*, 1991, 44.
- 15) S. Kajigaeshi, M. Moriwaki, S. Fujisaki, and T. Kakinami, *Chem. Express*, 6, 185 (1991).
- 16) T. Okamoto, T. Kakinami, H. Fujimoto, and S. Kajigaeshi, Bull. Chem. Soc. Jpn., 64, 2566 (1991).
- 17) I. R. Zubkowski, Chem. Zentralbl., II, 3237 (1930).
- 18) F. Kunckell and F. Johannssen, Ber., 31, 169 (1898).
- 19) D. Woodcock, J. Chem. Soc., 1949, 203.
- 20) I. R. Zubkowski, Chem. Zentralbl., II, 2773 (1929).
- 21) I. R. Zubkowski, Chem. Zentralbl., II, 2775 (1929).
- 22) P. Ruggli and E. Gassenmeier, *Helv. Chim. Acta*, **22**, 496 (1938).
- 23) S. Kajigaeshi, T. Kakinami, H. Ikeda, and T. Okamoto, Chem. Express, 3, 659 (1988).