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One of the most interesting and instructive 2-aryl-l-ethyl systems is @-(9-anthryl)- 

Pa . 
ethyl (VIII). In hydrolysis, kmetic product control from the bridged ion V leads mostly 

to Spiro-alcohol I-OH containing a cyclopropane ring, along with the anthrylethanol VIII-OH. 

The bridged ion V, which is sufficiently stable for direct observation 2b by nmr in S02-SbFS, 

is generated in solvolysis solvents from suitable derivatives of the anthrylethyl (VIII) or 

Spiro-anthranyl (I) types. It appeared to us that data of fundamental importance could be 

provided by a solvolytic comparison of the Spiro-anthranyl system (I) with the three analogs 

containing two hydrogen atoms (II), two methyl groups (III) or an olefinic methylene group 

(IV) instead of the Spiro-cyclopropane ring. Firstly, solvolysis rates would disclose the 

relative rate-enhancing effects of Spiro-cyclopropane, H2, (CH3)2 and methylene groupings 

on ionization rate. Secondly, in the methylene case (IV), the corresponding carbonium ion 

is the 9-anthrylmethyl benzyl type cation VII, and it is interesting to compare this cation 

with the 9-anthrylethyl bridged ion V as regards kinetic and thermodynamic product control. 

Such a study would provide the simplest example of “9-methyleneanthranyl-9-anthrylmethyl 

tautomerism” (e. g. , X Z= X9. Such tautomerism3 was known long ago, but it appears to 

have been virtually forgotten by investigators between 1949 and nearly the present time. 

Recently, however, Rergson and Flynn4 have carried out several elegant studies in this field. 
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4b 
Most recently, they have studied the acid-catalyzed conversion of several substituted 9- 

methyleneanthranols (X; R = CH3, C6H5; Y = OH) to the corresponding thermodynamically 

favored anthrylmethyl ethyl ethers (XI; R = CH3, C6H5; Y = OEt) in ethanolic hydrogen 

chloride solution?C 

x @+Q&J 

‘gHS 
‘H 

C6H5R E ‘y 

Because of instability and general high reactivity, acetate derivatives 

XI 

were the most 

reactive esters we could manage and still compare the four systems I-IV with the same 

leaving group. The anthranyl acetate 5,6a II-OAc, mp 80-81’) and the 9,9 -dimethylanthranyl 

analog’ III-OAc, mp 107”, were prepared from anthranol and 9,9_dimethylanthranol, respec- 

tively, using pyridine-acetic anhydride at 0’. The 9,9_dimethylanthranol5 mp 79. S-80. So, 

was obtained by lithium aluminum hydride reduction of the corresponding ketone. The spiro- 

anthranyl acetate” 6b I-OAc, mp 62”, and the 9-methyleneanthranyl acetate5 mp 89. S-90. So, 

were prepared from I-OH and IV-OH, respectively, using pyridine-acetic anhydride 
6c 

at ca. 

-20”. The 9-methyleneanthranol IV-OH, mp 96-98” (dec.), was prepared by lithium aluminum 

hydride reduction 
6d 

of the known 9-methyleneanthrone. 

Satisfactory first order solvolysis rate constants were obtained for the four acetateesters 

in aqueous acetone solvents, a summary of the data being given in Table I. The products of 

solvolysis at 25” in 60% acetone (90% acetone in the case of I-OAc), containing added sodium 

bicarbonate, were collected and analyzed by nmr under conditions shown by control experi- 

ments to insure kinetic product control. From the 9,9_dimethylanthranyl ester III-OAc the 

corresponding anthranol III-OH was obtained. The unsubstituted anthranyl ester II-OAc formed 

24% anthranol II-OH and 76% anthracene. From the Spiro-acetate I-OAc was observed 84% 

Spiro-alcohol I-OH and 16% anthrylethanol VIII-OH, essentially the same mixture observed 

previously from solvolysis of VIII-OTs in aqueous dioxane2a The 9methyleneanthranyl ace- 
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tate IV-OAc also led to a mixture, 30% of methylene anthranol IV-OH and 7G% of the 9- 

anthrylmethyl alcohol IX-OH. Essentially the same mixture, 28% IV-OH and 72% IX-OH, 

was observed from solvolysis of the known 9-anthrylmethyl chloride7 

TABLE I 

Summary of Solvolysis Rates 

Acetate 
Solvent 

% Acetone 
Temp. 

“C. 105k (set:‘) 
Rel. Rate 

2.5” 

I-OAc 90 25.0 113.8 k5.6 

II-OAc 60 25.0 38.2 f 0.7 

II-OAc 80 25.0 1.26kO.04 II-OAc 90 25. Oa 0.099 3 

II-OAc 90 50.0 1.56 kO.03 

II-OAc 90 75.0 18.46 + 0.41 

1150 

1.00 

III-OAc 60 25.0 42. 3 + 0. 4 1.09 

IV-OAc 60 25.0 46.7 + 0.2 1.22 

aExtrapolated from data at higher temperatures 

The rate data show the spiroanthranyl ester I-OAc to be more reactive than its counter- 

parts II-OAc and III-OAc by three powers of ten? The great rate enhancement due to the cy- 

clopropane ring in I-OAc provides a clear kinetic demonstration of the extensive electron re- 

lease from the Spiro-“cyclopropane” group in phenonium ions. This demonstration is the 

first of its kind, since this is the first time we have been able to approach kinetically a bridged 

ion such as V from a structure which already incorporates the cyclopropane ring. The spiro- 

anthranyl I-OAc is also some three powers of ten more reactive than the methylene anthranyl 

analog IV-OAc, providing another kind of example where the accelerating effect of a cyclopro- 

10 pane ring is greater than that of an olefinic group. 

The new information on kinetic product control in solvolysis of I-OAc, II-OAc and IV-OAc 

provides not only confirmatory evidence 2a 
on the behavior of the anthrylethyl bridged ionV, 
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but also completely new evidence regarding partitioning of the anthranyl and 9-anthrylmethyl 

cations VI and VII during hydrolysis. Thus, the anthranyl ion VI, which loses a lo-proton 

completely to yield anthracene in thermodynamic control, gives 24% of anthranol II-OH in 

kinetic control, only 76% of anthracene being formed by proton loss. The anthrylmetbyl cation 

VII, which yields only anthrylmethanol IX-OH in thermodynamic control, yields a mixture of 

products in kinetic control, 70% from coordination of water at the methyl group cationic center 

and 30% from water attack at the ClO-cationic center. The anthrylmethyl cation, with its rela- 

tively low catiomc charge at the CH: carbon atom of the ArCHi system, is obviously favorably 

disposed towards nucleophilic attack on the Ar group competitive with that at the CI-I; carbon. 

However, more information will be needed about other ArCHi systems before it is clear how 

best to correlate the partition factors in kinetic product control with various available qheore- 

tical parameters. 
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