SOLVOLYSIS OF 9-SUBSTITUTED 10-ANTHRANYL SYSTEMS^{1a, b}

Richard Leute^{1C} and S. Winstein Department of Chemistry, University of California^{1d} Los Angeles, California 90024 (Received 17 April 1967)

One of the most interesting and instructive 2-aryl-1-ethyl systems is β -(9-anthryl)ethvl (VIII). In hydrolysis,^{2a} kinetic product control from the bridged ion V leads mostly to spiro-alcohol I-OH containing a cyclopropane ring, along with the anthrylethanol VIII-OH. The bridged ion V, which is sufficiently stable for direct observation^{2b} by nmr in SO_2 -SbF₅, is generated in solvolysis solvents from suitable derivatives of the anthrylethyl (VIII) or spiro-anthranyl (I) types. It appeared to us that data of fundamental importance could be provided by a solvolytic comparison of the spiro-anthranyl system (I) with the three analogs containing two hydrogen atoms (II), two methyl groups (III) or an olefinic methylene group (IV) instead of the spiro-cyclopropane ring. Firstly, solvolysis rates would disclose the relative rate-enhancing effects of spiro-cyclopropane, H_2 , $(CH_3)_2$ and methylene groupings on ionization rate. Secondly, in the methylene case (IV), the corresponding carbonium ion is the 9-anthrylmethyl benzyl type cation VII, and it is interesting to compare this cation with the 9-anthrylethyl bridged ion V as regards kinetic and thermodynamic product control. Such a study would provide the simplest example of "9-methyleneanthranyl-9-anthrylmethyl tautomerism" (e.g., $X \neq XI$). Such tautomerism³ was known long ago, but it appears to have been virtually forgotten by investigators between 1949 and nearly the present time. Recently, however, Bergson and Flynn⁴ have carried out several elegant studies in this field.

 $E_{\pi} = 17.30 \beta$

 $E_{\overline{H}} = 16.00\beta$ H OAc CH_3 CH_3 CH_3 H H

 $E_{\overline{h}} = 19.32\beta$

 $E_{\pi} = 18.81\beta$

 $E\pi = 20.26\beta$

 $E_{\pi} = 19.32\beta$

70%

Most recently,^{4b} they have studied the acid-catalyzed conversion of several substituted 9methyleneanthranols (X; R = CH₃, C₆H₅; Y = OH) to the corresponding thermodynamically favored anthrylmethyl ethyl ethers (XI; R = CH₃, C₆H₅; Y = OEt) in ethanolic hydrogen chloride solution.^{4c}

Because of instability and general high reactivity, acetate derivatives were the most reactive esters we could manage and still compare the four systems I-IV with the same leaving group. The anthranyl acetate^{5, 6a} II-OAc, mp 80-81°, and the 9,9-dimethylanthranyl analog⁵ III-OAc, mp 107°, were prepared from anthranol and 9,9-dimethylanthranol, respectively, using pyridine-acetic anhydride at 0°. The 9,9-dimethylanthranol,⁵ mp 79.5-80.5°, was obtained by lithium aluminum hydride reduction of the corresponding ketone. The spiro-anthranyl acetate^{5, 6b} I-OAc, mp 62°, and the 9-methyleneanthranyl acetate,⁵ mp 89.5-90.5°, were prepared from I-OH and IV-OH, respectively, using pyridine-acetic anhydride^{6c} at ca. -20°. The 9-methyleneanthranol IV-OH, mp 96-98° (dec.), was prepared by lithium aluminum hydride reduction.

Satisfactory first order solvolysis rate constants were obtained for the four acetate esters in aqueous acetone solvents, a summary of the data being given in Table I. The products of solvolysis at 25° in 60% acetone (90% acetone in the case of I-OAc), containing added sodium bicarbonate, were collected and analyzed by nmr under conditions shown by control experiments to insure kinetic product control. From the 9, 9-dimethylanthranyl ester III-OAc the corresponding anthranol III-OH was obtained. The unsubstituted anthranyl ester II-OAc formed 24% anthranol II-OH and 76% anthracene. From the spiro-acetate I-OAc was observed 84% spiro-alcohol I-OH and 16% anthrylethanol VIII-OH, essentially the same mixture observed previously from solvolysis of VIII-OTs in aqueous dioxane.^{2a} The 9-methyleneanthranyl acetate IV-OAc also led to a mixture, 30% of methylene anthranol IV-OH and 70% of the 9anthrylmethyl alcohol IX-OH. Essentially the same mixture, 28% IV-OH and 72% IX-OH, was observed from solvolysis of the known 9-anthrylmethyl chloride.

TABLE I

Summary	of	Solvo	lysis	Rates
---------	----	-------	-------	-------

Acetate	Solvent % Acetone	Temp. °C.	$10^5 k (sec.^{-1})$	Rel. Rate 25°
I-OAc	90	25.0	113.8 ± 5.6	1150
II-OAc	60	25.0	38.2±0.7	
II-OAc	80	25.0	1.26 ± 0.04	1.00
II-OAc	90	25.0 ^a	0.099	
II-OAc	90	50.0	1.56 ± 0.03	
II-OAc	90	75.0	18.46 ± 0.41	
III-OAc	60	25.0	42. 3 ± 0.4	1.09
IV-OAc	60	25.0	46.7 \pm 0.2	1.22

^aExtrapolated from data at higher temperatures

The rate data show the spiroanthranyl ester I-OAc to be more reactive than its counterparts II-OAc and III-OAc by three powers of ten.⁹ The great rate enhancement due to the cyclopropane ring in I-OAc provides a clear kinetic demonstration of the extensive electron release from the spiro-"cyclopropane" group in phenonium ions. This demonstration is the first of its kind, since this is the first time we have been able to approach kinetically a bridged ion such as V from a structure which already incorporates the cyclopropane ring. The spiroanthranyl I-OAc is also some three powers of ten more reactive than the methylene anthranyl analog IV-OAc, providing another kind of example where the accelerating effect of a cyclopropane ring is greater than that of an olefinic group.¹⁰

The new information on kinetic product control in solvolysis of I-OAc, II-OAc and IV-OAc provides not only confirmatory evidence^{2a} on the behavior of the anthrylethyl bridged ion V,

but also completely new evidence regarding partitioning of the anthranyl and 9-anthrylmethyl cations VI and VII during hydrolysis. Thus, the anthranyl ion VI, which loses a 10-proton completely to yield anthracene in thermodynamic control, gives 24% of anthranol II-OH in kinetic control, only 76% of anthracene being formed by proton loss. The anthrylmethyl cation VII, which yields only anthrylmethanol IX-OH in thermodynamic control, yields a mixture of products in kinetic control, 70% from coordination of water at the methyl group cationic center and 30% from water attack at the C_{10} -cationic center. The anthrylmethyl cation, with its relatively low cationic charge at the CH_2^+ carbon atom of the $ArCH_2^+$ system, is obviously favorably disposed towards nucleophilic attack on the Ar group competitive with that at the CH_2^+ carbon. However, more information will be needed about other $ArCH_2^+$ systems before it is clear how best to correlate the partition factors in kinetic product control with various available theoretical parameters.

REFERENCES

- (a) Research supported in part by the National Science Foundation; (b) Research sponsored in part by the U. S. Army Research Office (Durham); (c) Postdoctoral Fellow of the Fritz-Thyssen Foundation, Köln, Germany, 1965-1966; (d) Contribution # 2033.
- (a) L. Eberson, J. P. Petrovitch, R. Baird, D. Dyckes and S. Winstein, J. Am. Chem. Soc. <u>87</u>, 3504 (1965); (b) L. Eberson and S. Winstein, <u>ibid.</u> <u>87</u>, 3506 (1965).
- (a) J. W. Cook, <u>J. Chem. Soc.</u> 2798 (1928); (b) P. L. Julian, W. Cole, G. Diemer and J. G. Schafer, <u>J. Am. Chem. Soc.</u> 71, 2058 (1949).
- 4. (a) K. G. Flynn and G. Bergson, <u>Acta Chem. Scand.</u> <u>19</u>, 756 (1965); (b) G. Bergson and K. G. Flynn, <u>Arkiv Kemi</u>, in press; (c) Since the reaction was followed by ultraviolet absorption, formation of any 9-methyleneanthranyl ether X by kinetic control was not observed.
- 5. This and the other indicated new compounds gave satisfactory carbon and hydrogen analyses.
- 6. (a) Rapid transformation to anthracene occurs on melting; (b) Above the mp, a slow but complete transformation to VIII-OAc, mp 88-90°, occurs; (c) When acetylation of the spiro-alcohol I-OH was performed at 0°, a mixture of I-OAc (80%) and VIII-OAc (20%) was obtained; (d) Under many reaction conditions, the attempted lithium aluminum hydride reduction led mainly to 9-methylanthracene. Using a 1.1 mole proportion of hydride, a very large volume of ether, and a 10 minute reaction period led to good results.

- 7. Solvolysis of 9-anthrylmethyl chloride (and α -9-anthrylethyl chloride) has been previously studied by several investigators in correlating reactivity of ArCH₂Cl and ArCHClCH₃ with quantum mechanical quantities such as ΔE_{π} of ionization⁸ Only 9-anthrylalkanol was observed as product, but no precautions were taken to insure kinetic product control.
- 8. See A. Streitwieser, Jr., "Molecular Orbital Theory for Organic Chemists", John Wiley and Sons, Inc., New York, N.Y., 1961, pp. 367-379, for pertinent references and a good presentation of the rate data.
- It is interesting to compare this rate ratio with the reported factors of 4 or 9 by which pcyclopropylcumyl chloride solvolyzes more rapidly than the p-isopropylcumyl analog in aqueous acetone or dioxane. L. B. Jones and V. K. Jones, <u>Tetrahedron Letters No. 14</u>, 1493 (1966); H. C. Brown and J. D. Cleveland, J. Am. Chem. Soc. <u>88</u>, 2051 (1966).
- 10. The simple HMO $\overline{\boldsymbol{u}}$ -electron energy change accompanying ionization ($\Delta E_{\overline{\boldsymbol{u}}}$) is 1.45 β for IV-OAc, slightly greater than the value of 1.30 β for II-OAc and III-OAc. However, the calculated advantage of IV-OAc is apparently balanced by such factors as inductive, hyperconjugative and solvation effects.