# **Diastereoselective Synthesis of** 1,1'-Binaphthyl-2,2'-diol

Min Wang,\* Shang Zhong Liu, Jun Liu, and **Bing Fang Hu** 

Department of Applied Chemistry, Beijing Agricultural University, Beijing 100094, People's Republic of China

## Received May 5, 1995

In the past few years, much attention has been focused on the chirality recognition properties of chiral crown ether hosts containing the binaphthyl unit,<sup>1</sup> and the application of chiral 1,1'-binaphthyl-2,2'-diol (1) in asymmetric synthesis has proven fruitful.<sup>2</sup> Consequently, the preparation of optically active binaphthol is of current interest. Previous synthetic approaches have been reviewed in our earlier paper.<sup>3</sup> Therein an efficient method entailing resolution of cyclic phosphoramidate was reported. During the synthesis of (S,R)-1,1'-binaphthyl-2,2'-diyl N-(S)-( $\alpha$ -methylbenzyl)phosphoramidate, we noted that the rate of formation of one enantiomer is greater than that of the other. In light of this observation, we have designed a new method for obtaining chiral 1,1'binaphthyl-2,2'-diol by the diastereoselective reactions of 1,1'-binaphthyl-2,2'-diylphosphoryl chloride (2) with chiral amines (3) (Scheme 1). The diastereometric excesses obtained in the formation of 4a-c by the reaction of racemic 2 and (S)- $\alpha$ -phenylethylamine (3a), (S)-1-(4chlorophenyl)-2-methylpropylamine (3b), or (S)-1-(2methoxymethylphenyl)-2-methylpropylamine (3c) at different temperatures are presented in Table 1.

## **Results and Discussion**

The tabulated results reveal that the diastereoselectivity of the reaction decreases with increasing reaction temperature and with increasing steric hindrance by the substituents on the carbon atom  $\alpha$  to the nitrogen atom and on the orthoposition of the benzene ring of the chiral amine. This method of synthesis of chiral 1,1'-binaphthyl-2,2'-diol is efficient and convenient. The overall yield of optically pure 1 from racemic 1 was 73%. The chiral amine used in the reaction is only half the amount of the phosphoryl chloride and is easily recovered in 90% yield with retention of its original enantiomeric purity.

### **Experimental Section**

1. Preparation of Optically Active Amines. The (S)- $\alpha$ phenylethylamine (3a) is a commercial product, (S)-1-(4-chlorophenyl-)-2-methylpropylamine (3b) was prepared according to a known procedure,<sup>4</sup> and (S)-1-(2-methoxy-5-methylphenyl)propylamine (3c) was prepared by the following procedure (Scheme 2).

1.1. Preparation of 1-(2-Methoxy-5-methylphenyl)-2methyl-1-propanone (5). A solution of 39 g (0.32 mol) of 4-methylanisole in 50 mL of dichloroethane was added to 45.5 g (0.34 mol) of aluminum trichloride suspended in 200 mL of dichloroethane, and then 36.5 g (0.34 mol) of isobutyroyl chloride in 50 mL of dichloromethane was added with stirring (the reaction temperature was kept under 10 °C during the addition). After the addition, the mixture was stirred for 3 h at 30-35 °C.

Table 1. Results of Diastereoselective Reaction of 2 with 3a-c

| amine | temp (°C) | deg <sup>b</sup> (%) |
|-------|-----------|----------------------|
| 3a    | 0         | 27                   |
|       | 10        | 24                   |
|       | 20        | 20                   |
| 3b    | 0         | 38                   |
|       | 10        | 31                   |
|       | 20        | <b>24</b>            |
| 3c    | 0         | 82                   |
|       | 10        | 68                   |
|       | 20        | 33                   |

 $^a$  The reactions were carried out for 12 h at 20 °C, 24 h at 10 °C and 48 h at 0 °C. <sup>b</sup> The values of % deg were determined by <sup>31</sup>P NMR.

#### Scheme 1



Scheme 2



The reaction mixture was hydrolyzed with concentrated hydrochloric acid and then extracted twice with ether (100 mL/time). The combined extracts was dried over anhydrous sodium sulfate and distilled under reduced pressure, giving a colorless liquid (49.5 g, yield 85.9%): bp 142-145 °C/1.3  $\times$  10<sup>3</sup> Pa; <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS) 6.78-7.03 (m, 3H, Ar-H), 3.48 (s, 3H, OCH<sub>3</sub>), 3.32-3.64 (m, 1H, CH), 2.24 (s, 3H, ArCH<sub>3</sub>), 1.10-1.18 (d, 6H,  $CH_3$ ).

1.2. Preparation of 1-(2-Methoxy-5-methylphenyl)-2methylpropylamine (racemic 3c). A solution of 19.2 g of 5 and 25.8 g of ammonium formate was heated to 150  $^{\circ}C$ , the resulting water was distilled off at the same temperature for 3 h, and then the mixture was heated to 180 °C and maintained for 5 h. After the mixture was cooled to room temperature, 80 mL of concentrated hydrochloric acid was added, and the mixture was refluxed for 3 h and then cooled. The reaction mixture was washed with benzene, and the aqueous layer was made alkaline with 40% sodium hydroxide and extracted three times with benzene. The combined extracts were dried over anhydrous potassium carbonate and distilled under reduced pressure, giving a colorless liquid (10 g, yield 51.8%): bp 153-156 °C/1.3 × 103 Pa; <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS) 6.60-6.96 (m, 3H,

© 1995 American Chemical Society

<sup>(1)</sup> Kyba, E. P.; Gokel, G. W.; de Jong, F.; Koga, K.; Sousa, L. R.; Siegel, M. G.; Kaplan, L. G.; Dotsevi, G.; Sogah, Y.; Cram, D. J. J. Org. Chem. 1977, 42, 4173.
(2) Miyashita, A.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.

<sup>(3)</sup> Gong, B.-q.; Chen, W.-y.; Hu, B.-f. J. Org. Chem. 1991, 56, 423
(4) Wang, M., Hu, B.-f. Chem. Abstr. 1990, 112, 198336m.

ArH), 3.66-3.80 (d, 1H, NCH), 3.60 (s, 3H, OCH<sub>3</sub>), 2.20 (s, 3H, ArCH<sub>3</sub>), 1.80-2.04 (m, 3H, CH and NH<sub>2</sub>), 0.62-0.95 (dd, 6H, CH<sub>3</sub>).

1.3. Resolution of Racemic 3c. A racemic mixture of 3c (19.3 g, 0.1 mol) and D-(-)-tartaric acid (15 g, 0.1 mol) in 60% ethanol (1200 mL) was refluxed until all the solid was dissolved and then cooled to room temperature and allowed to stand for 1 day at room temperature (about 13 °C). The resulting precipitate was filtered off and recrystallized from 60% ethanol twice, and the optically pure amine was liberated by treating the crystal with 10% sodium hydroxide, extracting with ether, and distilling, giving a colorless liquid (6.86 g 71% yield):  $[\alpha]^{20}_{\rm D} = -5.62$  (neat).

1.4. Determination of Enantiomeric Purity of 3c. The enantiomeric purity of 3c was assessed by <sup>31</sup>P NMR nonequivalence of the two diastereomers, (S)-1,1'-binaphthyl-2,2'-diyl N-(S)-phosphoramidate ((S,S)-4c) and (S)-1,1'-binaphthyl-2,2'-diyl N-(R)-phosphoramidate ((S,R)-4c). The enantiomerically pure 2 was prepared according to the known procedure<sup>3</sup> via (S)-1,1'-binaphthyl-2,2'-diol ( $[\alpha]^{20}_D = 35.2, c = 1$ , THF, 100% enantiomeric purity) and phosphorus oxychloride and then reacted with 3c to give quantitatively the phosphoramidate with a single <sup>31</sup>P NMR signal only (13.05 ppm), indicating the 100% enantiopurity of 3c.

2. Reactions of 1,1'-Binaphthyl-2,2'-diylphosphoryl Chloride (2) with Chiral Amines 3a-c. A mixture of chiral amine (5 mmol) and triethylamine (5.2 mmol) in 10 mL of dried dichloromethane was added dropwise to a solution of 1,1'binaphthyl-2,2'-diylphosphoryl chloride [from 1 (10 mmol)] in 20 mL of dried dichloromethane at temperature T and then stirred for several hours. The <sup>31</sup>P NMR data showed the the presence of two diastereomeric phosphoramidates and unreacted 2 [12.7 ppm ((S,S)-4a), 12.68 ppm ((R,S)-4a), and 10.43 ppm (2) for 3a; 12.58 ppm ((S,S)-4b), 13.39 ppm ((R,S)-4b) and 10.43 ppm (2) for 3b; 13.05 ppm ((S,S)-4c), 14.60 ppm ((R,S)-4c), and 10.43 ppm (2) for 3c]. The % de value of the products were determined by <sup>31</sup>P NMR spectra as shown in Table 1.

3. Separation of (S,S)-4c, (R,S)-4c, and 2. The reaction mixture of 2 and 3c was washed with cold water and dried over anhydrous magnesium sulfate. The solution was chromatographed by the vacuum liquid chromatographic method<sup>5</sup> (silica gel, 300 mesh, 1:10) with anhydrous ether as eluent. A mixture of (S,S)-4c and (R,S)-4c was obtained (2.1 g, 93% yield). Another fraction contained 2 (1.7 g). The (S,S)-4c was obtained by recrystallization from anhydrous ethanol, giving 1.8 g of crystalline product (<sup>31</sup>P NMR, 13.05 ppm), mp 264-265 °C, 86% yield.

4. Preparation of (S)-1 and (R)-1. (S)-1 was obtained by reduction of (S,S)-C according to the known procedure,<sup>1</sup> yielding a colorless crystalline solid (1.05 g, mp 206-207 °C,  $[\alpha]^{20}_{D} = -35.2, c = 1.0$ , THF, 92% yield). (R)-1 was obtained by reduction of the recovered 2 with LAH, and the crude crystalline product was recrystallized from benzene to give a colorless crystalline solid (1.04 g, mp 206-207 °C,  $[\alpha]^{20}_{D} = +35.2, c = 1.0$ , THF, 73% yield). The chiral amine 3c was recovered in 90% yield,  $[\alpha]^{20}_{D} = -5.62$  (neat).

### JO950849B

<sup>(5)</sup> Targett, N. M.; Kijcoyne, J. P.; Green, B. J. Org. Chem. 1979, 44, 4962.