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Aryl thioethers are important structural motifs in natural 
products, materials and pharmaceuticals.1 For instance, Perazine 
is an antipsychotic drug used in restoring the balance of certain 
natural substances of brain.2 Vortioxetine as an atypical 
antipsychotic and antidepressant can be used for the treatment of 
major depressive disorder (MDD) in adults.3 Axitinib is a 
selective second-generation tyrosine kinase inhibitor of vascular 
endothelial growth factor receptors.4 Therefore, the development 
of efficient synthetic methods for aromatic sulfides are of great 
value.
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Figure 1 Examples of drug molecules containing aromatic 
sulfide
In recent years, transition metal such as Ru,5 Rh,6 Pd,7 Ni8 and 
Co9 catalyzed C−H activation has become an efficient way to 
synthesize thioethers. Especially, directing-group-assisted copper 
-catalyzed or -mediated C−H thiolation has attracted con-
siderable attentions due to the earth-abundant and low-toxic 
copper catalysts.10 In 2006, Yu and co-workers reported the first 
copper-mediated pyridine-directed C−H thiolation by using 
PhSH and MeSSMe as thioether source (Scheme 1A).11 In 2010, 
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mediated C–H thiolation of (hetero)arenes

Qing and co-workers developed copper-mediated C−H 
thiomethylation of 2-phenylpyridine, in which DMSO was used 
as the thiomethylation reagent.12 In 2012, Daugulis developed 8-
aminoquinoline as the removable bidentate directing group to 
achieve the copper-promoted C−H thiolation (Scheme 1B).13 
Subsequently, Shi developed 2-(pyridin-2-yl) isopropyl-amine 
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We have developed a copper-mediated C–H thiolation of (hetero)arenes by using monodentate 
amide as weakly coordinating directing group. This protocol features excellent functional group 
tolerance and shows satisfactory compatibility with various heterocycles, such as indole, pyrrole, 
imidazole, pyridine, thiophene and quinoline. The robust nature of this protocol renders that it 
has potential value in the synthetic application.
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(PIP) as the directing group to realize the copper-mediated C−H 
thiolation of (hetero)arenes with disulfides14a and S8.14b Assisted 
by 2-aminalkylbenzimidazole (MBIP) as directing group, Song 
reported copper-mediated C−H thiolation of arenes and olefins.15 
Recently, Ackermann developed a copper-catalyzed highly 
regioselective C−H thiolation of indoles (C2 position) and 
indolines (C7 position).16 Very recently, our group disclosed a 
Cu-mediated room-temperature C−H thiolation of arenes by 
using ethylene sulfide as the thiolation reagent.17

Despite those undisputable advances, strongly coordinating 
directing groups are often required in the reaction. Copper 
catalyzed or mediated C–H thiolation via weakly coordinating 
directing group is rare, possibly due to relatively low catalytic 
activity and the irreversible coordination of copper catalyst with 
sulfur compounds.18 In 2016, Ackermann and coworkers 
achieved copper mediated C−H thiolation and chalcogenation of 
1,2,3-triazoles via weak O-assistance (Scheme 1C).19 Previously, 
our group reported copper mediated ortho-hydroxylation and 
amination of arenes by utilizing a weakly coordinating 
monodentate directing group (Scheme 1D).20 In this work, we 
reported a copper-mediated C−H thiolation of (hetero)arenes by 
weakly coordinating directing group.

Table 1 Optimization of the reaction conditionsa

a Reaction conditions:1b (0.1 mmol), 2a (0.2 mmol), Cu salts, base (0.2 mmol), DMSO (1 mL), air,
12 h. b Yield was determined by 1H NMR analysis of crude reaction mixture using CH2Br2 as the
internal standard. c O2 atmosphere. d N2 atmosphere. e 24 h. f 36 h. g 48 h. h Isolated yield.
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We commenced our studies by selecting substrate 1b and phenyl 
disulfide 2a as the model substrates. We initially treated substrate 
1b with 2 equiv. of 2a, 1 equiv. of Cu(OAc)2 and 2 equiv. of 
CsOAc in DMSO at 100 °C for 12 h, giving the target product in 
28% with a 25/3 mono- to di-thiolation ratio (Table 1, entry 1). 
Then we screened other copper catalysts, and Cu(OAc)2 gave the 
best results (entry 2, 3). Base is essential in the reaction, and no 
desired product could be obtained in the absence of base (entry 4-

7). The yield of thiolation could be improved to 57 % by 
increasing the temperature to 110 oC (entry 8-10). When the 
reaction was carried out under N2 atmosphere, 65% yield of 
desired product could be obtained (entry 12). Unexpectedly, all 
the raw materials were decomposed and no desired product could 
be observed under O2 conditions (entry 11). When we increased 
loading of copper catalyst to 2 equiv., the yield could be 
improved to 76% (entry 13-15). Prolonged reaction time could 
slightly improve the yield with higher di- to mono-thiolation ratio 
(Entry 16-19).

With the optimal conditions in hand, we proceeded to explore the 
substrate scope of benzamide derivatives. As shown in Table 2, 
our protocol appeared to be very general with respect to the 
substituents in benzamide 1 (1a-1r). Electron-rich OMe, Ph-
substituted arenes gave the corresponding products in 72% and 
68% yields respectively (3c, 3d). Electron-deficient arenes 
bearing halogen, cyano, trifluoromethyl, ester, sulfonyl and nitryl 
group could be thiolated smoothly under the standard conditions, 
obtaining the corresponding products in moderated to good yields 
(3e-3o). When the ortho-position was substituted by fluorine, 
methyl and trifluoromethyl, the yields decreased to 35-67%, 
possibly due to the steric hindrance (3p-3r). 1-
Naphthylbenzamide afforded mono-thiolation product 3s in 68% 
yields (3s). Compared to 3, 5-dimethoxyl benzamide, 3, 5-
difluoro benzamide gave higher selectivity of di-thiolation 
product perhaps due to the small size of the fluorine atom (3t, 
3u). To our delight, this protocol could be compatible with 
heterocycles including thiophene, pyrrole, imidazole and indole 
derivatives, furnishing the desired thiolated products in moderate 
to good yields (3v, 3w, 3x, 3aa). Substrates containing strongly 
coordinated pyridine and quinoline could also be thiolated in 
good yields (3y, 3z, 3ab, 3ac).

Table 2 Scope of benzamide substratesa,b

CONHArF

SPh

N

CONHArF
SPhPhS

N

CONHArF
PhS SPh

3y, 71%

3z, 75%

CONHArF

SPh

SPh

N

3ac, 68%3aa, 77%

N
CONHArF

SPh

CONHArF

N

N

3x, 38%

3s, 68%

CONHArF

SPh

F

F

SPh

3t, 81%

SPh

a Reaction conditions:1 (0.1 mmol), 2a (0.2 mmol), Cu(OAc)2 (0.2 mmol), Li2CO3 (2 eq), DMSO (1 mL),
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Next, we investigated the scope of disulfides. As shown in Table 
3, 1,2-diphenyl disulfide containing various substituents, 
including methyl, methoxy, trifluoromethyl, fluoro, chloro, and 



3
bromo could proceed smoothly, giving the desired products in 
moderate yields (4a-4i). Dialkyl disulfide could be also 
compatible under the standard conditions, albeit in lower yields 
(4k). As analogues of disulfides, diphenyl diselenide was reactive 
and provided the desired product in acceptable yields (4l).

Table 3 Scope of disulfidesa
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To showcase the synthetic utility of this protocol, the C−H 
thiolation of substrate 1i with disulfide 2a was carried out on 
gram scale under the standard conditions, providing the 
corresponding product 3i in 68% yield (Scheme 2).
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Scheme 2 Gram-scale synthesis

For better understanding of the mechanism of copper-mediated 
C–H thiolation of arenes, intra- and intermolecular kinetic 
isotope effects experiments were carried out. Significant isotope 
effects (4.0 and 3.3) suggested that C−H cleavage could be 
involved the rate-limiting step (Scheme 3). 
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In addition, the addition of 1 equiv. TEMPO had only a slight 

impact on the yield, which indicated that the thiolation might 
not involve radical process (Scheme 4).

standard reaction
conditionsCONHArF CONHArF

SPh

+

1b 2a 3b
H

PhSSPh

TEMPO
0

1.0 equiv

Yield %
77% (mono/di = 52%:25%)
65% (mono/di = 31%:35%)

Scheme 4 The effect of TEMPO

In summary, we have developed copper-mediated C–H thiolation 
of benzoic acid derivatives by employing monodentate amide as 
weakly coordinating directing group. This protocol has high 
functional group tolerance, and a variety of heterocycles 
including indole, pyrrole, imidazole, pyridine, thiophene and 
quinoline could be compatible in the reaction.  KIE experiments 
indicated that C−H cleavage could be involved the rate-limiting 
step.
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