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Late-Stage Functionalization of Arylacetic Acids by Photoredox-

Catalyzed Decarboxylative Carbon—-Heteroatom Bo

Yota Sakakibara,® Eri Ito,” Tomohiro Fukushima,®® Kei Murakami,*® and Kenichir:

Abstract: The rapid transformation of pharmaceuticals and
agrochemicals enables access to unexplored chemical space and
thus has accelerated the discovery of novel bioactive molecules.
Since arylacetic acids have been regarded as privileged structures in
bioactive compounds, new transformations of these structures would
contribute to drug/agrochemical discovery and chemical biology.
Herein, we report carbon-nitrogen and carbon-oxygen bond
formation through the photoredox-catalyzed decarboxylation of
arylacetic acids. The reaction shows good functional group
compatibility without pre-activation of the nitrogen- or oxygen-based
coupling partners. Under similar reaction conditions, carbon—chlorine
bond formation was also feasible. This efficient derivatization of
arylacetic acids allows us to synthesize pharmaceutical analogues
and bioconjugates of pharmaceuticals and natural products.

The late-stage functionalization of pharmaceutical and
agrochemical molecules has been regarded as a promising way
to accelerate the discovery of new bioactive compounds."! Such
rapid and straightforward transformations allows for the
generation of a new family of potential bioactive molecules from
pharmaceutical molecules to access unexplored regions
chemical space. Analogues of pharmaceuticals differ in stru
from the original molecule, but they generally meet critefla for
bioactive molecules, such as Lipinski’s rule.”! Thereforg these
analogues would have potential to control
phenomenon to express novel bioactivity. A recen
revealed that analogues of pharmaceutical comp
used for other biological applications. For exa
shown that analogues of Celecoxib, a no
inflammatory drug, were found to
development in plants (Figure 1A) even though higher p
not possess orthologs of the originally target gene in human.
Since arylacetic acids have been regarded as privil
structures in pharmaceuticals and aggchemicals (Figure
we envisioned that transforming the
functionalities would allow for the sy
that would contribute drug/agrochemical dis
biology.“!
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Figure 1. (A) An example of the discovery of new bioactive molecule from
established pharmaceuticals. (B) Pharmaceuticals containing arylacetic acid
scaffolds. (C) This work.

We launched our study from the reaction of biphenylylacetic
acid (1a: felbinac, an anti-inflammatory drug) with HN(SO2Ph),
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(2a) (Figure 2). The use of [Ru(bpy)s]Cl,:6H,O (catalyst) and
hypervalent iodine-based oxidant 1-butoxy-1A°-
benzo[d][1,2])iodaoxol-3(1H)-one  (IBB) under blue light
irradiation proved to be particularly effective, affording the
corresponding decarboxylative imidation product 3a in 87% vyield.
Notably, both the catalyst and light are critically important for the
reaction to proceed. Although hypervalent iodine PhI(OAc),, an
analog of IBB, gave 3a in good yield, other organic and
inorganic oxidants were not effective in this transformation.
Moreover, no C—H imidation products were observed.!"®!

.SO,Ph
mOH /©/\N o
SO,Ph
Ph o Ph 2

1a (Felbinac) 3a 87%

[Ru(bpy)s]Cly:6H,0
BB
HN(SO,Ph), (2a)

CH,Cl,
40°C, 24 h
blue LED light

E Validation of the necessity of catalyst and light '
! no blue LED light and [Ru(bpy)s]Cl,-6H,0 (0%)
i no blue LED light (0%)

! o [Ru(bpy)sICly'6H,0 (0%) : IBBO
o 0.0
AcO—I—0Ac 0
I* PFe~ NC cl K+
Q g w020 %g 0K
o
NC cl
o) (K2S20g)
61%2 0% 0% trace

Figure 2. Validation of the necessity of catalyst and light, and the effectgof
oxidants.

A possible mechanism for the decarboxylative imidatfon is
shown in Figure 3, which is based on our previous study on C-H

activated intermediate A in situ (see the Supporting
(Sl) for details). At the same time, the rutheniu
activated by irradiation of blue light to give Ru"*.
with Ru™ to provide Ru", radical B, and
Decarboxylation of B then occurs to give D. In
oxidizes imide 2a to provide imidyl radical E.'"®! The r
proton might react with butoxide (n-BuO~) or 2-iodobenzoate (
Finally, a radical-radical coupling between D and E
produce F. The precise mechanism is rpt clear at this stage
other possible pathways from inter
example, single electron transfer be
ionic intermediate!'® that finally affords
results that other electron-deficient
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reaction pathway is also p
intermediate D wa
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potential. Not only benzeneacetic acids but also other arylacetic
acids (naphthalene, indole, and thiophene) gave products 3l-n.
Notably, no aromatic C-H imida groducts were observed.
Although a methyl group at the benZy gsition did not retard
the reaction (30), the introduction of 3 phenyl group
completely suppressed the reaction (3p
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)

H
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ring-opening
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Scheme 1. Generation of benzyl radical under the conditions.

We then studied the scope of the imide substrate (Figure 4B).
Diarylsulfonimides bearing a methyl or bromo-group smoothly
afforded the corresponding products 6a—c in high yields (87%,
78%, and 87%). A diarylsulfonimide with electronically opposing
substituents (trifluoromethyl and methoxy) on either aryl ring
gave the product 6d in 64% yield. Not only aryl but also an alkyl-
substituted sulfonimide worked nicely to give 6e in 72% yield.
The reaction of a cyclic sulfonimide gave 6f in 45% yield.
Saccharin, a cyclic imide, furnished the corresponding product
6g in 51% yield, with concomitant formation of 6g" in 22% yield.

Notably, nucleophiles other than imides are also applicable
in this decarboxylative reaction. For example, trifluoroacetic acid
and dibutylphosphonic acid coupled with 1a to give the
corresponding C-O coupling products 6h and 6i in 53% and
63%, respectively (Figure 4C). The reaction of 1a with 2,2,2-
trifluoroethanol afforded 6j in 50% yield. Interestingly, the
addition of sulfonimide 2a accelerated the reaction as only 29%
of 6j was obtained without a catalytic amount of 2a. Notably,
tetrabutylammonium chloride can be used as a chloride source.
The reaction provided the corresponding benzylic chloride 6k in
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84% yield. Although thiols were not directly installable with this
reaction, a one-pot sequence of decarboxylative chlorination and
Sn2 reaction of 1a with 4-BuCeH,SH afforded 6l in 60% vyield
(Figure 4D).

transformations  of
arylacetic  acid

Our
pharmaceuticals

reaction can be applied to
having  functionalized

substructures (Figure 5). For example, the reaction of Diclofenac,

which possesses a free N-H moiety, afforded the corresponding
product 7a in 59% yield. The reaction proceeded smoothly in a
gram-scale to give 7a in 1.02 g. Other pharmaceuticals such as
Indomethacin, Flurbiprofen, Ibuprofen, Zaltoprofen, and
Isoxepac were smoothly transformed into the corresponding
benzylamine derivatives (7b—f) in good to high vyields. The
decarboxylative chlorination of Isoxepac also proceeded
smoothly to afford 7g in 82% yield. The resulting benzyl chloride
7g can be used as an intermediate to conjugate with other
bioactive molecules. Sny2 reactions with bioactive molecules
such as Duloxetine, L-cysteine, vitamin E, and Celecoxib gave
the corresponding conjugates 8a-d in good yields (65%, 48%,
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transformations could be applicable in the area of
pharmaceutical/agrochemical chemlstry and chemical biology to
accelerate the development of n logical compounds and
tools as well as for affinity-probe-b ntification of target
proteins.?”!
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Figure 4. Scope of the substrate. Optimized reaction conditions: 1 (2.0 equiv), 2 (0.20 mmol), [Ru(bpy);]Cl,:6H,0 (2.5 mol%), IBB (2.5 equiv), CH,Cl, (4.0 mL)

40 °C, 24 h. Variation from optimized reaction conditions:
(0.20 mmol), IBB (2.0 equiv). °

HN(SO.Ph),. ° BusN"CI™ (0.20 mmol), IBB (2.0 equiv), HN(SO.Ph), (25 mol%). "

butylbenzenethiol (1.0 equiv), NaH (10 equiv), DMF (4.0 mL), 2 h.

21 (5.0 equiv), IBB (3.0 equiv).
1a (0.20 mmol), CF;CH,OH (4.0 mL: solvent), IBB (2.0 equiv), HN(SO-Ph), (25 mol%).  'H NMR yield. Without addition of

36 h. © CF3CO,H (0.20 mmol), IBB (2.0 equiv). ® (nBuO),PO(OH)

BusN*CI™ (0.20 mmol), IBB (2.0 equiv), HN(SO,Ph), (25 mol%), then 4-tert-
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