

Bioorganic & Medicinal Chemistry Letters 12 (2002) 857-859

# Synthesis and Antibacterial Activity of Linezolid Analogues

Du Yu and Guo Huiyuan\*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China

Received 2 November 2001; accepted 28 December 2001

Abstract—Several new compounds of oxazolidinone class were designed and synthesized referring to the structure–activity relationship studies and the synthesis of Linezolid, and their antibacterial activity was studied. © 2002 Elsevier Science Ltd. All rights reserved.

## Introduction

The increasing incidence of multidrug resistance among Gram-positive bacterial pathogens represents one of the major challenges in the 1990s for health care researchers. This growing problem has recently rekindled interest in the search for new antibiotic structural classes that inhibit or kill by novel mechanisms. Clearly there is an urgent need for the discovery and development of new agents effective against the emerging and currently problematic Gram-positive pathogens MRSA, methicillin-resistant coagulase-negative *staphylococci*, VRE, and penicillin-resistant *pneumococci*, as well as the perceived looming threat of a vancomycin-resistant *Staphylococcus aureus*.

The oxazolidinones are a new class of totally synthetic antibacterial agents. They have a novel mechanism of action that involves the inhibition of bacterial protein synthesis at a very early stage, prior to chain initiation.<sup>1</sup>

Linezolid (U-100766) is a successful agent of this class, and has already gained the permission of the FDA and come into the market.

Referring to the structure–activity relationship studies<sup>3–7</sup> and the synthesis of Linezolid,<sup>2</sup> we have designed some new compounds of oxazolidinone class in order to investigate the relationship of antibacterial activity and the increasing lipophilicity of group R (Fig. 1). These compounds all belong to piperazinyl series. Figure 1 shows several compounds already

synthesized (**1a**–**d**) and we also prepared some U-100766 for contrast (Fig. 1, **1e**).

#### Chemistry

The synthesis route of these compounds is shown in Figure 1. Commencing with 3,4-difluoronitrobenzene, nucleophilic aromatic displacement with excess substituted piperazine (RH) selectively gave the p-substituted nitrobenzene (2). Reduction of 2 was followed by attachment of benzyl chloroformate activating group to the arylamine 3 giving 4. Carbamate 4 was deprotonated with *n*-BuLi (THF,  $-78 \,^{\circ}$ C), and then (*R*)-glycidyl butyrate was added and the mixture was kept at  $-78 \,^{\circ}\text{C}$ for about 1.5 h, then slowly allowed to warm to room temperature and stirred overnight. This sequence provided directly the (5R)-(hydroxy methyl)-2-oxazolidinone 5 in >55% yield. 5 was reacted with 4-nitrobenzenesulfonyl chloride and gave 6. 6 then reacted with  $NH_3$  in methyl alcohol, and gave 7. 7 was not purified but just handled with water, solution of citric acid and CH<sub>2</sub>Cl<sub>2</sub>. Then the mixture (made pH > 8.5) was reacted with acetic anhydride at 40 °C for 2 h, and gave 1.

In total, we have synthesized four target compounds and 16 intermediates; all of them are not reported yet. The structures of all the target compounds were proved by <sup>1</sup>H NMR, MS and HRMS (data shown in Table 1 and ref 8).

### **Biological Results and Discussion**

Using U-100766 and Norvancomycin as control, we tested the antibacterial activity in vitro of the target

<sup>\*</sup>Corresponding author. Fax: +86-10-6304-7865; e-mail: hyguo@public.fhnet.cn.net

<sup>0960-894</sup>X/02/\$ - see front matter  $\odot$  2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00043-4

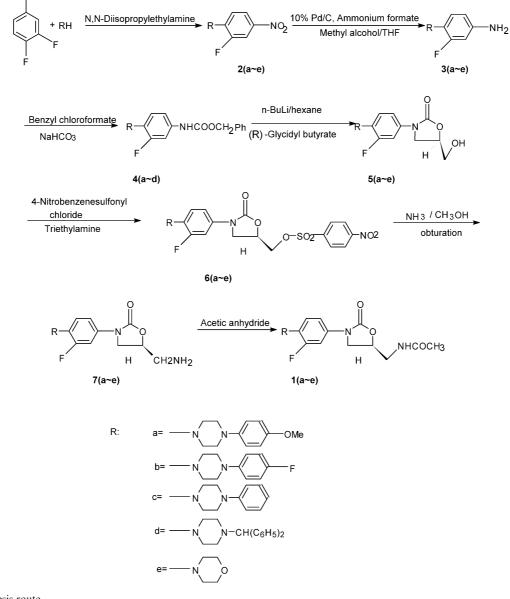



Figure 1. Synthesis route.

Table 1. <sup>1</sup>H NMR, MS and HRMS data of target compounds

|    | Compound data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1a | <sup>1</sup> H NMR(CDCl <sub>3</sub> ) δ (ppm): 2.03 (3H, s, -COCH <sub>3</sub> ), 3.20–3.34 (8H, m, piperizine), 3.78 (3H, s, -OMe), 3.58–4.06 (4H, m, 2× -CH <sub>2</sub> ), 4.75–4.78 (1H, m, -CH), 5.96 (1H, br, -NH), 6.87–7.10 (6H, m, ArH), 7.45–7.50 (1H, m, ArH); MS-EI ( <i>m</i> / <i>z</i> ): 442 (M <sup>+</sup> ), 398 (M <sup>+</sup> -CO <sub>2</sub> ), 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1b | $(C_8H_9N_1O_1)$ ; HRMS $C_{23}H_{27}N_4O_4F$ , calc. (M): 442.201634; meas.: 442.201948<br><sup>1</sup> H NMR (CDCl <sub>3</sub> ) $\delta$ (ppm): 2.03 (3H, s, -COCH <sub>3</sub> ), 3.24–3.27 (8H, m, piperizine), 3.61–4.06 (4H, m, 2×-CH <sub>2</sub> -), 4.72–4.80 (1H, m, -CH-), 6.00 (1H, br, -NH-), 6.95–7.11 (6H, m, ArH), 7.44–7.48 (1H, m, ArH); MS-EI (m/z): 430 (M <sup>+</sup> ), 386 (M <sup>+</sup> -CO <sub>2</sub> ), 150 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>9</sub> N <sub>1</sub> F <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>1</sub> ), 123 (C <sub>9</sub> H <sub>1</sub> ), 123 (C <sub>19</sub> H <sub>1</sub> ), |
| 1c | $(C_7H_6N_1F_1)$ ; HRMS $C_{22}H_{24}N_4O_3F_2$ , calc. (M): 430.181647; meas.: 430.182161<br><sup>1</sup> H NMR (CDCl <sub>3</sub> ) $\delta$ (ppm): 2.05 (3H, s, -COCH <sub>3</sub> ), 3.25–3.39 (8H, m, piperizine), 3.56–4.06 (4H, m, 2× -CH <sub>2</sub> –), 4.75–4.79 (1H, m, -CH–), 5.99 (1H, br, -NH–), 6.96–7.10 (5H, m, ArH), 7.30–7.50 (3H, m, ArH); MS-EI (m/z): 412 (M <sup>+</sup> ), 368 (M <sup>+</sup> -CO <sub>2</sub> ), 105 (C <sub>7</sub> H <sub>7</sub> N); HRMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1d | $C_{22}H_{25}N_4O_3F$ , calc. (M): 412.191069; meas.: 412.193418<br><sup>1</sup> H NMR (CDCl <sub>3</sub> ) $\delta$ (ppm): 2.02 (3H, s, -COCH <sub>3</sub> ), 2.47–2.67 (4H, m, piperizine), 2.98–3.10 (4H, m, piperizine), 3.53–4.03 (4H, m, 2×<br>-CH <sub>2</sub> -), 4.29 (1H, s, -CH-), 4.71–4.79 (1H, m, -CH-), 5.97 (1H, br, -NH-), 6.89–7.45 (13H, m, ArH); MS-EI ( <i>m/z</i> ): 502 (M <sup>+</sup> ), 459 (MH <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1e | $-CO_2$ ), 336 (MH <sup>+</sup> - ph <sub>2</sub> CH), 195 (C <sub>14</sub> H <sub>13</sub> N <sub>1</sub> ), 167 (ph <sub>2</sub> CH); HRMS C <sub>29</sub> H <sub>31</sub> N <sub>4</sub> O <sub>3</sub> F, calc.(M): 502.238019; meas.: 502.236347<br><sup>1</sup> H NMR(CDCl <sub>3</sub> ) $\delta$ (ppm): 2.02 (3H, s, -COCH <sub>3</sub> ), 3.04–3.07 (4H, m, (CH <sub>2</sub> ) <sub>2</sub> N), 3.86–3.88 (4H, m, (CH <sub>2</sub> ) <sub>2</sub> O), 3.59–4.05 (4H, m, 2× -CH <sub>2</sub> -),<br>4.73–4.81 (1H, m, -CH-), 6.34 (1H, br, -NH-), 6.94 (1H, t, J=9.0 Hz, ArH), 7.04–7.08 (1H, dd, J <sub>1</sub> =2.1 Hz, J <sub>2</sub> =8.8 Hz, ArH), 7.41–7.46<br>(1H, dd, J <sub>1</sub> =3.0 Hz, J <sub>2</sub> =14.7 Hz, ArH); MS-EI (m/z): 337 (M <sup>+</sup> ), 293 (M <sup>+</sup> -CO <sub>2</sub> ), 234 (C <sub>13</sub> H <sub>15</sub> N <sub>2</sub> OF); HRMS C <sub>16</sub> H <sub>20</sub> N <sub>3</sub> O <sub>4</sub> F, calc. (M):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 337.143785; meas. 337.144878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

NO2

 Table 2.
 Antibacterial activity

| Strain              | MIC (µg/mL)  |    |     |      |    |               |
|---------------------|--------------|----|-----|------|----|---------------|
|                     | 1e Linezolid | 1a | 1b  | 1c   | 1d | Norvancomycin |
| S. pneumoniae 9753  | 0.5          | 1  | 1   | 0.5  | 4  | 0.25          |
| S. pneumoniae 9757  | 0.5          | 1  | 1   | 0.25 | 4  | 0.25          |
| S. pneumoniae 9798  | 0.5          | 1  | 1   | 1    | 8  | 0.25          |
| Streptococcus A 29  | 0.25         | 1  | 1   | 0.5  | 4  | 0.5           |
| Streptococcus A 44  | 0.5          | 1  | 1   | 2    | 32 | 0.5           |
| S. pyogenes 102     | 0.5          | 1  | 1   | 1    | 32 | 0.5           |
| S. pyogenes 114     | 0.5          | 2  | 2   | 1    | 16 | 2             |
| E. faecalis 50      | 0.5          | 1  | 1   | 1    | 8  | 1             |
| E. faecalis 68      | 1            | 2  | 4   | 2    | 32 | 2             |
| S. aureus 975       | 0.25         | 1  | 0.5 | 1    | 4  | 1             |
| S. aureus 9616      | 1            | 1  | 2   | 1    | 8  | 0.5           |
| S. aureus 9721      | 0.5          | 1  | 1   | 1    | 16 | 1             |
| S. aureus 9776      | 0.5          | 1  | 1   | 1    | 8  | 1             |
| S. aureus 966       | 0.5          | 2  | 1   | 2    | 8  | 2             |
| S. epidermidis 975  | 0.5          | 1  | 1   | 1    | 8  | 1             |
| S. epidermidis 9753 | 0.25         | 1  | 0.5 | 0.5  | 4  | 1             |
| S. epidermidis 9759 | 0.5          | 1  | 1   | 1    | 16 | 1             |

compounds with several clinical separated pathogens, several quality control strains and several standard strains. The target compounds **1a**–**d** were dissolved in DMSO and we tested MICs with double dilution method. The results are shown in Table 2. The activity of **1d** is very poor. The activity of the other three compounds is equal to or less than U-100766 and Norvancomycin. Because we only get a certain number of compounds, we cannot discuss the SAR in depth now. Here, we just report the synthesis and antibacterial activity of these analogues and more analogues will be prepared for this purpose soon.

#### Acknowledgements

The authors would like to thank the National Research Center of Drug and Metabolite Analysis for measuring the data of <sup>1</sup>H NMR, MS and HRMS, and we also want to thank the Pharmacology Laboratory of Institute of Medicinal Biotechnology for testing the antibacterial activity.

#### **References and Notes**

1. (a) Eustice, D. C.; Feldam, P. A.; Zajic, I., et al. Antimicrob. Agents Chemother. **1988**, 32, 1218. (b) Lin, A. H.; Murray, R. W.; Vidmar, T. J., et al. Antimicrob. Agent Chemother. **1997**, 41, 2127.

2. Bricker, S. J.; Hutchinson, D. K.; Barbachyn, M. R., et al. J. Med. Chem. 1996, 39, 673.

3. Seneci, P.; Caspani, M.; Ripamenti, F., et al. J. Chem. Soc., Perkin Trans. 1 1994, 2345.

4. Gregory, W. A.; Brottelli, D. R.; Wang, C. L. J., et al. *J. Med. Chem.* **1989**, *32*, 1673.

5. Park, C. H.; Brittelli, D. R.; Wang, C. L. J., et al. J. Med. Chem. 1992, 35, 1156.

6. (a) WO 09.103 1993; Chem. Abstr. **1993**, 119, 160265u. (b) WO 14684, 1995; Chem. Abstr. **1995**, 123, 314020g.

7. Gregory, W. A.; Brottelli, D. R.; Wang, C. L. J., et al. J. Med. Chem. 1990, 33, 2569.

8. Physical constants: **1a**: mp: 226–230 °C;  $[\alpha]_{D}^{27}$  (°): -6 (*c* 0.63, DMSO). **1b**: mp: 222–226 °C;  $[\alpha]_{D}^{27}$  (°): -2.7 (*c* 0.76, CHCl<sub>3</sub>). **1c**: mp: 206–209 °C;  $[\alpha]_{D}^{27}$  (°): -12 (*c* 2.03, CHCl<sub>3</sub>). **1d**:  $[\alpha]_{D}^{27}$  (°): -7 (*c* 5.52, CHCl<sub>3</sub>). **1e**: mp: 181–183 °C;  $[\alpha]_{D}^{27}$  (°): -11 (*c* 5.10, CHCl<sub>3</sub>).