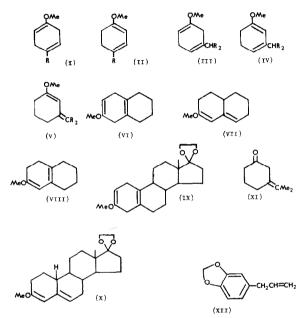
OLEFIN ISOMERISATIONS USING TRISTRIPHENYLPHOSPHINERHODIUM CHLORIDE

A.J. Birch and G.S.R. Subba Rao

Research School of Chemistry, Australian National University P.O. Box 4, Canberra, A.C.T. Australia


(Received in UK 25 May 1968; accepted for publication 4 June 1968)

Tristriphenylphosphinerhodium chloride has been used as an oxidation¹ and an hydrogenation² catalyst and in only one case³ has double-bond isomerisation been noted. A number of other transition metal complexes are known to produce double-bond isomerisation, e.g.⁴, although this is frequently accompanied by complex formation. We have now observed that the rhodium complex acts cleanly as a catalyst for the conjugation of 1,4-dienes to 1,3-dienes. The procedure is a mild one, in contrast to previous methods involving strong bases such as potassamide in liquid ammonia⁵ or potassium tert-butoxide in dimethylsulphoxide⁶.

l-Methoxycyclohexa-1,4-diene (I,R=H) was equilibrated⁵ with the more stable conjugated isomer l-methoxycyclohexa-1,3-diene (II,R=H)(80%) by refluxing in chloroform for 2 hours with the catalyst (1% by weight). No reaction was observed at room temperature; benzene was also found to be a useful solvent, the isomerisation being somewhat slower. Similarly (I,R=Me) was equilibrated with (II,R=Me).

Base-catalysed isomerisations of 3-alkyl-1-methoxycyclohexa-1,4-dienes give first the endocyclic conjugated diene⁷ and then the more stable exocyclic diene, e.g. (III,R=H) \rightarrow (IV,R=H) \rightarrow (V,R=H). The present conditions produce the same final product in this and other cases, e.g. (VI) \rightarrow (VII) and (IX) \rightarrow (X), without so far permitting the reaction to be arrested at the intermediate cis-diene (e.g. VIII). Using benzene as a solvent, it was possible to obtain a small proportion of (VIII) from (VI) with mainly (VII) but in refluxing chloroform after 5 minutes (VII) was the only product. For reasons already defined⁷ the base-catalysed conjugation of (III,R=Me) is arrested at (IV), but with the rhodium catalyst the product (V,R=Me) is obtained. This was identified by hydrolysis to the ketone (XI) the spectra of which accord with the structure given, notably ν_{max} ¹⁷¹⁰ cm⁻¹, T 8.56s(3H), 8.60s(3H) and the absence of resonances in the olefinic region. Safrole (XII), in chloroform, gave a mixture of cis-isosafrole (40%) and transisosafrole (60%). Using benzene for the same period of reflux (2 hours) the only product was cis-isosafrole (60%) and unchanged safrole, but after 3 hours some trans-isosafrole (20%) had appeared. The initial product therefore seems to be entirely cis, which is slowly converted into the trans-isomer.

In all cases except (XI) and (V,R=Me) the products are known and were compared with authentic ones by g.l.c., and by p.m.r. spectra, and in the case of (X) by mixed $m.p. 110-112^{0}$.

REFERENCES

- A.J. Birch and G.S.R. Subba Rao, <u>Tetrahedron Letters</u>, 2917 (1968);
 J. Blum, H. Rosenmann and E.D. Bergmann, <u>Tetrahedron Letters</u>, 3665 (1967).
- A.J. Birch and K.A.M. Walker, <u>J. Chem.Soc</u>., C, 1894 (1966); J.A. Osborn, F.H. Jardine, J.F. Young and G. Wilkinson, <u>J. Chem.Soc</u>., A, 1711 (1966).
- 3. J.F. Biellmann and M.J. Jung, <u>J.Am. Chem. Soc.</u>, <u>90</u>, 1673 (1968).
- 4. N.R. Davies, <u>Rev.Pure and Appl.Chem.</u>, <u>17</u>, 83 (1967).
- A.J. Birch, <u>J. Chem.Soc</u>., 1642 (1947); A.J. Birch, <u>Faraday Soc.Disc</u>. <u>No.2</u>, 246 (1947);
 A.J. Birch and P.J. Hextall, <u>Aust.J. Chem.</u>, <u>8</u>, 96 (1955).
- 6. A. Schriesheim, J.E. Hoffmann and C.A. Rowe, Jr., J.Am. Chem. Soc., 83, 3731 (1961).
- 7. A.J. Birch, E.A.M. Shoukry and F. Stansfield, <u>J. Chem. Soc.</u>, 5376 (1961).