Reactions of the Octahydrotriborate (-1) Ion with Mercury Salts

A. DRUMMOND and J. H. MORRIS

Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, U.K. Received January 20, 1977

The octahydrotriborate ion (B_3H_8) reacts with $HgCl_2$, Hg_2Cl_2 (and complexes of Hg^I and Hg^{II}) in the presence of ligands, L, to give complexes LB_3H_7 , and cleavage and chlorinated decomposition products.

Introduction

There has been considerable interest recently in the oxidation and substitution of the octahydrotriborate(-1) ion, $B_3H_8^-$, and its ligand derivatives, LB_3H_7 . The B_3H_8 ion undergoes electrochemical oxidation in the presence of acetonitrile to give $MeCNB_3H_7$ [1], and reacts with hydrogen halides either by hydride abstraction and formation of LB₃- H_7 [1, 2], or by substitution to give $B_3H_7X^-$ [3]. Other protonic acids lead to higher boranes through hydrogen abstraction and subsequent reaction of the $[B_3H_7]$ intermediate [4]. These reactions parallel those of the tetrahydroborate(-1) ion, BH₄. Although reactions of the tetrahydroborate(-1) ion with Lewis acids have often been used as methods of preparing diborane and its derivatives LBH₃ [5], few studies on the octahydrotriborate(-1) ion have been reported.

We now describe the products of reaction of the octahydrotriborate(-1) ion with HgCl₂ and Hg₂Cl₂ and their complexes in the presence of ligands. For comparison we have investigated the analogous reaction of the tetrahydroborate(-1) ion with HgCl₂ in the presence of triphenylphosphine.

Experimental

Solvents and Starting Materials

Tetrahydrofuran (THF) was stored over CaH₂ and distilled from either LiAlH₄ or Na-benzophenone under vacuum before use. $(Ph_3P)_2HgCl_2$, $(Ph_3P)_2Hg_2$ -Cl₄, and $(Me_3N)_2Hg_3Cl_6$ were prepared by direct reaction of the reagents in ethanol. Ph₃P, Me₄NB₃H₈, NaBH₄, HgCl₂ and Hg₂Cl₂ were dried under vacuum before use. Me₃NB₃H₇ was prepared from Me₃NHCl and Me₄NB₃H₈ by refluxing in THF, and was purified by vacuum sublimation.

N.m.r. Spectra

These were obtained on a JEOL-PS-100-PFT-100 nmr spectrometer operated at 25.15 MHz utilizing the ¹³C probe, and operating unlocked at reduced field strength. Chemical shifts are reported relative to external BF₃OEt₂, or capillary BF₃OEt₂ inserted in the 8 mm sample tubes, and are quoted in ppm on the recently adopted convention (IIIrd I.M.E. Boron Conference, Ettal, July, 1976) that positive shifts are to low field. Slight shift differences are observed between the external and capillary references. Coupling constants are in Hz.

Reaction of $NaBH_4$ with $HgCl_2$ in the Presence of Ph_3P

Sodium tetrahydroborate (0.38g, 10 mmol) was dissolved in 100 ml of THF and triphenylphosphine (2.62g, 10 mmol) and mercuric chloride (1.35g, 5 mmol) were added. The mixture was stirred at room temperature overnight, filtered under nitrogen, and the solvent removed under vacuum to give 2.6g of crude Ph₃PBH₃ (94%) which was recrystallised from methanol. It was identified by its IR spectrum (BH str.; 2378, 2340sh cm⁻¹), and its ¹¹B n.m.r. (1:3:3:1 quartet of 1:1 doublets, δ , 37.6; J_{BH}, 98; J_{BP}, 56 [6] and partial ¹H n.m.r. (broad 1:1:1:1 quartet, δ , 1.30; J_{BH}, 98).

Reactions of Hg_2Cl_2 and $HgCl_2$ with $Me_4NB_3H_8$

Typically, a reaction vessel, equipped with a magnetic stirrer, vacuum stopcock, and a side-arm with a glass sinter leading to an evacuated n.m.r. tube, was charged with the solid reagents Me₄NB₃H₈ (0.485g, 4.2 mmol) and Hg₂Cl₂ (1.0g, 2.1 mmol). The vessel was evacuated, and THF (20 ml) condensed in from the vacuum line. The vessel was warmed to room temperature and stirred overnight. After being frozen and the hydrogen pumped off the mixture was filtered into the n.m.r. tube which was then sealed under vacuum. The ¹¹B n.m.r. spectrum showed a weak 1:1 doublet (8, 27; J, 161) due to (BuO)₂BH [7, 8], a weak singlet (δ , 17.8) due to (BuO)₃B [7, 8], a weak 1:2:1 triplet (δ , 4; J, 134) due to THF•BH₂Cl [9], and a strong asymmetric multiplet (δ , -8.7; J, 41) due to $THF \cdot B_3H_7$ [10]. A repeat reaction allowed to react for only 1 hour showed only the weak triplet

(δ , 4.4; J, 134) and the asymmetric multiplet (δ , -8.3; J, 39). The reaction of a similar molar ratio of HgCl₂ and Me₄NB₃H₈ give the same products except that the n.m.r. signals due to the by-products, in particular the 1:2:1 triplet, were considerably more intense. Prolonged storage of the samples resulted in the intensity of the signals due to by-products, in particular the singlet, increased at the expense of the multiplets, and a precipitate formed.

Reactions of Hg_2Cl_2 or $HgCl_2$ with $Me_4NB_3H_8$ and the Amines Me_3N or Et_3N

As an example of a series of reactions carried out, Hg₂Cl₂ (1.18 g, 2.5 mmol) and Me₄NB₃H₈ (0.575g, 5 mmol) were placed in the apparatus described previously, and THF (10 ml) was condensed in under vacuum. The mixture was warmed to room temperature and stirred for 1/2 hr. The mixture was refrozen and Me₃N (0.345g, 5.8 mmol) was condensed in, the mixture stirred overnight, and then filtered into the n.m.r. tube. The ¹¹B n.m.r. spectrum showed a number of resonances of comparable intensity, comprising a multiplet (δ , -30.1; J, 33) due to $B_3H_8^-$ [7], an asymmetric multiplet (δ , -18.9; J, 35) due to Me₃NB₃H₇ [11], a 1:3:3:1 quartet (δ , -8.3; J, 98) due to Me₃NBH₃ [7, 12], and a 1:2:1 triplet (δ , -0.6; J, 121) due to Me₃NBH₂Cl. The identity of a number of the species (Me₃NB₃H₇, Me₃NBH₃, Me₃-NBH₂Cl) was checked by comparison of the ¹¹B n.m.r. of authentic materials prepared by standard methods.

After storage for 3 months, the fraction of Me_3 -NBH₃ increased slightly at the expense of $Me_3NB_3H_7$, and a precipitate formed, whose ¹¹B n.m.r. in CH_2Cl_2 was broad and featureless.

A similar reaction was run between Me₄NB₃H₈ (0.485g, 4.2mmol) Hg₂Cl₂ (1.0g, 2.1 mmol) in THF (8 ml), stirred overnight, Et₃N (0.428g, 4.2 mmol) condensed in, and the mixture stirred for four days before being filtered into the n.m.r. tube. The ¹¹B n.m.r. spectrum showed a trace of a multiplet (δ , -30.5; J, 34) due to $B_3H_8^-$ [7], a strong broad resonance $(\delta, -21.8)$, a weak 1:3:3:1 quartet $(\delta, -13.6)$; J, 99) due to Et₃NBH₃, and a weak overlapping triplet (δ , -5.6; J, 127) due to Et₃NBH₂Cl [13, 14]. On storage at room temperature for 3 months, the ¹¹B spectrum changed by decreasing considerably the signal due to Et₃NB₃H₇, increasing that due to Et₃-NBH₃, developing the signal due to (BuO)₃B while that due to Et₃NBH₂Cl remained essentially unaltered. A precipitate also formed in the n.m.r. tube, whose ¹¹B spectrum in CH₂Cl₂ was broad and featureless.

 $Me_4NB_3H_8$ (0.57g, 5 mmol), and 80 ml of THF was treated with the preformed complex $(Me_3N)_2$ -Hg₃Cl₆ (0.85g, 0.97 mmol) with stirring for 6 hr. The solution, filtered under N₂, was concentrated to half its volume, and the ¹¹B n.m.r. spectrum obtain-

ed. This showed a weak multiplet (δ , -18.6; J, 34) due to Me₃NB₃H₇, a strong, poorly resolved multiplet (δ , -9.6; J, 34) due to THF·B₃H₇, and traces of (BuO)₃B, THF·BH₂Cl, and an unidentified product (δ , -27).

Reactions of $Me_4NB_3H_8$ with $HgCl_2$ in the Presence of Ph_3P

A slurry of Mc₄NB₃H₈ (1.14g, 10 mmol) and Ph₃P (2.62g, 10 mmol) in 100 ml of THF was treated with HgCl₂ (1.35g, 5 mmol) with stirring overnight. The solution was filtered under N₂, and solvent removed under vacuum to give 2.7g of crude product whose IR and ¹¹B n.m.r. spectra indicated a mixture of Ph₃-PBH₃ (δ , -39.7) [6], and Ph₃PB₃H₇ (δ _{2,3}, -15.9; δ ₁, -45.8).

A reaction of a slurry of $Me_4NB_3H_8$ (0.57g, 5 mmol) in 50 ml of THF with preformed $(Ph_3P)_2$ -HgCl₂ (1.98 g, 2.5 mmol) which was added in three successive portions in a total of 20 ml of THF. A series of n.m.r. samples were taken, and the ¹¹B spectrum recorded, at the reaction times after the addition; the results are presented in the Table.

Sample	Fraction of (Ph ₃ P) ₂ HgCl ₂ added	Reaction time (min)	Spectrum observed
1	0	0	
2	1/3	5	
3	2/3	10	Ph ₃ PB ₃ H ₇
4	all	15	Ph ₃ PB ₃ H ₇
5	-	45	$Ph_3PB_3H_7 + Trace$
6	-	overnight	Ph3PBH3 Ph3PB3H7 + Ph3PBH3

 $Me_4NB_3H_8$ (0.285g, 2.5 mmol and $(Ph_3P)_2HgCl_2$, (0.99g, 1.25 mmol), onto which 8 ml of THF was condensed under vacuum, were allowed to stir at room temperature for 15 min. The mixture was filtered into an n.m.r. tube and the ¹¹B spectrum showed only $Ph_3PB_3H_7$ ($\delta_{2,3}$, -16.3: δ_1 , -46.1).

Reaction of $Me_4NB_3H_8$ (0.57g, 5 mmol) and preformed $(Ph_3P)_2Hg_2Cl_4$ (1.34g, 1.26 mmol) in 70 ml of THF resulted in an n.m.r. spectrum consistent with the mixed products from HgCl₂ and $(Ph_3P)_2HgCl_2$, namely $(BuO)_2BH$, $(BuO)_3B$, THFBH₂Cl, and superposition of THFB₃H₇ and Ph₃PB₃H₇ signals.

Results and Discussion

In an attempt to develop a convenient synthetic method for a range of LB_3H_7 adducts, we have examined reactions of the conveniently accessible octahydrotriborate anion, $B_3H_8^-$ with mercuric and

mercurous chloride in the presence of a ligand, L. The methods previously described for the preparation of these derivatives either involve the inconvenient and hazardous hydride, B_4H_{10} , or have limited applicability, such as the reaction of salts of $B_3H_8^-$ with $Me_3NH^+Cl^-$ [15–19]. We wished to ascertain whether the reaction with a Lewis acid would offer the advantages that are apparent in the reactions of tetrahydroborate anion, BH_4^- , and whether further substitution of hydride by halide would occur as had been observed in borane derivatives [20, 21].

We have found that BH_4^- reacts smoothly and cleanly with a stoichiometric quantity of $HgCl_2$ in the presence of triphenylphosphine to give triphenylphosphine-borane uncontaminated with chlorinated by-products.

In contrast, the reactions of $B_3H_8^-$ do not proceed so cleanly. In the absence of ligands other than the solvent tetrahydrofuran, reactions with either HgCl₂ or Hg₂Cl₂ lead predominantly to the adduct THFB₃- H_7 , although $Hg\Omega_2$ gives a higher proportion of byproducts. In both cases, particularly on standing for several hours at room temperature, cleavage of the THF by B-H bonds, and rupture of the triborane moiety occur with the formation of $(BuO)_3B$ and (BuO)₂BH. We were unable to observe either THFBH₃ [22] or BuOBH₂ in THF despite repeated attempts to observe them. The absence of the former is curious in that cleavage of THFB₃H₇ by excess THF ligand might have been expected to lead to THFBH₃ and $(THF)_2B_2H_4$ according to the reported cleavage of LB_3H_7 by excess ligands [6, 18, 23]. Even on prolonged storage neither decomposition product is observed, in contrast with the decomposition of B_3H_7CO which degrades to $B_2H_4(CO)_2$. The absence of BuOBH₂ in THF is perhaps less surprising in that it has been suggested that this compound is thermodynamically unstable with respect to disproportionation to (BuO)₂BH and THFBH₃ [8]. In order to account for the observation of THFBH₂Cl, chlorination of a boron moiety must occur. This may be accomplished in either of two ways; direct chlorination of a B-H bond by the mercury halide undoubtedly occurs with HgCl₂ at least, analogous to reactions previously reported [20, 21]. In addition, some competition for the vacant coordination site of the intermediate $[B_3H_7]$ by THF and Cl⁻ may lead to a proportion of $B_3H_7Cl^-$ which subsequently reacts further and cleaves to THFBH₂Cl.

Reactions of $Me_4NB_3H_8$ with mercury chlorides in THF in the presence of added ligand, L, resulted in formation of the LB_3H_7 adduct. However, when the ligand was present in excess, some cleavage occurred and a significant amount of LBH_3 was observed. It is probable that some $L_2B_2H_4$ was also formed. In attempts to reduce the proportions of by-products to the desired LB_3H_7 species, a stoichiometric quality of ligand, L, was added to the reaction mixture after Attempts to obtain purer products were made by examining reactions of preformed ligand-mercuric halide complexes. The adduct of stoichiometry $(Me_3N)_2Hg_3Cl_6$ reacted as might be expected for a mixture of Me₃N and HgCl₂; Me₃NB₃H₇ and THFB₃-H₇ were the major products. Similarly, the adduct $(Ph_3P)_2Hg_2Cl_4$ produced Ph₃PB₃H₇, THFB₃H₇ and their decomposition products. A study of the reaction of $(Ph_3P)_2HgCl_2$ with Me₄NB₃H₈ showed that Ph₃PB₃H₇ was formed rapidly, but that prolonged storage resulted in cleavage to Ph₃PBH₃ and presumably $(Ph_3P)_2B_2H_4$.

In summary, reactions of $Me_4NB_3H_8$ with Hg_2Cl_2 can yield the adduct $THFB_3H_7$ in reasonable purity provided that the reaction time is kept to a minimum. Similarly $Ph_3PB_3H_7$ may be prepared from $(Ph_3P)_2$ - $HgCl_2$ if the time of reaction is limited. Displacement reactions with amine ligands on $THFB_3H_7$ yields LB_3 - H_7 products of moderate purity.

Acknowledgement

We wish to acknowledge the award of a project grant (JHM) from the Science Research Council.

References

- 1 P. J. Dolan, J. H. Kindsvater and D. G. Peters, *Inorg. Chem.*, 15, 2170 (1976).
- 2 (a) G. Kodama and R. W. Parry, J. Am. Chem. Soc., 82, 6250 (1960).
 (b) B. F. Spielvogel, Diss. Abs., 24, 4985 (1964).
- 3 G. E. Ryschkewitsch and V. H. Miller, J. Am. Chem. Soc. 97, 6256 (1975).
- 4 (a) D. F. Gaines and R. Schaeffer, *Inorg. Chem.*, 3, 438 (1964).
 (b) R. Schaeffer and F. Tebbe, *J. Am. Chem. Soc.*, 84, 3974 (1962).
- 5 (a) R. W. Parry and M. K. Walter, Prep. Inorg. React., 5, 45 (1968). (b) G. F. Freeguard and L. H. Long, Chemistry and Industry, 471 (1965).
- 6 B. M. Graybill and J. K. Ruff, J. Am. Chem. Soc., 84, 1062 (1962).
- 7 G. R. Eaton and W. N. Lipscomb, "NMR Studies of Boron Hydrides and Related Compounds", Benjamin, New York (1969).
- 8 D. J. Pasto, V. Balasubramaniyan and P. W. Wojtkowski, Inorg. Chem., 8, 594 (1969).
- 9 D. J. Pasto and P. Balasubramaniyan, J. Am. Chem. Soc., 89, 295 (1967).
- 10 G. Kodama, Inorg. Chem., 14, 452 (1975).
- 11 A. R. Dodds and G. Kodama, Inorg. Chem., 15, 741 (1976).
- 12 C. W. Heitsch, Inorg. Chem., 4, 1019 (1965).
- 13 J. N. G. Faulks, N. N. Greenwood and J. H. Morris, J. Inorg. Nucl. Chem., 29, 329 (1967).

- 14 F. Klanberg, W. B. Askew and L. J. Guggenberger, Inorg. Chem., 7, 2265 (1968).
- 15 G. Kodama, R. W. Parry and J. C. Carter, J. Am. Chem. Soc., 81, 3534 (1959).
- 16 R. T. Paine and R. W. Parry, *Inorg. Chem.*, 11, 268 (1972).
 17 J. Glore, J. Rathke and R. Schaeffer, *Inorg. Chem.*, 12,
- 17 J. Glore, J. Rathke and R. Schaeffer, Inorg. Chem., 12, 2175 (1973).
- 18 E. R. Lory and D. M. Ritter, Inorg. Chem., 10, 939 (1971).
- 19 L. J. Edwards, W. D. Ford and M. D. Ford, Proc. Int.

Congr. Pure Appl. Chem., 16, 475 (1958).

- 20 R. Maruca, O. T. Beachley, Jr., and A. W. Laubengayer, Inorg. Chem., 6, 575 (1967).
- 21 O. T. Beachley and B. Washburn, Inorg. Chem., 14, 120 (1975).
- 22 A. Fratiello, T. P. Onak and R. E. Schuster, J. Am. Chem. Soc., 90, 1194 (1968).
- 23 W. R. Deever, E. R. Lory and D. M. Ritter, Inorg. Chem., 8, 1263 (1969).
- 24 J. Rathke and R. Schaeffer, Inorg. Chem., 13, 760 (1974).