Journal of Fluorine Chemistry, 16 (1980) 257–263 © Elsevier Sequoia S.A., Lausanne – Printed in the Netherlands

Received: March 10, 1980

SYNTHESIS OF TRIFLUOROMETHANESULFONATE ESTERS BY REACTION OF ALKYL CHLORIDES WITH CHLORINE (1) AND BROMINE (1) TRIFLUOROMETHANESULFONATE

YUTAKA KATSUHARA* AND DARRYL D. DESMARTEAU**

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506,(USA)

SUMMARY

The synthesis of the first trifluoromethanesulfonate esters of the type $CF_3SO_3(CH_2)_nO_3SCF_3$ (n=1,2,3) are reported. The new compounds are prepared from $C1(CH_2)_nC1$ by substitutive electrophilic dehalogenation reactions with CF_3SO_2OX (x=Cl,Br). The extension of this reaction to $HCCl_3$ results in $HC(O_3SCF_3)_3$ but the compound is unstable at 22°.

INTRODUCTION

The trifluoromethanesulfonate group, CF_3SO_3 is an important substituent in mechanistic and synthetic organic chemistry[1,2]. The variety of methods available for the synthesis of alkyl esters include the reaction of CF_3SO_3H with alcohols, alkylsulfates and alkenes, reaction of $(CF_3SO_2)_2O$ with alcohols and alcoholates, reactions of CF_3SO_3Ag with alkyl iodides and many others. The extension of these known synthetic methods to the preparation of diesters containing either geminal or non-geminal trifluoromethanesulfonate groups has not been reported.

Recently we have reported a variety of new trifluoromethanesulfonates from CF_3SO_2OX (x=Cl, Br) by the electrophilic addition to alkenes[3,4], and by substitutive electrophilic dehalogenation reactions with fluorinated alkyl halides[4,5]. The extension of the latter reaction to the synthesis of the first alkyl diesters is described.

^{*}Central Glass Co., Ltd., 2805 Imafaku-Nakadai, Kawagol, Saitomo 356, Japan. **Author to whom correspondence should be sent.

EXPERIMENTAL

<u>General</u>. Compounds were manipulated in glass and stainless-steel vacuum systems as previously described [6]. I.R. spectra were recorded on a P.E. 180 spectrometer using AgCl windows. N.M.R. spectra were recorded on a Varian XL-100-15 or T-60 spectrometers using \sim 15% mol. % solutions in CFCl₃. ¹⁹F chemical shifts are reported as ϕ^* values and ¹H chemical shifts as δ valves relative to external TMS. Analysis of fluorine was carried out by measuring the areas of the unknown fluorine resonance relative to CFCl₃ using a sample of known concentration.

Preparation of CF_3SO_3X . The synthesis of CF_3SO_3CI was carried out in ~ 15 ml Kel-F reactor fitted with a stainless-steel valve [7,8]. A weighed amount of acid (2-8 mmol) was added to the reactor, frozen at -195° and a 10% excess of C1F was condensed in by vacuum transfer. The reactor was then warmed to -78° for $\sim 18-24$ hr. The colorless layer of HF and unreacted C1F were then removed under dynamic vacuum at -78°. The formation of CF_3SO_3C1 was assumed to be quantitative. For reaction, it was vacuum transferred via a short path into a 100 ml Pyrex bulb fitted with a glass-Teflon valve.

 CF_3SO_3Br was prepared from CF_3SO_3C1 in a 100 ml Pyrex bulb[8]. Bromine, corresponding to one-half the amount of CF_3SO_3C1 , was condensed into the CF_3SO_3C1 at -195° by vacuum transfer. The mixture was held at -60° with shaking until the liquid phase solidified. It was then warmed to -20° with further shaking until a clear wine-red liquid formed (about 1 hr). The reactor was then cooled to -78° and Cl_2 was removed under dynamic vacuum. The CF_3SO_3Br formation was assumed to be quantitative and subsequent reactions were run directly in the reactor used for preparation. <u>Caution</u>! Both CF_3SO_3C1 and CF_3SO_3Br are unstable at 22°, and should not be allowed to warm above 0°. Both are powerful oxidants and will form explosive mixtures with easily oxidizable substrates. Care must be used in the preparation and handling of these compounds.

258

Reaction of CF_3SO_3X with Alkyl Chlorides. Onto the CF_3SO_3X at -195° in the glass reactors, the appropriate alkyl halide was added by vacuum transfer. The mixture was then placed in a shielded cold bath of $CFCl_3$ or CF_2Cl_2 and allowed to warm slowly. After the appropriate reaction time, the products were separated by pumping through traps at appropriate temperatures. Details of the reactions are summarized in the Table 1. $CF_3SO_3CH_2Cl$: collected in -55° trap after passing through -30° trap; colorless liquid, mol. wt. 201.8, calcd. 198.5; I.R. (~5.0 torr) 2940(vw), 1438(s), 1250(m), 1227(s), 1210(m), 1152(s), 1068(w), 1005(m), 970(s), 912(w), 820(w), 783(w), 748(w), 617(m), 462(w) cm⁻¹; ϕ * 75.6, s; δ 6.13, s.

 $(CF_3SO_3)_2CH_2$: collected in -30° trap; colorless oil, m.p. 18.0-19.0°; I.R. (gas, ~0.5 torr), 1445(m), 1227(s), 1142(s), 1050(w), 946(s), 770(m), 716(s), 605(m), 450(w) cm⁻¹; N.M.R. ϕ^* 75.5, s; δ 6.28, s.

 $CF_3SO_3CH_2CH_2C1$: collected in -60°; colorless oil, m.p. -50.5 to 50.0°; I.R. (gas, ~ 1 torr) 2980(vw), 1438(s), 1249(s), 1228(vs), 1211(w), 1157(vs), 1100(vw), 1068(w), 1005(m), 970(s), 910(m), 820(br.-w), 878(w), 748(w), 620(m) cm⁻¹; N.M.R. ϕ * 74.4, s; δ 4.00, t, CH_2 ; δ 4.93, t, CH_2C1 ; $J_{HH} = 5.8$ Hz.

 $(CF_3SO_3CH_2)_2$: very low volatile, colorless oil; I.R. (liquid) 1422(m), 1260(sh), 1230(s), 1210(sh), 1150(s), 1035(s), 1000(w), 935(m), 795(m), 760(w), 640(m), 450(w) cm⁻¹; N.M.R. ϕ * 75.3, s; δ 4.97, s.

 $(CF_{3}SO_{3}CH_{2})_{2}CH_{2}: \text{ very low volatile, colorless oil; I.R. (liquid) 1420(s),} \\ 1253(s), 1210(s), 1143(s), 1055(m), 958(m), 930(s), 850(vw), 813(vw), 760(w), \\ 660(m), 615(s), 580(m), 520(vw) \text{ cm}^{-1}; \text{ N.M.R. } \phi * 75.5, \text{ s; } \delta 4.23, \text{ t, } 0CH_{2}; \\ \delta 1.95, \text{ quintet, } -CH_{2}-; \text{ J}_{HH} = 6.0 \text{ Hz.}$

RESULTS AND DISCUSSION

The low temperature reactions of alkyl chlorides with CF_3SO_2OX (x=Cl, Br) are summarized in Table 1. The reactions proceed in excellent yield according to the equation

$$2CF_{3}SO_{2}OX + Cl(CH_{2})_{n}Cl + CF_{3}SO_{3}(CH_{2})_{n}O_{3}SCF_{3} + 2XCl x=Cl,Br n=1,2,3$$

Substantial amounts of the monosubstituted product were observed with $ClCH_2Cl$ and $ClCH_2CH_2Cl$ using CF_3SO_2OCl . Other products, CF_3Cl and SO_3 , form decomposition of CF_3SO_2OCl and unidentified organic compounds were also formed. The reactions are rather exothermic and can be explosive. This uncontrolled reactive Table 1

Reactions of CF_3SO_3X with Alkyl Chlorides

x ^a	RCl ^a		itions (hrs) Temp.(°C	Products ^{b,C}
C1(5.8)	CH ₂ Cl ₂ (2.5)	24	-111 to 0°	(CF ₃ SO ₃) ₂ CH ₂ (45), CF ₃ SO ₃ CH ₂ C1(35) Cl ₂ (100)
C1(8.0)	(CH ₂ C1) ₂ (3.8)	6	- 78 to -30°	(CF ₃ SO ₃ CH ₂) ₂ (50), CF ₃ SO ₃ CH ₂ CH ₂ C1 (50), C1 ₂ (100)
Br(3.8)	(C1CH ₂) ₂ CH ₂ (1.8)	16	-78 to 22°	(CF ₃ SO ₃ CH ₂) ₂ CH ₂ (94), BrCl(100)
Cl(4.6)	(C1CH ₂) ₂ CH ₂ (2.3)	6	-111 to -55°	explosion at -55° e
C1(6.0)	HCC1 ₃ (1.9)	16 1	-111 to -10° 22°	[(CF ₃ SO ₃] ₃ CH}, Cl ₂ (100) CF ₃ SO ₃ H(70), (CF ₃ SO ₂) ₂ O(92), CO

a. Amounts in (mmol).

b. (% Yield) based on starting RC1.

- c. Other low boiling products such as SO_3 , CF_3Cl and others were observed small amounts. Halogens analyzed by reaction with mercury.
- e. Other explosive reactions occurred with CH_3CCl_3 and $(CH_2)_3CCl_4$.

260

could, no doubt, be moderated by dilution of the reactants in a suitable solvent and by adding the hypohalite gradually. This was not attempted in the present work because of the instability and reactivity of CF_3SO_2OX . However, a solvent such as $C_4F_9SO_2F$ would probably be suitable.

As was previously observed in the reactions of perfluoroalkyl halides, CF_3SO_2OBr is less reactive than $CF_3SO_2OC1[5]$. Attempts to prepare the diester of $CICH_2CH_2CH_2CH$ using CF_3SO_2OC1 always resulted in explosions. Use of CF_3SO_2OBr under similar conditions resulted in an excellent yield of the desired 1,3-diester.

The synthesis of a triester using HCCl_3 was apparently successful, but the white crystalline product was unstable above 0°. The overall reaction can be rationalized in the following way.

The formation of the anhydride of trifluoromethanesulfonic acid was also observed previously in unsuccessful attempts to prepare $(CF_3SO_3)_4C$, $(CF_3SO_3)_3CF$ and $(CF_3SO_3)_2CO$ from CCl_4 , Cl_3CF and $OCCl_2$, respectively[5]. It was also observed as a major byproduct in the preparation of $(CF_3SO_3)_2CF_2$ from Cl_2CF_2 or Br_2CF_2 . In the latter case, $(CF_3SO_3)_2CF_2$ was stable when held at 150° for 4 days and the formation of the anhydrides may have occurred by a route other than a simple thermal elimination from $(CF_3SO_3)_2CF_2$. If trifluoromethanesulfonates behave analogously to fluorosulfates, however, the thermal elimination of anhydride from certain compounds containing two or more CF_3SO_3 groups bonded to a central atom is an expected reaction[9].

The esters other than $(CF_3SO_3)_3$ CH are all stable colorless liquids at 22°. The characterization of the compounds by IR and NMR is straightforward.

All show strong IR absorptions in the 1450-800 cm⁻¹ region which are indicative of covalent CF_3SO_3 groups [8] Two of these bonds in the 900-1000 cm⁻¹ region are probably due to v(S-O-C) stretching. Bands due to the CH_2 fragments should be very weak under the conditions used to record the spectra. The chemical shifts for the CF_3 and CH_2 groups and the multiplicity of CH_2 resonances were as expected. No H-F spin-spin coupling between the CF_3SO_3 and CH_2 groups could be resolved. For analogous fluorinated compounds $^5J_{\rm FF}$ values are 4-5 Hz and the $^5J_{\rm HF}$ values are then expected to be considerably less than 1 Hz.[3,5].The 19 F MiR were run using measured amounts of compound and CFCl₃ solvent. Careful integration of the compound and solvent fluorine resonance gave the expected ratios in each case and provided a partial analysis for the compounds.

The reactions of CF_3SO_2OX (x=Cl, Br) with organic halides provides a new and possible general method for the synthesis of organic triflates. Clearly, the strong oxidizing nature of the hypohalites makes their utilization more difficult and suitable solvents must be found to moderate these reactions. The hypohalites will, however, undergo substitutive electrophilic dehalogenation with almost any organic compound containing a carbon-chlorine or carbon-bromine bond. The few exceptions found thus far are highly fluorinated alkanes such as CF_3Cl . In this case, however, CF_3Br reacts readily. Thus by suitable choice of hypohalite and organic halide it is, in principle, possible to substitute halogen by CF_3SO_3 in a wide variety of compounds. This, combined with the potential control of stereochemistry [5], renders these reactions of considerable further interest in synthesis.

ACKNOWLEDGMENT

The financial support of the research by the National Science Foundation is gratefully acknowledged.

- 1 R. D. Howells, J. D. McCown, Chem. Rev., <u>77</u>, 69 (1977).
- 2 J. B. Hendrickson, D. D. Sternback, K. W. Bair, Acc. Chem. Res., <u>10</u>, 306 (1977).
- 3 Y. Katsuhara and D. D. DesMarteau, J. Org. Chem., 45, 000 (1980).
- 4 Y. Katsuhara, D. D. DesMarteau, J. Am. Chem. Soc., <u>101</u>, 1039 (1979).
- 5 Y. Katsuhara and D. D. DesMarteau, J. Am. Chem. Soc., <u>102</u>, 000 (1980).
- 6 P. A. Bernstein, F. A. Hohorst, D. D. DesMarteau, J. Am. Chem. Soc., 93, 3082 (1971).
- 7 D. D. DesMarteau, J. Am. Chem. Soc., 100, 340 (1978).
- 8 Y. Katsuhara, R. M. Hammaker and D. D. DesMarteau, Inorg. Chem., <u>19</u>, 000 (1980).
- 9 D. D. DesMarteau, Inorg. Chem., 7, 434 (1968).