One-Pot *o*-Nitrobenzenesulfonylhydrazide (NBSH) Formation -Diimide Alkene Reduction Protocol

Barrie Marsh and David R. Carbery

Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.

Supporting Information

Contents	Page
General Information	S 1
Experimental Section	S2
NMR Spectra Displaying % Conversions	S9
NMR Spectra of New Compounds (22)	S17
References	S18

I. General.

Reactions were carried out using dry solvents under an inert atmosphere of nitrogen. All reaction flasks were dried overnight in an oven at 200 °C prior to use. Acetonitrile was dried by passing through anhydrous alumina columns. All reagents were purchased from commercial suppliers and used without further purification. 2-Nitrobenzenesulfonyl hydrazide was prepared according to the procedure published by Myers.¹ 2-Methyl phenyl acrylate was prepared according to the procedure reported by Davies.² Chemical shifts are reported in parts per million relative to tetramethylsilane (TMS) ($\delta = 0.00$). Mass spectroscopy was performed using electrospray ionisation (ESI) in positive ionisation mode. Infra-red spectroscopy was performed with KBr plates.

II. Diimide Hydrogenations

General Procedure A for the Hydrogenation of Methyl-2-phenyl acrylate using 2-Nitrobenzenesulfonylhydrazine as a diimide precursor.

2-Nitrobenzenesulfonylhydrazide (434 mg, 2 mmol) and additive (1 mmol) were dissolved in solvent (5 cm³) and allowed to stir for 10 mins under N₂. Methyl-2-phenyl acrylate (162mg, 1 mmol) in solvent (1 cm³) was slowly added by syringe over the course of 1 minute. The solution was allowed to stir for 18 hrs. After which time the orange solution was treated with H₂O (5 cm³), the product was extracted with EtOAc (3 × 5 cm³) and the combined organic extracts were washed with NaHCO₃ (sat) (10 cm³) and brine (sat) (10 cm³). The combined organic extracts were then dried over MgSO₄ and filtered. Solvent was removed *in vacuo* to give the methyl-2-phenylpropanoate as a crude oil.

General Procedure B for the One Pot Synthesis of NBSH-Alkene Hydrogenation.

The 2-nitrobenzenesulfonyl chloride (442 mg, 2 mmol) and the alkene (1 mmol) were dissolved in dry MeCN (5 cm³ / mmol of alkene) and cooled to 0 $^{\circ}$ C. Once cold the hydrazine hydrate (194 µl, 4 mmol) was slowly added down to side of the reaction flask (over a period of 1 min) to the vigorously stirred solution of the alkene and 2-nitrobenzenesulfonyl chloride. The resulting white suspension was slowly allowed to

warm to room temperature and stirred vigorously for a further 18 hours. The product was worked up by various methods:

Work Up Method I: After this time the orange suspension was quenched by addition of H_2O (5 cm³) product was extracted with EtOAc (4 × 5 cm³), the combined organic extracts were then washed with saturated NaHCO₃ (10 cm³) and brine (sat) (10 cm³). The combined organic extracts were then dried over MgSO₄ and filtered. Solvent was removed *in vacuo* to give the desired crude product.

Work Up Method II: After this time the orange suspension was quenched by addition of H_2O (5 cm³) product was extracted with pentane (4 × 5 cm³), the combined organics were then dried over MgSO₄ and filtered. Solvent was removed *in vacuo* to give the crude product.

Work Up Method III: After this time the orange suspension was filtered, and the filtrate washed with EtOAc (10 cm³), the organics were then dried over Na_2SO_4 . Solvent was then removed *in vacuo* to give the crude product.

Percentage conversions are determined using equation 1, using appropriate integrations of appropriate starting material peaks (if present) and product peaks in the ¹H NMR of crude reaction mixtures using the following equation:

$$Conv = \left[\frac{\int H_P}{\left(\int H_P + \int H_{SM}\right)}\right] \times 100$$

Equation 1

Data labels annotated upon crude ¹H NMR are as follows:

Red: Product protons used for conversion calculation labelled H_p.
Green: Starting material protons used for conversion calculations labelled H_{SM}.
Blue: Residual NBSH carried through work up.

Methyl-2-phenylpropanoate 6.³

The title compound was obtained using general procedure **B** and work up method **I** for 18 hours using methyl-2-phenyl acrylate (162 mg, 1 mmol). ¹H NMR indicated 100% conversion of the starting material, the identity of the title compound was confirmed by comparison with previously published spectral data in the literature.³

Methyl-2-acetamidopropanoate 8.

The title compound was obtained using general procedure **B** and work up method **I** for 42 hours using methyl-2-acetamidoacyralte (143 mg, 1 mmol). ¹H NMR indicated 78% conversion of the starting material to the desired compound, the identity of which was confirmed by comparison with commercially available material.

2-Hydroxy ethyl isobutyrate 9.4

The title compound was obtained using general procedure **B** and work up method **I** for 42 hours using 2-hydroxy ethyl methyl acrylate (130 mg, 1 mmol). ¹H NMR indicated 100% conversion of the starting material to the desired compound, the identity of which was confirmed by comparison with published spectral data in the literature.⁴

Propyl benzylether 10.

The title compound was prepared using general procedure **B** and work up method **I** for 18 hours using allyl benzyl ether (148 mg, 1mmol). ¹H NMR indicated 99% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with an authentic commercially available source.

Benzyl propylcarbamate 11.5

NHCBz

The title compound was prepared using general procedure **B** and work up method **I** for 18 hours using benzyl allylcarbamate (190 mg, 1 mmol). ¹H NMR indicated 100% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with previously recorded literature data for the title compound.⁵

Phenylpropylsulfide 12.⁵

The title compound was prepared using general procedure **B** and work up method **I** for 18 hours using allyl phenyl sulphide (150 mg, 1 mmol). ¹H NMR indicated 98% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with previously reported spectral data from the literature.⁵

∕___S_Ph

Cylcohexanol 13.

The title compound was obtained using general procedure **B** and work up method **I** for 18 hours using 2-cyclohexen-1-ol (98 mg, 1mmol). ¹H NMR indicated 46% conversion of the starting material to the desired product, the structure of which has confirmed by comparison with an authentic commercially available source.

2,3-Norbornanedimethanol 14.5

The title compound was obtained using general procedure **B** and work up method **I** for 18 hours using 5-norborene-2-exo-3-exo-dimethanol (154 mg, 1mmol). ¹H NMR indicated 100% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with previously published spectral data.⁵

2-Ethylpyridine 15.

The title compound was obtained using general procedure **B** and work up method **I** for 18 hours using 2-vinyl pyridine (105 mg, 1 mmol). ¹H NMR indicated 100% of the starting material to the desired product, the structure of which was confirmed by comparison with authentic commercial material.

(*R*)-4-Isopropyl-1-methylcyclohex-1-ene 16.

The title compound was obtained using general procedure **B** and work up method **I** for 42 hours using (*R*)-(+)-limonene (136 mg, 1mmol). ¹H NMR indicated 72% of the starting material to the desired product, the structure of which was confirmed by comparison with an authentic commercial material.

Cyclooctane 17.

The title compound was obtained using general procedure **B** and work up method **II** for 18 hours *cis*-cyclooctane (110 mg, 1mmol). ¹H NMR indicated 100% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with authentic commercial material.

Propylbenzene 18.

The title compound was obtained using general procedure **B** and work up method **II** for 18 hours using *trans*- β -methyl styrene (118 mg, 1 mmol). ¹H NMR indicated 61% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with authentic material from a commercial supplier.

3-Ethylnitrobenzene 19.

The title compound was obtained using general procedure **B** and work up method **I** for 18 hours using 3-nitro-styrene (149 mg, 1 mmol). ¹H NMR indicated 100% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with commercially available material.

2-Acetamidopropanoic acid 20.

The title compound was obtained using general procedure **B** and work up method **III** for 18 hours using 2-acetamido acrylic acid (129 mg, 1 mmol). ¹H NMR indicated 87% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with authentic sample from a commercial supplier.

Methyl 2-Phenylhexanoate 21.⁶

The title compound was obtained using general procedure **B** and work up method **I** for 18 hours using methyl-phenyl-but-2-enoate (2:1 mixture of isomers) (204 mg, 1mmol). ¹H NMR indicated 8% conversion of the starting material to the desired product, the structure of which was confirmed by comparison with previously reported spectral data.⁶

2-Propyl-acetamidoacrylate 22.

The title compound was obtained using general procedure **B** and work up method **II** for 18 hours using 2-allyl-acetamidoacyrlate (169 mg, 1mmol). Product was purified via column chromatography eluting with 25% EtOAc : petrol (40:60) to give the title

compound as a clear oil (147 mg, 86%). v_{max} (flim)/cm⁻¹ 2970, 2881, 1719, 1674, 1634, 1509; ¹H NMR (500 MHz; CDCl₃) $\delta_{\rm H}$ 0.96 (3H, t, *J*=7.7 Hz), 1.71 (2H, qt, *J*=7.7, 6.7 Hz), 2.10 (3H, s), 4.17 (2H, t, *J*=6.7 Hz), 5.85 (1H, d, *J*=1.4 Hz), 6.55 (1H, s), 7.74 (1H, br s); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 10.5, 22.1, 24.9, 67.9, 108.3, 131.3, 164.4, 168.9; *m/z* (ESI) 194.0781 (95%, [M-Na]⁺ C₈H₁₃NO₃Na requires 194.0793).

Methyl-2-acetamidopropanoate 8.

2-Hydroxy ethyl isobutyrate 9.

Propyl benzylether 10.

Phenylpropylsulfide 12.

2,3-Norbornanedimethanol 14.

2-Ethyl pyridine 15.

(*R*)-4-Isopropyl-1-methylcyclohex-1-ene 16.

Cyclooctane 17.

Propylbenzene 18.

2-Ethyl-nitrobenzene 19.

2-Acetamidopropanoic acid 20.

(See Expansion for clearer image)

References

- (1)[•] Myers, A. G; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.
- (2) Beddow, J. E.; Davies, S. G.; Ling, K. B.; Roberts, P. M; Russell, A. J.; Smith, A. D., Thomson, J. E. *Org. Biomol. Chem.* **2007**, *5*, 2812.
- (3) Durandetti, M; Gosmini, C; Perichon, J. Tetrahedron 2006, 63, 1146.
- (4)[•] Imada, Y; Iida, H; Naota, T. J. Am. Chem. Soc. 2005, 127, 14544.
- (5) Hattori, K; Sajiki, H; Hirota, K. *Tetrahedron* **2000**, *56*, 8433.
- (6) Liu, C; He, C; Shi, W; Chen, M; Lei, A. Org. Lett. 2007, 9, 5601.