

Archive for Organic Chemistry
for Organic Chemistry

Paper

-

Arkivoc 2019, part iv, 0-0 to be inserted by editorial office

Synthesis of 2-substituted tetrahydroisoquinolin-6-ols: potential scaffolds for estrogen receptor modulation and/or microtubule degradation

Tanya Mabank, ${ }^{\text {a Kabamba B. Alexandre, }}{ }^{\text {b }}$ Stephen C. Pelly, ${ }^{\text {a }}$ Ivan R. Green, ${ }^{* a}$ and Willem A. L. van Otterlo*a
${ }^{a}$ Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, ZA-7602 Stellenbosch, South Africa
${ }^{b}$ Council for Scientific and Industrial Research (CSIR), Next Generation Health, Emerging Research Area, Array Printing Technology Platform, Building 20, office 120, Brummeria, ZA-0184, Pretoria, South Africa Email: irg@sun.ac.za; wvo@sun.ac.za

Dedicated to Prof. Stephen Hanessian on his 84th birthday - for the opportunity to be a postdoctoral fellow in his group and his continued support (and who further piqued our interest in the THIQ scaffold) ${ }^{1}$

Received 04-20-2019
Accepted 07-12-2019
Published on line 07-24-2019

Abstract

6-Methoxytetrahydroisoquinoline hydrochloride was converted into four small libraries of substituted ureas, thioureas, sulfonamides and N-aryls, using the tetrahydroisoquinoline nitrogen as the scaffold-linking atom. Some of the compounds were evaluated for their ability to inhibit cell proliferation using the MCF7 (invasive ductal carcinoma) cell line.

Keywords: 6-Hydroxytetrahydroisoquinolines, estrogen modulators, ureas, thioureas, sulfonamides, anticancer

Introduction

The estrogen receptor (ER) is a critical component for the control of cellular processes in mammalian tissue. ${ }^{2}$ Its ligands, including the hormone estradiol 1 (Figure 1, also written as oestradiol), are important for signal transduction processes crucial to many aspects of cellular life and death. ${ }^{3}$ Cellular estrogenic activity is mediated by plasma membrane nuclear receptors which exist in two isoforms, ER α and ER β, which further control a multitude of physiological responses and activities. ${ }^{2,4,5}$ The two isoforms are differentially distributed within the tissue domains, with ER α being dominantly expressed in the uterus and mammary glands, while $E R \beta$ is more generally expressed throughout the body. Of specific significance is that the natural occurrence of estradiol in women affected with breast cancer may either worsen the disease, or a deficiency thereof could effect a cascade of hormonal related ailments. The importance of the relationship between estradiol and breast cancer has resulted in the development of a series of drugs termed selective estrogen receptor modulators (SERMs) and down-regulators/degraders (SERDs), ${ }^{6}$ which are now regularly prescribed in therapies. ${ }^{7}$

Figure 1. Structures of estradiol and THIQ motifs, including the tetrahydroisoquinolin-6-ol motif $\mathbf{2 b}$ important in this study.

The tetrahydroisoquinoline (THIQ) scaffold $\mathbf{2 a}(\mathrm{R}=\mathrm{H}$, Figure 1) has been shown to be an extremely valuable motif in medicinal chemistry, and as a result has found regular application in pharmaceutical investigations. ${ }^{8}$ In terms of a direct connection between THIQs and SERM-based breast cancer therapy, pharmaceutical companies were quick to pick up on this important association. In a series of studies, researchers from Novartis ${ }^{9,10}$ and Pfizer ${ }^{11}$ compared the well-known SERM used in the clinic, Lasofoxifene (3), to small libraries of THIQ-derived analogues, some examples (4) of which are shown in Figure 2.

Figure 2. The clinical agent Lasofoxifene $\mathbf{3}$ and examples of THIQ analogues thereof.

The researchers from these companies determined that the THIQ ring system of Lasofoxifene $\mathbf{3}$ could readily be mimicked by the THIQ system, and importantly, it was noted that many of the THIQ analogues displayed an improved antagonistic/agonistic estrogen modulation effect compared to Lasofoxifene 3.

A recent series of papers by Redda and co-workers describes their investigations into the utilization of THIQ scaffolds as potential agents applicable in anti-breast cancer therapies. ${ }^{12-14}$ Redda's compounds comprised essentially mono- or un-substituted THIQs incorporating a hydrazine linker joining substituted benzamides to the THIQ core. Figure 3 illustrates the structures of some of these molecules 5 and Redda reported that their IC_{50} values (in the $\mu \mathrm{g} / \mathrm{mL}$ range) suggested that the compounds were more active against the human ER+ (MCF7) and ER- (MDA-MB-231) breast cancers when compared to the standard Tamoxifen 6, initially developed as a treatment for breast cancer. ${ }^{15}$ It should be noted that these researchers observed that their compounds acted via microtubule destabilization, i.e. they were independent of the ER. ${ }^{13}$ Other researchers, particularly Potter and co-workers, pioneered the concept of 2 -substituted estratriene microtubule discuptors ${ }^{16}$ and also found that the THIQ scaffold provided steroid mimics with excellent activities. ${ }^{17-20}$

5, $\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Br}$ or H

Tamoxifen, 6

Figure 3. Compounds 5, $\mathbf{7}$ and $\mathbf{8}$ compared to the clinical drug, Tamoxifen 6.

Further active THIQ-based compounds from the Redda group demonstrated that phenolic groups on the THIQ skeleton, such as compounds 7 and 8 in Figure 3, resulted in some of the most active compounds. ${ }^{13,14}$ However, what caught our attention was the fact that so few of the THIQ compounds prepared by Redda and co-workers had the phenolic OH group in the 6-position, as was demonstrated to be rather important by Chesworth and colleagues. ${ }^{11}$ The importance of this phenolic group was also illustrated by our collaboration with the Brunsveld group, where it was demonstrated that the $6-\mathrm{OH}$ group on compound 9 had a significant impact (up to $4 \times$ lower $E C_{50}$) on the $E R \alpha$ and $E R \beta E C_{50}$ activity of the compounds (Figure 4, a). ${ }^{21,22}$

The importance of the phenolic group was further supported by a recent publication from AstraZeneca in which it was disclosed that the phenol group was critical for the potency of molecules such as $\mathbf{1 0}$ in SERD antagonist activity. ${ }^{23}$ It should additionally be noted that in 2015 this company had the related THIQ-based AZD9486 11 in clinical trials as an oral estrogen receptor inhibitor. ${ }^{24,25}$ Mention should also be made here of the acrylic acid-based tetrahydroisoquinoline-6-ol 12 reported as a SERD by Novartis and their academic partners. ${ }^{26}$
a)

$9 \mathrm{R}=\mathrm{SO}_{2} \mathrm{CF}_{3}$ or COCF_{3}

Figure 4. (a) THIQ-based fragment-like estrogen receptor ligands; (b) AstraZeneca and Novartis compounds.

Further inspection of the molecules synthesized and tested by Redda ${ }^{12-15}$ indicated that firstly, most possess large aryl groups connected via hydrazine-themed linker groups to the nitrogen atom of the THIQ motif. Secondly, the aryl groups attached to the nitrogen atom were limited in terms of their number, type and position of functional groups on the aryl group (see earlier work regarding a series of tetrahydro-isoquinoline- N-phenylamide derivatives by Lin and co-workers ${ }^{27}$). This latter factor led to our interest and thus to the preparation of small libraries of, amongst others, N-aryl THIQ analogues to provide a more in-depth investigation into the importance of these aryl groups and their linkers.

Investigations by Redda, ${ }^{12-15}$ together with our own unpublished docking studies, indicated a measure of uncertainty as to how THIQ analogues containing an N-aryl linker group would behave within the binding pocket of the ER protein (it should also be noted that we were willing to expand this paradigm to include the question as to whether the motifs were in fact targeting tubulin, rather than the ER). To extend our investigation into this area, a further library of THIQ analogues containing differently substituted aryl groups on nitrogen were designed and synthesized in order to discover whether any activity could be significantly associated with this group. The strategy adopted was to thus solely focus on changes at the nitrogen atom,
while retaining the phenolic moiety of estradiol ($\mathbf{2 c}$ in Figure 5) based on the tetrahydroisoquinolin-6-ol motif $\mathbf{2 b}$ shown in Figure 1, since we hoped this would essentially mimic estradiol as suggested by our initial docking studies.

Figure 5. Basic structure of THIQ-derived compounds synthesized for this project.

Results and Discussion

Based on our own interest in the synthesis and utilization of the THIQ skeleton, ${ }^{28-32}$ it was thus decided to synthesize some tetrahydroisoquinolin-6-ol-based libraries. To this end, 6-methoxy-1,2,3,4-tetrahydroisoquinoline was synthesized as the hydrobromide or hydrochloride salt 14 from commercially available 2-(3'methoxyphenyl)ethylamine 13 according to the reliable procedure of Zhong and co-workers (Scheme 1). ${ }^{33}$ From this central core we envisaged generating 4 small $6-\mathrm{OH}$-THIQ libraries L1-4 illustrated in Scheme 1. It should be noted that initial investigations included working directly with the 1,2,3,4-tetrahydroisoquinolin-6-ol molecule 2b. However, significant selectivity issues encountered in terms of differentiating between amine and phenolic chemoselectivity, persuaded us to avoid any lengthy protection-deprotection strategies ${ }^{21}$ and to use the 6-methoxy THIQ scaffold throughout the protocols and demethylate the $6-\mathrm{MeO}$ group at the last step of each synthesis.

Scheme 1. General approach to substituted THIQs. Reagents and conditions: (i) $37 \% \mathrm{CH}_{2} \mathrm{O}, 1 \mathrm{~N} \mathrm{HCl}, 60{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (ii) $\mathrm{HCl}, \mathrm{IPA}, \mathrm{rt}, 18 \mathrm{~h} .{ }^{33}$

THIQ set L1: Urea-linked THIQs

Synthesis of the first small library of THIQ-derivatives involved treatment of the 6-methoxyTHIQ hydrobromide salt 14 with $1,1^{\prime}$-carbonyldiimidazole (CDI) to afford the urea analogue $15 .{ }^{34}$ However, direct treatment of compound 15 with the range of amines illustrated in Table 1, failed to displace the imidazole leaving group to provide the desired urea derivatives. In order to address this inactivity, methylation of the imidazole moiety of compound 15 with iodomethane in acetonitrile afforded the more active imidazolium iodide salt 16 in quantitative yield (Scheme 2). ${ }^{34}$ Three base-mediated protocols were tested for the urea-formation ($\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ or n-BuLi), and in our hands treatment of the primary and secondary amines with n-BuLi, prior to addition of the THIQ salt 16, proved to be the best protocol for obtaining compounds $\mathbf{1 7}$ (Table 1), essentially supporting the findings by Grzyb et al. ${ }^{34}$ Apart from the substituted anilines utilized, and in order to expand the scope of the investigation, two substituted thiazoles (entries 1 and 2) were also chosen, as well as morpholine (entry 8) whose starting material, the corresponding 6-benzyloxy analogue of 16 was available from a different project in our laboratory. Piperazine (entry 9) was also used, but unfortunately, the piperazine derivative decomposed during its attempted synthesis. Finally, demethylation of compounds 17 into their corresponding free phenols 18 was achieved using either an excess of BBr_{3} in dichloromethane or All_{3} in toluene, as illustrated in Scheme 2 and described in Table 1.

Scheme 2. Synthesis of urea-linked THIQs. Reagents and conditions: (i) $\mathrm{CDI}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{rt}, 12 \mathrm{~h}$; (ii) Mel, MeCN, rt, 6 h ; (iii) THIQ salt (1.1 equiv.), amine (2.0 equiv.): ${ }^{a} \mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv.), MeCN at $\mathrm{rt}, 12 \mathrm{~h}$ or ${ }^{b} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.0 equiv.), MeCN at rt, 12 h or ${ }^{\mathrm{c}} \mathrm{n}$ - BuLi (3.0 equiv.), THF at $-78{ }^{\circ} \mathrm{C}$-rt, 12 h ; (iv) ${ }^{d} \mathrm{BBr}_{3}$ (3.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}, 24$ h or ${ }^{e}$ All 3 (5.0 equiv.), PhMe at $110^{\circ} \mathrm{C}, 24$ h or ${ }^{f} \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}$ at $40^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Table 1. Results and conditions for the synthesis of ureas $\mathbf{1 7}$ and 18

Entry	Nucleophile	Product structure	Yield step iii (\%) ${ }^{\gamma}$	\#	Yield step iv (\%) ${ }^{\gamma}$	\#
1	2-amino-4methylthiazole		80^{a}	17a	64^{d}	18a
2	$\begin{gathered} \text { 2-amino-5- } \\ \text { nitrothiazole } \end{gathered}$		$90^{\text {b }}$	17b	${ }^{\alpha}$	18b
3	4-anisidine		$98^{\text {c }}$	17c	42^{d}	$18 \mathrm{c}^{\alpha, \beta}$
4	3-chloroaniline		86^{c}	17d	50^{e}	18d
5	3-fluoroaniline		$98^{\text {c }}$	17e	35^{e}	18e
6	4-chloroaniline		$44^{\text {c }}$	17f	50^{e}	18f
7	4-fluoroaniline		81^{c}	17g	$3{ }^{e}$	18g
8	morpholine		96^{b}	17h	$79 f$	18h
9	piperazine		Trace amounts ${ }^{b}$	17i	-	18i

[^0]
THIQ Set L2: Thiourea-linked THIQs

The second small library of compounds comprised a thiourea linker that was synthesized through application of 1,1'-thiocarbonyldiimidazole (TCDI), ${ }^{34}$ in an analogous manner to the first library of compounds. This second library was synthesized to establish whether the thiocarbonyl group could affect the bioactivity of the THIQ compounds. It might be envisaged that hydrogen bond interactions and/or the selectivity within the ER- or tubulin binding pocket could be differently impacted, due to the subtle differences in size and electronic nature of the thiocarbonyl group relative to the carbonyl group.

THIQ-thiocarbamoyl imidazole 19 was therefore prepared by treatment of the hydrobromide salt 14 with TCDI (Scheme 3). Subsequent methylation of 19 as described before, afforded the salt 20 in essentially quantitative yield, but this time as a foam, which proved to be too hygroscopic for isolation. Compound 20 was thus immediately treated with the amines listed in Table 2 as before, to afford thioureas 21, albeit in poorer and more inconsistent yields than in the case for the carbonyl compounds illustrated in Table 1 (Scheme 3 and Table 2). As may also be noted in Table 2, yields in subsequent demethylations were not
acceptable and failed in one case (entry 2) after which alternative protocols needed to be sought to afford the desired members of THIQ set L2.

22 (for yields see Table 2)

Scheme 3. Synthesis of thiourea-linked THIQs. Reagents and conditions: (i) TCDI, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, 5^{\circ} \mathrm{C}, 2 \mathrm{~h}, \mathrm{rt} 18$ h ; (ii) Mel, MeCN, rt, 12 h ; (iii) THIQ salt (1.1 equiv.), amine (1.0 equiv.): $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), MeCN at rt, 12 h ; (iv) BBr_{3} (10.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C} .24 \mathrm{~h}$.

Table 2. Results and conditions for the procedures followed in Scheme 3

Entry \begin{tabular}{lcccccc}

\hline Nucleophile \& Product \& | Yield for |
| :---: |
| step iii (\%) | \& $\#$ \& | Yield for |
| :---: |
| step iv |
| $(\%)$ | \& $\#$

\hline 2-amino-4-

methylthiazole
\end{tabular}

[^1]
THIQ Set L2 - an alternative strategy

In an effort to improve yields of the THIQ compounds incorporating the thiourea linker 21, reactions between 6 -methoxy-THIQ hydrobromide salt 14 and suitably substituted isothiocyanates were undertaken since this protocol ${ }^{35}$ is perceived to be a reliable synthetic approach to thioureas. ${ }^{36,37}$ To this end, amines and anilines 23 were treated with an excess of carbon disulfide under basic conditions, followed by desulfurylation, to afford acceptable yields of the stable isothiocyanates 24 (Scheme 4, Table 3).

Scheme 4. Conversion of amines into isothiocyanates. Reaction conditions: (i) amine (1.2 equiv.), CS_{2} (5.0 equiv.); (ii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{DMAP}$ or TsCl. For details see Table 3.

Table 3. Results and conditions for the syntheses of isothiocyanates $\mathbf{2 4}$ as depicted in Scheme 4

Entry	Substrate	Desulfuryl- ating agent	Reaction time (h)
Yield (\%)			

${ }^{\alpha}$ Trace amounts isolated
From a cursory look at Table 3 entry 1, it is clear that the relatively electron deficient 2-amino-5nitrothiazole 23b is unreactive towards carbon disulfide. Entries 6 and 7 illustrate a method described by Munch et al. ${ }^{38}$ in which the phenolic amines $\mathbf{2 3 j}$ and 23k were treated with a base in ethanol prior to
treatment with CS_{2}. Apart from the use of $\mathrm{Boc}_{2} \mathrm{O}$, desulfurylation could also be effected by the use of tosyl chloride, ${ }^{39}$ and in our hands the $\mathrm{Boc}_{2} \mathrm{O}$ method only worked well for entries 6 and 7, while the tosyl chloride method worked best for entries 2-5, albeit with variable yields. With isothiocyanates $\mathbf{2 4 d} \mathbf{- g}, \mathbf{2 4 j}$ and $\mathbf{2 4 k}$ in hand (not described in the experimental), they were treated with the THIQ hydrobromide salt 14 under basic conditions and readily afforded a new small library of thiourea products $\mathbf{2 1}$ in moderate yields illustrated in Scheme 5 and Table 4. It should be noted that 22j and 22k were produced directly from the 6 -hydroxy-THIQ hydrobromide of $\mathbf{2 b} .{ }^{40}$ Unfortunately, demethylation of the thiourea analogues 21d-g once again proved to be problematic when using the protocols applied previously, and unfortunately the demethylation of the thioureas did not provide the desired phenolic THIQS $\mathbf{2 2}$ in sufficient quantities for further bioevaluation.

Scheme 5. Formation of the thiourea analogues. Reagents and conditions: (i) and (iii) Salt $\mathbf{1 4}$ (1.0 mmol), isocyanate $\mathbf{2 4}$ (1.2 mmol), MeCN and $\mathrm{Et}_{3} \mathrm{~N}$ under reflux 12 h , (ii) Methods as described in Scheme 2.

Table 4. Formation of thioureas $\mathbf{2 1}$ and $\mathbf{2 2}$ as depicted in Scheme 5

Entry	$\begin{gathered} \mathrm{Ar}-\mathrm{N}=\mathrm{C}=\mathrm{S}, \\ \mathrm{Ar}= \end{gathered}$	$\mathrm{R}=$	Product	Yield for step i or iii (\%)	\#
1	3-chlorophenyl	Me		(i) 40	21d
2	3-fluorophenyl	Me		(i) 56	21e
3	4-chlorophenyl	Me		(i) 79	21f
4	4-fluorophenyl	Me		(i) 62	21g
5	4-hydroxyphenyl	H		(iii) 41	22j
6	3-hydroxyphenyl	H		(iii) 39	22k

THIQ Set L3 - Sulfonamide-linked THIQs

The third library $\mathbf{L 3}$ was comprised of coupled THIQ-aryl motifs joined by a sulfonamide functional group. In this instance, use of the 1,1'-sulfonylbis(1 H -imidazolium) triflate salt 25 as described by Beaudoin et al., ${ }^{41}$ seemed to be a viable route. To this end, neutralization of THIQ hydrobromide 14 with a suitable base prior to addition of the sulfonyl imidazolium triflate salt $\mathbf{2 5}$ (Scheme 6) was essential for improving the homogeneity of the reaction, which in turn afforded a good yield of intermediate 26. Activation of the imidazole ring of 26, was again achieved by converting it into the corresponding imidazolium triflate salt $\mathbf{2 7}$ in quantitative yield upon treatment with methyl triflate at low temperature. This salt, 27, as with the other salts prepared earlier, proved to be hygroscopic and thus amines $\mathbf{2 3}$ (shown in Table 5) were directly added to the vacuum dried $\mathbf{2 7}$ to afford the library of sulfonamides 28 listed in Table 5. Entry 1 in Table 5, illustrates that dimer $\mathbf{3 0}$ was the only product isolated from the reaction. Lowering the reaction temperature to $24{ }^{\circ} \mathrm{C}$ resulted in only starting material being recovered, which suggested that even 2 -amino-4-methyl-thiazole was too weak a nucleophile to displace the imidazolium salt. However, stronger aniline nucleophiles (entries 2-7) afforded the desired products $\mathbf{2 8 c} \mathrm{ch}$ in moderate to good yields at either $24^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$.

25

29 (for yields see table)

30

Scheme 6. Synthesis of sulfonamide-linked THIQs. Reagents and conditions: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 12 \mathrm{~h}$; (ii) MeOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (iii) 27 (1.1 equiv.), amine (1.0 equiv.): ${ }^{a} \mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv.), MeCN at $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$ or ${ }^{b}$ $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.), MeCN at rt, 12 h or ${ }^{\mathrm{c}} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), MeCN at $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iv) ${ }^{d} \mathrm{BBr}_{3}$ (3.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}, 24 \mathrm{~h}$ or ${ }^{e} \mathrm{All}_{3}\left(5.0\right.$ equiv.), PhMe at $110^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Table 5. Reaction conditions for the formation of sulfonamides 29 as depicted in Scheme 6
Entry
${ }^{\alpha}$ Only dimer 30 was obtained; γ letters refer to the experimental conditions described in the legend of Scheme 6.

Demethylations were effected on all the molecules of this library using either BBr_{3} or All_{3} as indicated in Table 5, but again yields were generally on the low side, indicating that these systems are not easy to demethylate under the applied conditions.

THIQ set L4: \mathbf{N}-aryl THIQs

The next small library of THIQ-derivatives, L4, was designed to have the nitrogen atom of the THIQ directly attached to an aromatic ring. Our first attempts involved direct treatment of lactone 32, synthesized from 3methoxyphenyl acetic acid 31 via an Oxy-Pictet-Spengler protocol, ${ }^{42}$ with various amines without solvent in a sealed tube containing AlCl_{3} at $150^{\circ} \mathrm{C}$ for 48 hours to produce a melt (Scheme 7). ${ }^{43}$ The latter process also facilitated ring closure to afford lactams 33a-g in variable yields ranging from 28-89\% (Table 6). In terms of new structural features, the carbonyl at C3 was readily identified in the ${ }^{13} \mathrm{C}$ NMR spectra by a signal at approximately $\delta_{c} 170.0$ for all the lactam analogues. However, attempts to reduce the C3 carbonyl group of 33 to afford $\mathbf{3 4}$ proved uncharacteristically challenging in our hands and only two of the lactams were successfully reduced by employing $\mathrm{AlH}_{2} \mathrm{Cl}$ to afford 34a (82\%) and 34c (67\%). Thus, to finalise this library, the lactams 33 were demethylated under the All_{3} conditions to provide a range of 6-hydroxy-2-phenyl-1,4-dihydroisoquinolin$3(2 \mathrm{H})$-ones 35, once again in rather inconsistent and variable yields (Table 6). A new approach towards the direct N-aryl-THIQs was therefore sought, as described in the next section.

Scheme 7. Conversion of THIQ-based lactones into N -aryl lactams. Reagents and conditions: (i) $\mathrm{CH}_{2} \mathrm{O}, \mathrm{AcOH}$, $\mathrm{rt}, 5$ days, $45-70 \%$; (ii) lactone (1.0 mmol), amine (1.5 mmol) $\mathrm{AlCl}_{3}(0.2 \mathrm{mmol})$, sealed glass tube at $150{ }^{\circ} \mathrm{C}$ for 48 h ; (iii) $\mathrm{AlH}_{2} \mathrm{Cl}, \mathrm{THF}$, reflux, 12 h ; (iv) All_{3} (5.0 equiv.), PhMe, $110^{\circ} \mathrm{C} .10 \mathrm{~h}$.

Table 6. Reagents and conditions for the formation of lactams $\mathbf{3 3}$ and $\mathbf{3 5}$ as depicted in Scheme 7

Entry	Nucleophile	Ar	Yield for step ii (\%)	\#	Yield for step iv (\%)	\#
1	2-amino-4methylthiazole		35	33a	45	35a
2	4-anisidine		40	33c	78	$35 c^{\delta}$
3	3-chloroaniline		57	33d	${ }^{\alpha}$	35d
4	3-fluoroaniline		89	33 e	89	35e
5	4-chloroaniline		37	33 f	$-^{\alpha}$	35f
7	4-fluoroaniline		29	33g	24	35g

[^2]
THIQ set 4: \mathbf{N}-aryl THIQs - alternative approach to L4

An alternative approach to the THIQ library L4, also employing the classical Pictet-Spengler protocol, was developed for generating the desired THIQ analogues having a direct N-aryl link 34 (Scheme 8). In this approach, treatment of 3-methoxyphenyl acetic acid 31 with a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of amines/anilines 23b and $\mathbf{2 3 d} \mathbf{- g}$ in dichloromethane containing catalytic amounts of DMAP, as well as the coupling agent, N, N^{\prime} dicyclohexylcarbodiimide (DCC) ${ }^{44}$ afforded amides 36 in good yields (Table 7). The very poor yield for 36b (16%, Table 7 , entry 2) is undoubtedly due to both low solubility and poor nucleophilicity of amine 23b. Generally, the other amide couplings proceeded successfully, providing the products $\mathbf{3 6 d} \mathbf{- g}$ for use in the next step. Reduction of the amides 36 was this time successfully accomplished by treatment with monochloroalane in tetrahydrofuran, followed by gentle heating at $80^{\circ} \mathrm{C}$. After work-up, amines $\mathbf{3 7 d} \mathbf{- g}$ were obtained in reasonable yields and their structures were confirmed by all having a set of two 2-proton triplets between δ $3.35-2.50$ in their ${ }^{1} \mathrm{H}$ NMR spectra and the clear absence of a $\mathrm{C}=0$ signal at $\delta 169.0-171.0$ in their ${ }^{13} \mathrm{C}$ NMR spectra. Failure of 36b to undergo reduction is ascribed to the presence of the nitro group which appears to be chemically incompatible under the reaction conditions. Subsequent Pictet-Spengler ring-closure was effected by treatment of the amines $\mathbf{3 7 d} \mathbf{- g}$ with a mixture of paraformaldehyde in formic acid at $80{ }^{\circ} \mathrm{C}$ for $12 \mathrm{~h},{ }^{45}$ to afford THIQs $\mathbf{3 4 e}$ and $\mathbf{3 4} \mathrm{g}$, structurally confirmed by an intense 2 -proton methylene bridge singlet at $\delta 4.00-$ 4.50 in the ${ }^{1} \mathrm{H}$ NMR spectra for the new products. Unfortunately, in our hands the chloroaryl-substituted compounds 34d and $\mathbf{3 4 f}$ were found to be relatively unstable and decomposed in solution within hours of formation. Satisfyingly, despite this challenge, the two crude products 34d and 34f were successfully demethylated using All 3 in toluene to the corresponding desired phenols 38d and 38f in yields of 57 and 58% respectively. Finally, the two THIQ analogues $\mathbf{3 4 e}$ and $\mathbf{3 4 g}$, as well as $\mathbf{3 4 a}$ and $\mathbf{3 4 c}$ (prepared earlier, Scheme 7), were demethylated with All_{3} in toluene at $110{ }^{\circ} \mathrm{C}$ for the first two and BBr_{3} in dichloromethane for the latter two, to afford no product for $\mathbf{3 4 e}$, but $\mathbf{3 8} \mathrm{g}$, $\mathbf{3 8}$ a and $\mathbf{3 8 j}$ in fair yield and thus five new N -aryl THIQ analogues (Table 7).

Scheme 8. Synthesis of N-aryl THIQs. Reagents and conditions: (i) amines (23b, 23d-g), DCC, DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt , 12 h ; (ii) $\mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}, \mathrm{THF}$, reflux 5 h ; (iii) $\mathrm{CH}_{2} \mathrm{O}$, formic acid, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iv) ${ }^{a} \mathrm{BBr}_{3}$ (3.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 12 \mathrm{~h}$ or ${ }^{b} \mathrm{All}_{3}$ (5.0 equiv.), $\mathrm{PhMe}, 110^{\circ} \mathrm{C}, 10 \mathrm{~h}$.

Table 7. Reaction conditions for the formation of 6-hydroxy N-aryITHIQs 38 as depicted in Scheme 8
Entry
${ }^{\alpha}$ Obtained as shown in Scheme 7; ${ }^{\beta}$ Compound proved difficult to purify and so utilized directly in next reaction; χ Product unstable; ${ }^{\delta}$ product contains N - p-hydroxyphenyl group.

Preliminary biological evaluations

In terms of a pre-screening of the compounds in hand, a selected set was sent to the Council for Scientific and Industrial Research (CSIR, Pretoria, South Africa) for cell proliferation inhibition assay using the MCF7 (invasive ductal carcinoma) cell line. The assay was performed by first printing or spotting the phenols $\mathbf{1 8 d} \mathbf{1 8 f} \mathbf{1 8} \mathbf{1 8} \mathbf{g}$, $\mathbf{1 8 h}, \mathbf{2 9 h}, \mathbf{3 5 a}, \mathbf{3 5}$ c $\mathbf{3 5 e}, \mathbf{3 5 g}, \mathbf{3 8 a}, \mathbf{3 8} \mathrm{g}, \mathbf{3 8 f}$ and $\mathbf{3 8 j}$, at the concentration of $2.5 \mathrm{mg} / \mathrm{mL}$, on a $2.5 \times 6.4 \mathrm{~cm}$ glass slide. The printing solution was prepared as described by Erfle and Pepperkok. ${ }^{46}$ The slide was then placed in a tissue culture plate followed by the addition of MCF7 cells at the concentration of 1.5×10^{6} cells $/ 10 \mathrm{~mL}$ of tissue culture media. The plate was placed in an incubator at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ for 4 days. Post cell culture, the cells were treated with immunofluorescent agents (sulforhodamine B, 568 nm ; phalloidin, 488 nm and 4,6-diamidino-2-phenylindole, dihydrochloride (DAPI), 408 nm). Imaging was performed using a three channel Cytation3 cell imaging Multi-Mode Reader. The changes in blue (DAPI staining of cells nuclei) and green (phalloidin staining of cells cytoskeleton) fluorescence intensity at the spot representing each compound were taken to be indicative of changes in MCF7 viability (apoptosis or inhibition of cell proliferation) and experiments were performed in duplicate. Persomics analysis software was utilized to process images and data quantification was performed using Microsoft Excel. The results for the THIQ-based compounds are depicted in Figure 6.

Figure 6: Percentage growth of MCF7 cells treated with selected compounds ($2.50 \mathrm{mg} / \mathrm{mL}$ over 4 days).

Unfortunately, the small set of compounds tested were underwhelming in their ability to inhibit the proliferation of the MCF7 cells. As can be seen from Figure 6, the synthesized compounds had little effect. It should be noted that a number of reference compounds were included in the anti-proliferation assay, some of which provided better growth inhibition. The results of this initial screening indicate that a much larger set of compounds will need to be evaluated to note whether further compounds with higher activity can be identified - alternatively, other bio-testing strategies will be required to identify promising compounds.

Conclusions

Four small libraries of THIQ analogues, in which the nitrogen atom was employed as a linker group, were synthesized to reflect the urea-, thiourea- and sulfonamide-linked functional groups, as well as their direct N Ar analogues. Initial observations revealed that the last step demethylation was problematic, frequently resulting in the final products in low yields only - the development of an alternative strategy making use of easier to remove phenol protecting groups is thus an ongoing concern in our laboratories. Initial evaluations of the compounds synthesized in an antiproliferative assay against the MCF7 carcinoma cell line revealed a lack of activities and thus a larger data set is required, or alternatively, other bioassay strategies should be attempted.

Experimental Section

General. Melting points were measured on a Gallenkamp melting point apparatus. Reaction times were determined using thin layer chromatography (TLC) on fluorescent silica gel plates HF_{254} (Merck) and viewed under UV radiation or employing reagents including potassium permanganate, ninhydrin, p-anisaldehyde, cerium ammonium molybdate, 2,4-dinitrophenylhydrazine and iodine vapors. Silica gel 60 ($70-230$ mesh) was used for gravity column chromatography and 230-400 mesh was used for flash chromatography. Silica sensitive compounds were purified using Aluminium oxide 90 active neutral 0.063-0.200 mm (70-230 mesh)(Merck). Nuclear magnetic resonance (NMR) spectra were recorded on Varian Gemini-300 (${ }^{1} \mathrm{H}$ NMR at

300 MHz and ${ }^{13} \mathrm{C}$ at 75 MHz) and Varian VXR-400 (${ }^{1} \mathrm{H} \mathrm{NMR}$ at 400 MHz and ${ }^{13} \mathrm{C}$ at 101 MHz$)$ spectrometers. Chemical shifts (δ) and coupling constants (J) are represented in ppm and Hertz units respectively. Positive electron spray impact (ESI+) high resolution mass spectra (HRMS) were recorded on a Unicam Automass mass spectrometer in conjunction with a gas chromatogram. All reactions were performed under a dry nitrogen atmosphere. The following compounds sent for biochemical evaluation were evaluated for purity by way of LCMS (\% purity in parenthesis): 18h (99\%), 29h (93\%), 35a (97\%), 35c (98\%), 35e (97\%), 35g (99\%), 38a (88\%), $\mathbf{3 8 g}$ (96%), $\mathbf{3 8 f}$ (96%) and 38j (92%).
THIQ set L1: General approach to the synthesis of THIQ-carbamoyl imidazoles ${ }^{34}$
(1 H -Imidazol-1-yl)[6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl]methanone (15). To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 1, 1^{\prime}-carbonyldiimidazole ($350 \mathrm{mg}, 2.20 \mathrm{mmol}$) in anhydrous MeCN (25 mL) was added THIQ 14 ($326 \mathrm{mg}, 2.00$ mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.00 \mathrm{mmol})$. The resulting mixture was stirred at $24{ }^{\circ} \mathrm{C}$ for 18 h and then concentrated under reduced pressure to afford a residue which was purified by column chromatography ($100 \% \mathrm{EtOAc}$) to give imidazole 15 ($493 \mathrm{mg}, 96 \%$) as a colourless oil, $\mathrm{R}_{f} 0.31$ ($100 \% \mathrm{EtOAc}$). This intermediate was immediately used without further purification in the next synthetic step. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.86(\mathrm{~d}, \mathrm{~J} 0.9 \mathrm{~Hz}, 1 \mathrm{H}$, imidazole-H), 7.20 (d, J $1.4 \mathrm{~Hz}, 1 \mathrm{H}$, imidazole-H), 7.05 (d, J $1.4 \mathrm{~Hz}, 1 \mathrm{H}$, imidazole-H), 6.95-6.92 (m, 1H, ArH), 6.71-6.64 (m, 2H, ArH), $4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.78-3.67\left(\mathrm{~m}, 5 \mathrm{H}\right.$, overlapping signals $-\mathrm{NCH}_{2}$ and OMe$), 2.90(\mathrm{t}, \mathrm{J}$ $\left.6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{C} 29.1\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 48.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.6$ (OMe), $113.3(\mathrm{ArCH}), 113.9(\mathrm{ArCH}), 118.2(\mathrm{ArCH}), 124.1(\mathrm{ArC}), 127.6(\mathrm{ArCH}), 130.1(\mathrm{ArCH}), 135.3(\mathrm{ArC}), 137.1$ (ArCH), 151.4 (C-O), 159.0 ($\mathrm{C}=\mathrm{O}$).
1-(6-Methoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)-3'-methyl-1H-imidazol-3-ium iodide (16). To a suspension of carbamoyl imidazole 15 ($748 \mathrm{mg}, 2.91 \mathrm{mmol}$) in anhydrous MeCN (24 mL) was added iodomethane ($0.960 \mathrm{~mL}, 15.5 \mathrm{mmol}$) and the resulting mixture stirred for 6 h to afford a precipitate which was filtered off to give 16 ($1160 \mathrm{mg}, 100 \%$) as an off white solid, mp $172-173{ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.00(100 \% \mathrm{EtOAc})$.This intermediate was used without further purification for the next step in the synthesis. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO-d ${ }_{6}$): $\delta_{H} 9.62(\mathrm{~s}, 1 \mathrm{H}$, imidazole-H), 8.10-8.09 (m, 1H, imidazole-H), 7.89-7.88 (m, 1H, ArH), 7.13 (brs, 1 H , ArH), 6.84-6.81 (m, 2H, ArH), $4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.94(\mathrm{~s}, 3 \mathrm{H}$, imidazole-Me), 3.75-3.68 (m, 5H, overlapping signals - OMe and CH_{2}), $2.95\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right.$). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 75 \mathrm{MHz}$, DMSO- d_{6}, some quaternary carbons not observed): $\delta_{\mathrm{c}} 55.3$ (OMe), 112.9 (ArCH), 113.2 (ArCH), 121.1 (ArC), 123.8 (ArCH), 127.6 (ArCH), 135.7 (ArC), 137.8 (ArCH), 147.3 (C-O), 158.3 (C=O).

6-Methoxy- N -(4'-methylthiazol-2-yl)-3,4-dihydroisoquinoline-2(1H)-carboxamide (17a). To a mixture of 2-amino-4-methylthiazole ($120 \mathrm{mg}, 1.08 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.150 \mathrm{~mL}, 1.08 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(15 \mathrm{~mL})$ stirred at $24^{\circ} \mathrm{C}$ for 30 min was added the imidazolium salt $16(216 \mathrm{mg}, 0.542 \mathrm{mmol})$ and the reaction mixture stirred for 18 h . The reaction mixture was washed with aqueous 1 N HCl solution ($50 \mathrm{~mL} \times 2$) followed by extraction with EtOAc ($20 \mathrm{~mL} \times 2$). The residue, obtained by reduction of the solvent volume, was purified by column chromatography (50:50 EtOAc/Hexane) to afford the amide 17a ($132 \mathrm{mg}, 80 \%$) as an orange oil, R_{f} 0.39 (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 6.95(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.75 (dd, J $8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.66 (d, J $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.39\left(\mathrm{~s}, 1 \mathrm{H}\right.$, thiazole-ArH), $4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.70(\mathrm{t}, \mathrm{J} 5.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.84\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}\right.$, thiazole-Me). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, some quaternary carbons not observed): $\delta_{c} 16.8\left(\right.$ thiazole-Me), $29.1\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 45.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.4$ (OMe), 107.1 (ArCH), 112.8 (ArCH), 113.4 (ArCH), 124.8 (ArC), 127.5 (ArCH), 135.9 (ArCNH), 154.5 (C-O), 158.5 (C=O). HRMS ESI ${ }^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$304.1120, found 304.1111.
6-Methoxy-N-(5'-nitrothiazol-2-yl)-3,4-dihydroisoquinoline-2(1H)-carboxamide (17b). To a suspension of 2-amino-5-nitrothiazole ($100 \mathrm{mg}, 0.714 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(310 \mathrm{mg}, 0.952 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(20 \mathrm{~mL})$, which was stirred at $24^{\circ} \mathrm{C}$ for 30 min , was added the salt $16(190 \mathrm{mg}, 0.476 \mathrm{mmol})$ and stirring was continued
for 12 h . Work-up as before afforded a solid residue which was purified using column chromatography (30:70 $\mathrm{EtOAc} / \mathrm{Hexane}$) to give $\mathbf{1 7 b}(143 \mathrm{mg}, 90 \%)$ as a yellow powder, $\mathrm{R}_{f} 0.50(30: 70 \mathrm{EtOAc} / \mathrm{Hexane}) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta_{\mathrm{H}} 12.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.58(\mathrm{~s}, 1 \mathrm{H}$, thiazole-H), $7.10(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.89-6.67(\mathrm{~m}, 2 \mathrm{H}$, ArH), 4.64 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}$), 3.89-3.62 (m, 5H, overlapping signals - OMe and CH_{2}), $2.84(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 28.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 44.9\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.1(\mathrm{OMe}), 112.5$ (ArCH), $113.2(\mathrm{ArCH}), 124.9(\mathrm{ArCH}), 127.2(\mathrm{ArCH}), 135.7(\mathrm{ArC}), 140.5(\mathrm{ArCH}), 142.1(\mathrm{ArCNH}), 153.8(\mathrm{C}-\mathrm{O}), 157.9$ (C=O), $165.54\left(\mathrm{ArCNO}_{2}\right)$. HRMS ESI ${ }^{+}$: calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 335.0814$, found 335.0805 .
6-Methoxy- N -(4'-methoxyphenyl)-3,4-dihydroisoquinoline-2(1H)-carboxamide (17c). To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of anisole ($80.0 \mathrm{mg}, 0.649 \mathrm{mmol}$) in anhydrous THF (15 mL) was added n-BuLi ($1.39 \mathrm{~mL}, 1.4 \mathrm{M}, 1.94$ mmol) and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The temperature was gradually allowed to increase to 24 ${ }^{\circ} \mathrm{C}$. Salt 16 ($310 \mathrm{mg}, 0.779 \mathrm{mmol}$) was then added and the reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 12 h . Workup as described before, followed by chromatography ($30: 70$ EtOAc/Hexane) afforded 17c as a brown oil (198 $\mathrm{mg}, 98 \%), \mathrm{R}_{f} 0.50$ (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.30-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.99$ (d, J 8.4 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.84-6.60 (m, 4H, ArH), $6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.74(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OMe}), 3.63\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$), $2.82\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): סc 29.7 $\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 45.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.7(2 \times \mathrm{OMe}), 112.9(\mathrm{ArCH}), 113.6(\mathrm{ArCH}), 114.4(\mathrm{ArCH}), 122.9(\mathrm{ArCH})$, 125.6 (ArCH), 127.7 (ArC), 132.4 (ArC), 136.6 (ArCNH), 155.8 ($\mathrm{C}-\mathrm{O}$), 156.2 ($\mathrm{C}-\mathrm{O}$), 158.69 ($\mathrm{C}=\mathrm{O}$). HRMS ESI': calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 313.3638$, found 313.3632.
\boldsymbol{N}-(3'-Chlorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (17d). In a similar way described for 17c above, 17d was obtained as a brown oil ($178 \mathrm{mg}, 86 \%$) yield as a brown oil that waxified at low temperatures, $\mathrm{R}_{f} 0.50$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.47(\mathrm{~d}, \mathrm{~J} 1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.31-$ $7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.85-6.61(\mathrm{~m}, 3 \mathrm{H}, \operatorname{ArH}$ and NH$), 4.55(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArCH} 2 \mathrm{~N}), 3.77(\mathrm{~s}, 3 \mathrm{H}$, OMe), $3.65\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.83\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{C} 29.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $41.6\left(\mathrm{CH}_{2}\right), 45.4\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.4(\mathrm{OMe}), 112.7(\mathrm{ArCH}), 113.4(\mathrm{ArCH}), 118.3(\mathrm{ArCH}), 120.3(\mathrm{ArCH}), 123.1(\mathrm{ArCH})$, $125.2(\mathrm{ArCH}), 127.4(\mathrm{ArC}), 129.8(\mathrm{ArCH}), 134.4(\mathrm{ArC}), 136.2(\mathrm{ArCCl}), 140.5(\mathrm{ArCNH}), 154.9(\mathrm{C}-\mathrm{O}), 158.5(\mathrm{C}=\mathrm{O})$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 317.1057\left({ }^{35} \mathrm{Cl}\right)$, found 317.1052.
\boldsymbol{N}-(3'-Fluorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (17e). In a similar manner as described for 17 c above, 17 e was obtained as a brown oil ($192 \mathrm{mg}, 98 \%$) that waxified at low temperature, R_{f} 0.50 (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.38-7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 6.85-6.70 (m, 4H, ArH), $6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.70\left(\mathrm{t}, J 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.93\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, some quaternary carbons not observed): $\delta_{\mathrm{C}} 29.3$ ($\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $41.5\left(\mathrm{CH}_{2}\right), 45.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.3(\mathrm{OMe}), 107.4(\mathrm{ArCH}), 109.5(\mathrm{ArCH}), 112.6(\mathrm{ArCH}), 113.3(\mathrm{ArCH})$, 114.9 (ArC), 127.3 (ArCH), 136.2 (ArCNH), 158.5 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 301.1352$, found 301.1356.
\boldsymbol{N}-(4'-Chlorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (17f). In a similar manner as described for 17c above, 17 f was obtained as a brown solid ($91 \mathrm{mg}, 44 \%$), mp 105-107 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{f} 0.50$ (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.40-7.19(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.88-6.65(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), $6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.76-3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90(\mathrm{t}, \mathrm{J} 5.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{ArCH} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, some quaternary carbons not observed): $\delta_{\mathrm{c}} 29.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right)$, $45.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.7(\mathrm{OMe}), 113.0(\mathrm{ArCH}), 113.7(\mathrm{ArCH}), 121.5(\mathrm{ArC}), 125.1(\mathrm{ArCH}), 127.7(\mathrm{ArCH}), 129.2(\mathrm{ArC})$, 136.4 (ArCCl), 138.1 (ArCNH), $154.9(\mathrm{ArCH}), 155.2(\mathrm{C}-\mathrm{O}), 158.4(\mathrm{C}=\mathrm{O})$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $317.1057\left({ }^{35} \mathrm{Cl}\right)$, found 317.1060 .
N -(4'-Fluorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (17g). In a similar manner as described for 17 c above, 17 g was obtained as a brown solid ($159 \mathrm{mg}, 81 \%$), $\mathrm{mp} 136-137^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.50$ (50:50

EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.10-6.91(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.83-6.68(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), $6.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.70\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.89(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{c} 29.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 45.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.7(\mathrm{OMe}), 113.0$ (ArCH), 113.7 (ArCH), 115.8 (d, J $22.5 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 122.5 (d, J $7.7 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 125.5$ (ArC), 127.7 (ArCH), 135.3 (ArC), 136.6 (ArCNH), 155.5 (C-O), 157.6 (d, J $67.5 \mathrm{~Hz}, \mathrm{ArC-F}$), 158.8 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 301.1352$, found, 301.1348 .
6-[Benzyloxy-3,4-dihydroisoquinolin-2(1H)-yl(morpholino)]methanone (17h). In a similar manner as described for 17 c above, 17 h was obtained as a thick white oil ($220 \mathrm{mg}, 96 \%$) from the corresponding 6benzyloxy imidazolium salt to 16 (donation from another project), $\mathrm{R}_{f} 0.48$ ($100 \% \mathrm{EtOAc}$). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.39-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.80-6.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{O}\right), 4.31$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}$), $3.74-3.53\left(\mathrm{~m}, 4 \mathrm{H}\right.$, morpholine $-2 \times \mathrm{OCH}_{2}$), $3.42\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.29-3.13(\mathrm{~m}, 4 \mathrm{H}$, morpholine $-2 \times \mathrm{NCH}_{2}$), $2.79\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{C} 29.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.5$ (morpholine $-2 \times \mathrm{NCH}_{2}$), $47.4\left(\mathrm{CH}_{2}\right), 48.4\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 66.8\left(\right.$ morpholine $\left.-2 \times \mathrm{CH}_{2} \mathrm{O}\right)$, $70.2\left(\mathrm{BnCH}_{2} \mathrm{O}\right), 113.5(\mathrm{ArCH})$, $114.7(\mathrm{ArCH}), 126.1(\mathrm{ArC}), 127.4(\mathrm{ArCH}), 128.0(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 135.9(\mathrm{ArC}), 137.1(\mathrm{BnC}), 157.5(\mathrm{C}-\mathrm{O})$, 164.0 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 353.1865$, found 353.1866.

General procedure for demethylation using BBr_{3} (Method A$)^{47}$
To a mixture of 1 M BBr 3 in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.90 \mathrm{~mL}\right.$, 1.9 mmol) in a Schlenk tube cooled to $-78{ }^{\circ} \mathrm{C}$, was slowly added the MeO-THIQ analogues (0.66 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$. The reaction mixture was stirred for 2 h at $-60^{\circ} \mathrm{C}$, followed by stirring for an additional 4 h at $24^{\circ} \mathrm{C}$. Ethanol was then slowly added until fuming ceased, after which the reaction mixture was poured into a saturated NaHCO_{3} solution (15 mL) and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The solvent was dried and evaporated (rotary evaporator), to afford a residue which was purified by column chromatography (40:60 EtOAc/Hexane).
General procedure for demethylation using $\mathrm{All}_{3}(\text { Method } \mathbf{B})^{48}$
To a cooled suspension of clean aluminium powder ($180 \mathrm{mg}, 6.66 \mathrm{mmol}$) in anhydrous toluene (20 mL) was added iodine (I_{2}) ($1.31 \mathrm{~g}, 10.3 \mathrm{mmol}$) and the mixture was stirred at $110^{\circ} \mathrm{C}$, under nitrogen, until the red colour had disappeared. The reaction mixture was cooled to rt ($\sim 24^{\circ} \mathrm{C}$) and then the MeO-THIQ analogues (0.69 mmol) were added, after which the reactions were stirred at $60^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was cooled to $24^{\circ} \mathrm{C}$ and the excess All_{3} was quenched by the slow addition of water (20 mL). The reaction mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$), the organic solvent collected, dried and reduced (rotary evaporator) to afford a residue which was purified by column chromatography (40:60 EtOAc/Hexane).
6-Hydroxy- N -(4'-methylthiazol-2-yl)-3,4-dihydroisoquinoline-2(1H)-carboxamide (18a) was obtained as a yellow solid from 17a, via Method A (123 mg, 64\%), mp 199-200 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.22$ (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.36-6.33(\mathrm{bs}, 1 \mathrm{H}, \mathrm{ArH}), 6.05-5.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.79(\mathrm{bs}, 1 \mathrm{H}$, thiazole-H), 4.29 (brs, 2H, NH and OH), $3.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.13-3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.19\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.63(\mathrm{~d}, \mathrm{~J} 1.1 \mathrm{~Hz}$, 3 H , thiazole-Me). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, no $\mathrm{C}=\mathrm{O}$ signal was visible): $\delta_{c} 6.8$ (thiazole-Me), 20.6 ($\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $33.4\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$, $70.1($ thiazole- CH$), 97.5(\mathrm{ArCH}), 105.4(\mathrm{ArCH}), 106.4(\mathrm{ArC}), 115.9(\mathrm{ArCH})$, 118.9 (ArC), 127.8 (thiazole-ArC), 134.5 (ArCNH), 147.8 (C-O), 148.6 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ [M+H] 290.0963, found 290.0955.
6-Hydroxy- N-(4'-hydroxyphenyl)-3,4-dihydroisoquinoline-2(1H)-carboxamide (18c) was obtained as a thick white oil from 17c, via Method B ($83 \mathrm{mg}, 42 \%$), $\mathrm{R}_{f} 0.14$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). The compound rapidly decomposed in solution as demonstrated by NMR spectroscopy. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 285.1239, found 285.1240.
N-(3'-Chlorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (18d) was obtained as a brown solid from 17d, via Method B (105 mg, 50\%), mp 188-190 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.50$ ($50: 50 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H}$ NMR (300
$\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{OH}$ and NH signals were not observed): $\delta_{\mathrm{H}} 7.57-6.99(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.67-6.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.59$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}$), $3.71\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.86\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{C}} 30.0$ $\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 46.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 114.8(\mathrm{ArCH}), 115.7(\mathrm{ArCH}), 119.9(\mathrm{ArCH}), 121.7(\mathrm{ArC}), 123.7(\mathrm{ArCCl})$, $125.4(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 130.7(\mathrm{ArCH}), 135.0(\mathrm{ArC}), 135.3(\mathrm{ArCHCl}), 137.3(\mathrm{ArCNH}), 157.1(\mathrm{C}-\mathrm{O}), 157.4(\mathrm{C}=\mathrm{O})$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 303.0900\left({ }^{35} \mathrm{Cl}\right)$, found 303.0910.
N -(3'-Fluorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (18e) was obtained as a white solid from 17e via Method B ($69 \mathrm{mg}, 35 \%$), mp 166-168 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.33$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$): $\delta_{H} 9.25$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 8.71 (brs, 1H, OH), 7.54-7.37 (m, 1H, ArH), 7.34-7.17 (m, 2H, ArH), 6.96 (d, J 8.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.80-6.53(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.63\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.75(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, no C-F coupling was observable): $\delta \mathrm{c} 28.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $41.6\left(\mathrm{CH}_{2}\right), 45.4$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 106.1(\mathrm{ArCH}), 106.5(\mathrm{ArCH}), 108.0(\mathrm{ArCH}), 108.3(\mathrm{ArCH}), 113.8(\mathrm{ArCH}), 115.0(\mathrm{ArCH}), 115.3(\mathrm{ArCH})$, 124.2 (ArC), [one extra signal 127.4 (ArCH)], 130.0 (ArC), 136.1 (ArCNH), 142.9 ($\mathrm{ArC-F}$), 154.9 (C-O), 156.0 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$287.1196, found 287.1197.
N-(4'-Chlorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (18f) was obtained as a brown oil from 17f, via Method B (105 mg, 50\%), $\mathrm{R}_{f} 0.50$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{OH}\right.$ and NH signals not observed): $\delta_{H} 7.5-6.99(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.6-6.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.72(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.86\left(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, some quaternary carbons not observed): $\delta_{\mathrm{C}} 28.6\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 113.4(\mathrm{ArCH}), 114.3(\mathrm{ArCH}), 114.7(\mathrm{ArC}), 123.1(\mathrm{ArCH}), 123.6$ (ArCH), 124.1 (ArCH), 126.8 (ArCNH), 136.0 (ArCCl), 155.0 ($\mathrm{C}-\mathrm{O}$), 156.03 (C=O). HRMS ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 303.0793\left({ }^{35} \mathrm{Cl}\right)$, found 303.0799 .
N-(4'-Fluorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-carboxamide (18g) was obtained as a white solid from 17g, via Method B ($6 \mathrm{mg}, 3 \%$), mp $225-226^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.33$ ($50: 50 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$, both OH and NH signals were not observed): $\delta_{\mathrm{H}} 7.4-7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{~d}, \mathrm{~J} 7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.66$ (d, J $7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.71\left(\mathrm{t}, J 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.85\left(\mathrm{t}, J 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{C}-\mathrm{F}$ coupling was not observed): $\delta \mathrm{c} 30.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 46.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 114.8(\mathrm{ArCH})$, 115.7 (ArCH), $123.5(\mathrm{ArC}), 125.4(\mathrm{ArC}), 128.3(\mathrm{ArCH}), 129.0(\mathrm{ArCH}), 129.5(\mathrm{ArCH}), 137.3(\mathrm{ArCF}), 139.9(\mathrm{ArCNH})$, 157.2 (C-O), 157.7 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 275.1196$, found 275.1204 .
[6-Hydroxy-3,4-dihydroisoquinolin-2(1H)-yl](morpholino)methanone (18h). To a stirred mixture of Pd (10\% on activated charcoal) ($81.0 \mathrm{mg}, 0.075 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(6.00 \mathrm{~mL})$ containing a drop of acetic acid was added $17 \mathrm{~h}(270 \mathrm{mg}, 0.766 \mathrm{mmol})$ and then stirred under a hydrogen atmosphere (balloon) at $40^{\circ} \mathrm{C}$ for 48 h. The mixture was filtered through celite and concentrated under reduced pressure. The residue was partitioned between EtOAc (30 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL} \times 3)$. Solvent reduction (rotary evaporator) afforded a residue which was purified by column chromatography ($100 \% \mathrm{EtOAc}$) to afford $18 \mathrm{~h}(158 \mathrm{mg}, 79 \%)$ yield as a white solid mp $188-190^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.21$ (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} 9.02$ (brs, 1H, OH), 6.90 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.67 (dd, J 8.1, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.55-6.46 $(\mathrm{m}, \mathrm{H}, \mathrm{ArH}), 3.58-3.48\left(\mathrm{~m}, 4 \mathrm{H}\right.$, morpholine $\left.-2 \times \mathrm{OCH}_{2}\right), 3.28-3.21\left(\mathrm{~m}, 6 \mathrm{H}\right.$, morpholine $-2 \times \mathrm{NCH}_{2}$ and $\left.\mathrm{NCH}_{2}\right)$, 3.13 (dd, J 9.0, $3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.59 (dd, J $9.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{C}} 18.6$ ($\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $34.6\left(\right.$ morpholine $\left.-2 \times \mathrm{NCH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 44.4\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 66.6\left(\right.$ morpholine $\left.-2 \times \mathrm{OCH}_{2}\right), 113.6$ (ArCH), 116.7 (ArCH), 126.4 (ArC), 131.4 (ArCH), $139.4(\mathrm{ArC}), 156.0(\mathrm{C}-\mathrm{O}), 158.2$ (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$263.1317, found 263.1320.
(1H-Imidazol-1-yl)[6-methoxy-3,4-dihydroisoquinolin-2(1H)-yl]methanethione (19). A cooled ($5^{\circ} \mathrm{C}$) solution of 1,1'-thiocarbonyldiimidazole ($215 \mathrm{mg}, 1.20 \mathrm{mmol}$) in anhydrous $\mathrm{MeCN}(100 \mathrm{~mL})$ containing $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}$, 1.00 mm) was treated by the portion-wise addition of THIQ HBr 14 ($244 \mathrm{mg}, 1.00 \mathrm{mmol}$), while maintaining the temperature of $5{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was allowed to warm to $24^{\circ} \mathrm{C}$ and stirred for 18 h . The
reaction mixture was concentrated under reduced pressure to afford a residue which was purified with column chromatography ($100 \% \mathrm{EtOAc}$). It is important to note that in order to prevent formation of the dimer, the portionwise addition of 14 was essential. In this way 19 ($293 \mathrm{mg}, 100 \%$) was obtained a yellow oil, $\mathrm{R}_{f} 0.21$ (100% EtOAc). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.92-7.83(\mathrm{~m}, 1 \mathrm{H}$, imidazole-H), 7.26-7.19 (m, 1H, imidazole-H), 7.08 (dd, J 1.4, 0.9 Hz, 1H, imidazole-H), $6.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}\right.$), 6.84-6.67 (m, 2H, ArH), $4.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.00(\mathrm{~d}$, $J 7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.01\left(\mathrm{t}, J 5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, some quaternary carbons not observed): $\delta_{\mathrm{C}} 50.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 53.3\left(\mathrm{CH}_{2}\right), 55.4(\mathrm{OMe}), 113.1(\mathrm{ArCH}), 113.4(\mathrm{ArCH})$, 119.3 (imidazole-ArCH), 123.5 (ArC), 127.4 (ArCH), 129.9 (ArC), 137.2 (imidazole-ArCH), 159.0 (C-O), 178.2 (C=S). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}]^{+} 273.0936$, found 273.0940.
6-Methoxy-[3,4 dihydroisoquinolin-2(1H)-yl]-3'-methyl-1H-imidazole-3-ium iodide (20). To a solution of 19 $(110 \mathrm{mg}, 0.403 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(24.0 \mathrm{~mL})$ was added $\mathrm{Mel}(0.200 \mathrm{~mL}, 3.32 \mathrm{mmol})$ and the resulting mixture stirred at $24^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was concentrated under reduced pressure affording 20 as a brown foam ($184 \mathrm{mg}, 100 \%$) and used in the next step without further purification
6-Methoxy- N -(4'-methylthiazol-2-yl)-3,4-dihydroisoquinoline-2(1H)-carbothioamide (21a). To a mixture of 2-amino-4-methylthiazole ($66.0 \mathrm{mg}, 0.578 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(334 \mathrm{mg}, 1.73 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(15 \mathrm{~mL})$, that had been stirring at $24^{\circ} \mathrm{C}$ for 30 min , was added the salt $20(184 \mathrm{mg}, 0.403 \mathrm{mmol})$ and the reaction mixture was stirred at this temperature for 12 h . After the usual work-up the residue was purified with column chromatography (50:50 EtOAc/Hexane) and the desired product 21a was obtained as an orange oil (103 mg , 80%), $\mathrm{R}_{f} 0.63$ ($40: 60 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 12.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.08$ (d, J $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.86-6.67 (m, 2H, ArH), $6.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, thiazole-H), $5.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.18\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OMe}), 2.83\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H}\right.$, thiazole-Me). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{c} 29.2$ (thiazole$\mathrm{Me}), 46.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.6(\mathrm{OMe}), 112.7(\mathrm{ArCH}), 113.1(\mathrm{ArCH}), 114.1(\mathrm{ArCH}), 125.0$ (ArC), 127.6 (ArCH), $132.8(\mathrm{ArCH}), 136.4$ (ArC), 157.7 (thiazole-ArCNH), 158.7 (C-O), 182.3 (C=S). HRMS ESI ${ }^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 320.0847$, found 320.0887.
N -(3'-Chlorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carbothioamide (21d). By an analogous protocol employed for 21a, 21d was obtained as a white solid ($14.0 \mathrm{mg}, 8 \%$) from 20, mp 184-186 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.20$ (10:90 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.30-7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.19-7.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}$ and ArH), $6.86-6.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.02\left(\mathrm{t}, J 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.96(\mathrm{t}, J 5.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, some quaternary carbons not observed): $\delta_{\mathrm{c}} 29.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 47.5$ $\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.7(\mathrm{OMe}), 113.1(\mathrm{ArCH}), 113.4(\mathrm{ArCH}), 122.4(\mathrm{ArC}), 124.3(\mathrm{ArCH}), 125.8(\mathrm{ArCH}), 127.8$ (ArCH), 130.1 (ArCCl), 134.9 (ArCH), 136.4 (ArCH), 141.5 (ArCNH), 159.0 (C-O), 183.5 (C=S). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSCl}[\mathrm{M}+\mathrm{H}]^{+} 333.0828\left({ }^{35} \mathrm{Cl}\right)$, found, 333.0821.
[6-Methoxy-3,4-dihydroisoquinolin-2(1H)-yl](morpholino)methanethione (21h). By an analogous protocol used for 21a above, 21h was obtained as a yellow oil ($77 \mathrm{mg}, 65 \%$) from 20, $\mathrm{R}_{f} 0.25$ ($30: 70 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.01(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.84-6.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.91-3.82$ $\left(\mathrm{m}, 4 \mathrm{H}\right.$, morpholine $\left.-\mathrm{CH}_{2} \mathrm{~N}\right), 3.81-3.64\left(\mathrm{~m}, 7 \mathrm{H}\right.$, overlapping signals- morpholine- OCH_{2} and OMe), 3.62-3.50 (m, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.98\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, some quaternary carbons not observed): $\delta_{\mathrm{C}} 28.6\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 49.1\left(\mathrm{CH}_{2}\right), 51.9\left(\right.$ morpholine- $\left.\mathrm{NCH}_{2}\right), 52.8\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.1(\mathrm{OMe}), 66.3\left(\right.$ morpholine- $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, $112.6(\mathrm{ArCH}), 113.2(\mathrm{ArCH}), 124.9(\mathrm{ArCH}), 127.0(\mathrm{ArC}), 135.6(\mathrm{ArC}), 158.3(\mathrm{C}-\mathrm{O}), 193.69(\mathrm{C}=\mathrm{S})$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$293.1279, found, 293.1324 .

6-Hydroxy- N -(4'-methylthiazol-2-yl)-3,4-dihydroisoquinoline-2(1H)-carbothioamide (22a) was obtained on demethylation via Method A as an orange oil ($74 \mathrm{mg}, 36 \%$) from 20, $\mathrm{R}_{f} 0.37$ (40:60 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta_{H} 6.19-6.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 5.83-5.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.60(\mathrm{~s}, 1 \mathrm{H}$, thiazole-H), $3.79(\mathrm{~s}, 2 \mathrm{H}$,
${ }^{\circ}$ ARKAT USA, Inc
$\mathrm{ArCH}_{2} \mathrm{~N}$), 2.96-2.90 (m, 2H, NCH_{2}), 2.02-1.98 (m, 2H, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 1.43 ($\mathrm{s}, 3 \mathrm{H}$, thiazole-Me). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}, some quaternary carbons not observed): $\delta c 6.65$ (thiazole-Me), $20.6\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 37.0$ ($\mathrm{ArCH}_{2} \mathrm{~N}$), 97.4 (thiazole- CH), $101.6(\mathrm{ArCH}), 105.4(\mathrm{ArCH}), 106.4(\mathrm{ArC}), 115.9(\mathrm{ArCH}), 118.8(\mathrm{ArC}), 127.8$ (thiazole-CN), 147.6 (C-O), 158.4 (thiazole-C), 170.1 (C=S). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 306.0735$, found, 306.0722.
[6-Hydroxy-3,4-dihydroisoquinolin-2(1H)-yl](morpholino)methanethione (22h) was obtained via demethylation Method B as a brown oil ($34.0 \mathrm{mg}, 20 \%$) from 20, $\mathrm{R}_{f} 0.32$ ($30: 70 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta_{\mathrm{H}} 6.94$ (d, J $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.76-6.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.64\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{~N}\right), 3.90-3.71(\mathrm{~m}, 4 \mathrm{H}$, morpholine- $2 \times \mathrm{OCH}_{2}$), 3.64-3.44 (m, 6 H , morpholine- $2 \times \mathrm{NCH}_{2}$ and NCH_{2}), $2.94\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.21$ (brs, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{C} 28.9\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 49.5\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 53.3$ (morpholine- $2 \times$ $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, $66.8\left(\right.$ morpholine- $\left.2 \times \mathrm{NCH}_{2}\right), 114.2(\mathrm{ArCH}), 115.3(\mathrm{ArCH}), 125.2(\mathrm{ArC}), 127.6(\mathrm{ArCH}), 136.2(\mathrm{ArC}), 155.0$ (C-O), 194.0 (C=S). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 279.1167$, found, 279.1166.
6-Hydroxy- N -(4'-hydroxyphenyl)-3,4-dihydroisoquinoline-2(1H)-carbothioamide (22j). A mixture of 6-hydroxy-THIQ hydrobromide 14 ($191 \mathrm{mg}, 0.782 \mathrm{mmol}$) and isothiocyanate 24 j ($142 \mathrm{mg}, 0.939 \mathrm{mmol}$) containing $\mathrm{Et}_{3} \mathrm{~N}(0.330 \mathrm{~mL}, 0.26 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$ was stirred and heated under reflux for 12 h. Saturated brine solution (5.0 mL) was added to the cooled solution which was extracted with EtOAc (20 mL x 2). The residue was purified using column chromatography ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$ to afford 22 j as a white solid ($97 \mathrm{mg}, 41 \%$), mp $220-222{ }^{\circ} \mathrm{C}$, $\mathrm{R}_{f} 0.43$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{H} 9.30$ and 9.32 (each s, each $1 \mathrm{H}, 2 \mathrm{xOH}$), $9.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.06-6.94(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.72-6.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 4.88(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{~N}\right), 3.98\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.85\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, overlapping signals): $\delta \mathrm{c} 28.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 113.8(\mathrm{ArCH}), 114.8(\mathrm{ArCH}), 124.3(\mathrm{ArCNH}), 127.4(\mathrm{ArC})$, 128.2 (ArCH), 132.6 (ArCH), 136.6 (ArC), $155.0(\mathrm{C}-\mathrm{O}), 156.3(\mathrm{C}-\mathrm{O}), 181.3(\mathrm{C}=\mathrm{S})$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$301.1011, found, 301.1017.
6-Hydroxy- N -(3'-hydroxyphenyl)-3,4-dihydroisoquinoline-2(1H)-carbothioamide (22k). By a similar protocol to the above for 22j, 22k was obtained from 24k as a white solid ($93 \mathrm{mg}, 39 \%$), mp 174-176 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.68$ (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} 9.31(\mathrm{bs}, 2 \mathrm{H}, 2 \mathrm{xOH}), 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.44-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.16-7.02 (m, 3H, ArH), 6.66-6.61 (m, 2H, ArH), 4.68 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}$), $3.83\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.88(\mathrm{t}, \mathrm{J} 6.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{C}} 28.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 43.1\left(\mathrm{CH}_{2}\right), 46.6(\mathrm{ArCN}), 109.2(\mathrm{ArCH})$, $114.0(\mathrm{ArCH}), 115.1(\mathrm{ArCH}), 116.0(\mathrm{ArCH}), 120.7(\mathrm{ArCH}), 123.0(\mathrm{ArCH}), 124.3(\mathrm{ArC}), 127.6(\mathrm{ArCH}), 135.4(\mathrm{ArC})$, 143.4 (ArCNH), 148.7 (C-O), 156.2 (C-O), 182.1 (C=S). HRMS ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 301.1011$, found, 301.1023.
N-(3'-Chlorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carbothioamide (21d). By a similar protocol to the above for 22j, 6-methoxyTHIQ hydrobromide 14 and isocyanate 24d afforded the desired 21d as a white solid ($104 \mathrm{mg}, 40 \%$), mp $184-186{ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.20$ ($10: 90 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.30-7.21$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), $7.19-7.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}$ and ArH$), 6.86-6.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.02(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{~N}$), $3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.96\left(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, overlapping of signals): $\delta_{\mathrm{C}} 29.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 47.5\left(\mathrm{CH}_{2}\right), 50.8\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.7(\mathrm{OMe}), 113.1(\mathrm{ArCH}), 113.4(\mathrm{ArCH}), 122.4(\mathrm{ArC}), 124.3$ (ArCH), 125.8 (ArCH), 127.8 (ArCH), 130.1 (ArCCl), 134.9 (ArCH), 136.4 (ArCH), 141.5 (ArCNH), 159.0 (C-O), 183.5 (C=S). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}, 333.0828\left({ }^{35} \mathrm{Cl}\right)$, found, 333.0821 .
N-(3'-Fluorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carbothioamide (21e). By a similar protocol to the above for $\mathbf{2 2 j}$, and employing isocyanate $\mathbf{2 4 e}$, the desired thioanilide was obtained as a white solid (67 mg , 56%), mp 184-186 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{f} 0.53$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.14-6.75 (m, 6H, ArH and NH), $4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.03\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.98(\mathrm{t}, \mathrm{J} 5.9$
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, overlapping signals): $\delta \mathrm{c} 29.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 47.5\left(\mathrm{CH}_{2}\right), 50.9$ ($\mathrm{ArCH} \mathrm{H}_{2} \mathrm{~N}$), 55.7 (OMe), 111.3 (d, J $24.0 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 112.4 (d, J $17.3 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 113.2 (d, J $28.5 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 119.3 (ArCH), 127.7 (ArC), 130.5 (ArCH), 136.4 (ArC), 157.3 (C-O), $182.8(\mathrm{C}=\mathrm{S})$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{OS}$ $[\mathrm{M}+\mathrm{H}]^{+}, 317.3949$, found, 317.3942 .
\boldsymbol{N}-(4'-Chlorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carbothioamide (21f). By a similar protocol to the above for 22j and employing isocyanate 24f the desired $\mathbf{2 1 f}$ was obtained as a white solid ($206 \mathrm{mg}, \mathbf{7 9 \%}$), $m p 170-171{ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.33$ ($30: 70 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.32-7.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.07-$ $7.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}\right.$ and ArH), 6.80-6.75 (m, 3H, ArH), $4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.02\left(\mathrm{t}, \mathrm{J} 5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OMe}), 2.96\left(\mathrm{t}, \mathrm{J} 5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 29.4\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 47.3\left(\mathrm{CH}_{2}\right), 50.6(\mathrm{OMe})$, $55.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 113.0(\mathrm{ArCH}), 113.4(\mathrm{ArCH}), 124.7(\mathrm{ArC}), 126.1(\mathrm{ArCH}), 127.8(\mathrm{ArCH}), 129.4(\mathrm{ArCH}), 131.1$ (ArCCl), 137.95 (ArC), 138.8 (ArCNH), 159.1 (C-O), 182.7 (C=S). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$, $333.0721\left({ }^{35} \mathrm{Cl}\right)$, found 333.0825 .
\boldsymbol{N}-(4'-Fluorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-carbothioamide (21g). By a similar protocol to the above for $\mathbf{2 2 j}$ and employing isocyanate $\mathbf{2 4 g}$ the desired $\mathbf{2 1 g}$ was obtained as a white solid ($74 \mathrm{mg}, 62 \%$), $\mathrm{mp} 156-158{ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.44$ (30:70 EtOAc/Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$ and NH), 7.08-7.01 (m, 4H, ArH), 6.81-6.75 (m, 2H, ArH), $4.89\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArCH}_{2} \mathrm{~N}\right), 4.03\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OMe}), 2.97\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, overlapping signals): $\delta \mathrm{c} 29.2\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 46.8$ $\left(\mathrm{CH}_{2}\right), 50.1(\mathrm{OMe}), 55.4\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 112.9(\mathrm{~d}, \mathrm{~J} 28.5 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 115.8(\mathrm{~d}, \mathrm{~J} 22.5 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 124.7(\mathrm{ArCH}), 127.1$ (ArCH), 127.2 (ArC), 135.5 (ArCNH), 136.3 (ArCH), 158.9 (C-O), 182.5 (C=S). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{OS}$ $[\mathrm{M}+\mathrm{H}]^{+}, 317.3949$, found, 317.3942 .

2-[(1H-Imidazol-1-yl)sulfonyl]-6-methoxy-1,2,3,4-tetrahydroisoquinoline (26)

To a cooled ($0^{\circ} \mathrm{C}$) mixture of $25{ }^{41}(400 \mathrm{mg}, 1.10 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ containing $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}$, $2.00 \mathrm{mmol})$ was added $6-\mathrm{MeO}-\mathrm{THIQ} . \mathrm{HBr} 14(244 \mathrm{mg}, 1.00 \mathrm{mmol})$ with stirring which was continued for 12 h during which time the temperature was allowed to reach $24^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by a short column chromatography ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). Sulfone 26 was obtained as a transparent oil ($206 \mathrm{mg}, 70 \%$) and utilized directly in the next reactions without further purification, $\mathrm{R}_{f} 0.58$ ($100 \% \mathrm{EtOAc}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}} 7.93$ ($\mathrm{d}, \mathrm{J} 3.0 \mathrm{~Hz}, 1 \mathrm{H}$, imidazole- H), 7.31 (d, J 3.0 Hz, 1H, imidazole-H), 7.15 (d, J $3.0 \mathrm{~Hz}, 1 \mathrm{H}$, imidazole-H), 6.96 (d, J $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.75 (dd, J 8.5, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.61(\mathrm{~d}, \mathrm{~J} 2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.51\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.88\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 294.0914$, found, 294.0908
1-[6-Methoxy-3,4-dihydroisoquinolin-2(1H)-yl]sulfonyl-3'-methyl-1H-imidazol-3-ium trifluoromethane sulfonate (27)
To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 6}(735 \mathrm{mg}, 2.50 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added methyl triflate ($0.310 \mathrm{~mL}, 2.77 \mathrm{mmol}$) and stirring was continued for 4 h at $0^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure to afford $27(1143 \mathrm{mg}, 100 \%)$ as a beige semi-solid which was used without further purification. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta_{H} 9.60(\mathrm{~m}, 1 \mathrm{H}$, imidazole-H), $8.04(\mathrm{~d}, \mathrm{~J} 2.0 \mathrm{~Hz}, 1 \mathrm{H}$, imidazole-H), $7.76-7.67$ (m, 1H, imidazole-H), 7.11 (d, J $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.82 (dd, J 8.5, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.75 (d, J 2.6 Hz , $1 \mathrm{H}, \mathrm{ArH}$), $4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.86-3.74(\mathrm{~m}, 5 \mathrm{H}$, overlapping signals-CH2 and NMe), $2.99(\mathrm{t}$, $J 6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, overlapping signals): $\delta_{\mathrm{C}} 29.0$ (imidazole-Me), 37.4 $\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 46.4\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.9(\mathrm{OMe}), 114.3(\mathrm{ArCH}), 114.6(\mathrm{ArCH}), 122.0(\mathrm{ArC}), 123.3(\mathrm{ArCH}), 126.5(\mathrm{ArC})$, 128.6 (imidazole-CH), 135.3 (imidazole-CH), 139.2 (imidazole-CH), 160.6 (C-O).

General procedure for the coupling of 27 with heteroaryl amines. ${ }^{41}$ To a solution of the sulfamoyl imidazolium salt 27 ($280 \mathrm{mg}, 0.613 \mathrm{mmol}$) in anhydrous MeCN (25 mL) were added the various amine nucleophiles (ch) (0.740 mmol) and the resultant mixture stirred under the conditions illustrated in Scheme 6.

After reactions were complete (tlc), solvent was removed and the residue purified by column chromatography (50:50 EtOAc/Hexane) to afford the following amino sulfones:
6-Methoxy- N -(4'-methoxyphenyl)-3,4-dihydroisoquinoline-2(1H)-sulfonamide (28c) was obtained as a brown oil ($186 \mathrm{mg}, 87 \%$) by the general coupling procedure. $\mathrm{R}_{f} 0.41$ ($\left.50: 50 \mathrm{EtOAc} / \mathrm{Hexane}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{H} 7.13$ (dd, J 8.9, $0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.99-6.86 (m, 2H, ArH), 6.83-6.67 (m, 3H, ArH), $6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.39(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}$), 3.86 (s, 3H, OMe), 3.65 (s, 3H, OMe), $3.49\left(\mathrm{t}, \mathrm{J} 5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.76 (t, J $5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 29.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.5(2 \times \mathrm{OMe}), 112.8(\mathrm{ArCH}), 113.6$ (ArCH), 114.6 (ArCH), 124.2 (ArCH), 124.6 (ArCH), 127.4 (ArC), 129.6 (ArCNH), 134.7 (ArC), 157.6 (C-O), 158.4 (C-O). HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 349.1177$, found, 349.1207.
\mathbf{N}-(3'-Chlorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide (28d) was obtained as an orange oil ($179 \mathrm{mg}, 83 \%$) by the general coupling procedure. $\mathrm{R}_{f} 0.22$ (15:85 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.37-6.86(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 6.84-6.48(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.43\left(\mathrm{~d}, \mathrm{~J} 3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.68$ (brm, 5 H , overlapping signals- OMe and CH_{2}), $3.00-2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, some quaternary carbons not observed): $\delta_{\mathrm{C}} 29.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.4(\mathrm{OMe}), 113.0(\mathrm{ArCH}), 113.6(\mathrm{ArCH}), 118.0$ (ArCH), $120.0(\mathrm{ArCH}), 123.8(\mathrm{ArCH}), 124.7(\mathrm{ArC}), 127.4(\mathrm{ArCH}), 130.4(\mathrm{ArC}), 134.5(\mathrm{ArCCl}), 135.0(\mathrm{ArCNH}), 138.5$ (C-O). HRMS ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}, 351.0570\left({ }^{35} \mathrm{CI}\right)$, found, 351.0551.
N-(3'-Fluorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide (28e) was obtained as a colourless oil ($95 \mathrm{mg}, 46 \%$) by the general coupling procedure. $\mathrm{R}_{f} 0.37$ ($30: 70 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.99-6.67(\mathrm{~m}, 5 \mathrm{H}, \mathrm{NH}$ and ArH$), 6.60(\mathrm{~d}, \mathrm{~J} 2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.42(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{~N}$), 3.80-3.51 (m,5H, overlapping signals-OMe and CH_{2}), $2.81\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, no $\mathrm{C}-\mathrm{F}$ coupling was observable): $\delta \mathrm{c} 29.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.4(\mathrm{OMe}), 107.0$ (ArCH), $107.4(\mathrm{ArCH}), 111.2(\mathrm{ArCH}), 111.4(\mathrm{ArCH}), 113.0(\mathrm{ArCH}), 113.6(\mathrm{ArCH}), 115.3(\mathrm{ArCH}), 123.8(\mathrm{ArCH})$, $127.4(\mathrm{ArC}), 130.6(\mathrm{ArCH}), 134.5(\mathrm{ArC}), 138.9$ (ArCNH), 158.5 (C-O), 164.9 (ArCF). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 337.1022\left({ }^{18} \mathrm{~F}\right)$, found, 337.1024.
\boldsymbol{N}-(4'-Chlorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide (28f) was obtained as a translucent brown oil (118 mg, 54\%) by the general coupling procedure. $\mathrm{R}_{f} 0.22$ (15:85 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.22-7.19$ (m, 3H, ArH), 7.10-7.06 (m, 2H, ArH), 6.94-6.91 (m, 1H, ArH), 6.73-6.70 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}$), $6.60(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.61\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.86(\mathrm{t}, \mathrm{J} 5.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{c} 29.2\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.6(\mathrm{OMe}), 113.1$ (ArCH), 113.8 (ArCH), 121.9 (ArCH), 124.0 (ArC), 127.6 (ArCH), 129.6 (ArC), 130.3 (ArCH), 134.7 (ArCNH), 136.0 (ArCCl), 158.7 (C-O). HRMS ESI ${ }^{+}$, calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 353.0727\left({ }^{35} \mathrm{CI}\right)$, found, 353.0723.
\boldsymbol{N}-(4'-Fluorophenyl)-6-methoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide $(\mathbf{2 8 g})$ was obtained as a colourless oil ($195 \mathrm{mg}, 94 \%$) by the general coupling procedure. $\mathrm{R}_{f} 0.37$ ($30: 70 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.78-6.77(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.74-6.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 6.31 (brs, $1 \mathrm{H}, \mathrm{NH}$), $4.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), $3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.51\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.78(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{Cc} 29.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right), 47.6(\mathrm{Ar} \mathrm{CH} 2), 55.6(\mathrm{OMe}), 113.2$ (ArCH), 115.0 (ArCH), 117.3 (2 xArCH), 125.7 (ArC), 128.9 (ArCH), 131.8 (2 xArCH), 132.3 (ArC), 135.0 (ArC), 156.4 ($\mathrm{ArC}-\mathrm{O}$) and 162.9 (ArC-F). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 337.1022$, found, 337.1016.
4-\{[6-Methoxy-3,4-dihydroisoquinolin-2(1H)-yl]sulfonyl\}morpholine (28h) was obtained as a white amorphous solid ($134 \mathrm{mg}, 70 \%$) as per the general coupling procedure, mp 119-121 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.44$ (40:60 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.99$ ($\mathrm{d}, \mathrm{J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.82-6.71 (m, 1H, ArH), 6.67 (sharp s, $1 \mathrm{H}, \mathrm{ArH}), 4.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.85-3.64\left(\mathrm{~m}, 7 \mathrm{H}\right.$, overlapping signals-OMe and morpholine- $2 \mathrm{xOCH}_{2}$), $3.54(\mathrm{t}, \mathrm{J}$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.28-3.15 (m, 4H, morpholine- $2 \mathrm{xNCH}_{2}$), $2.91\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} 29.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.1$ (morpholine- $2 \mathrm{xNCH}_{2}$), $46.6\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.4(\mathrm{OMe}), 66.5$
(morpholine- $\left.2 x^{20 C H}\right)_{2}$), 113.0 (ArCH), 113.7 (ArCH), 124.4 (ArCH), 127.4 (ArC), 134.6 (ArC), 158.5 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 313.1222$, found, 313.1218.
6-Hydroxy- N -(4’-hydroxyphenyl)-3,4-dihydroisoquinoline-2(1H)-sulfonamide (29c) was obtained via demethylation Method B from 28c, as a thick white oil ($62 \mathrm{mg}, 32 \%$), $\mathrm{R}_{f} 0.24$ ($50: 50 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{H}} 7.09-6.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$ and NH), $6.85(\mathrm{~d}, \mathrm{~J} 8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.77-6.54(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.50$ (d, J $6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 4.59 (brs, 1H, OH), 4.26 (s, 2H, $\mathrm{ArCH}_{2} \mathrm{~N}$), 3.38 (t, J $5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), $2.65(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{C}} 20.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 36.1\left(\mathrm{NCH}_{2}\right), 39.1\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 105.6(\mathrm{ArCH}), 106.7$ (ArCH), $107.3(\mathrm{ArC}), 115.2(\mathrm{ArCH}), 115.3(\mathrm{ArCH}), 116.2(\mathrm{ArCH}), 119.0(\mathrm{ArCH}), 121.3(\mathrm{ArCH}), 121.5(\mathrm{ArC}), 126.8$ (ArCNH), 146.8 (C-O), 147.7 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 321.0864$, found, 321.0912.
\boldsymbol{N}-(3'-Chlorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide (29d) was obtained via demethylation Method A from 28c, as a colourless oil ($77 \mathrm{mg}, 34 \%$), $\mathrm{R}_{f} 0.41$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.18(\mathrm{~d}, \mathrm{~J} 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13-6.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.90(\mathrm{~d}, \mathrm{~J} 8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 6.71-6.51 (m, 2H, ArH), 4.71 (brs, 1H, OH), $4.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.55\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.77(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 29.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 114.3$ (ArCH), 115.5 (ArCH), 118.4 (ArCH), 120.4 (ArCH), $121.3(\mathrm{ArC}), 124.1(\mathrm{ArCH}), 125.0(\mathrm{ArCH}), 127.8(\mathrm{ArCH}), 130.6(\mathrm{ArCCl}), 135.0$ (ArC), 135.3 (ArCNH), 154.6 (C-O). HRMS ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 339.0571$ (${ }^{35} \mathrm{Cl}$), found 339.0570. \boldsymbol{N}-(3'-Fluorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide (29e) was obtained via demethylation Method A from 28e, as a brown oil ($22 \mathrm{mg}, 10 \%$), $\mathrm{R}_{f} 0.32$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.38-7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$ and NH$), 7.01-6.44(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 4.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.41(\mathrm{~d}, \mathrm{~J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{~N}$), 3.54 ($\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), $2.77\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{C} 29.0$ ($\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $44.4\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 107.6(\mathrm{~d}, \mathrm{~J} 25.5 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 111.7(\mathrm{~d}, \mathrm{~J} 30.75 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 114.3$ (ArCH), 115.5 (ArCH), $115.6(\mathrm{ArCH}), 115.6(\mathrm{ArC}), 124.1(\mathrm{ArCH}), 127.8(\mathrm{ArCH}), 130.8(\mathrm{ArCH}), 130.9(\mathrm{ArC}), 135.0(\mathrm{ArCH})$, 148.6 (ArCNH), 154.6 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 323.0866$, found, 323.0854.
\boldsymbol{N}-(4'-Chlorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide (29f) was obtained via demethylation Method A from 28f, as a colourless oil ($94 \mathrm{mg}, 41 \%$), $\mathrm{R}_{f} 0.41$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{H}} 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}$ and NH$), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.90-6.56(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.39(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{~N}\right), 3.71-3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, overlapping signals): δ_{C} $29.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 114.3(\mathrm{ArCH}), 115.4(\mathrm{ArCH}), 122.2(\mathrm{ArC}), 127.8(\mathrm{ArCH}), 129.7$ (ArCH), 130.4 (ArC), 134.8 (ArCCl), 135.8 (ArCNH), 154.6 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$, $339.0571\left({ }^{35} \mathrm{Cl}\right)$, found 339.0556 .
\boldsymbol{N}-(4'-Fluorophenyl)-6-hydroxy-3,4-dihydroisoquinoline-2(1H)-sulfonamide (29g) was obtained via demethylation Method A from 28g, as a brown oil ($71.0 \mathrm{mg}, 33 \%$), $\mathrm{R}_{f} 0.32$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{H}} 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.96-6.83(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}$ and NH$), 4.36\left(\mathrm{~d}, \mathrm{~J} 10.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.51-3.47$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), $2.71\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{C} 29.8\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.0\left(\mathrm{CH}_{2}\right), 47.3$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 112.9(\mathrm{ArCH}), 114.2(\mathrm{ArCH}), 116.0(\mathrm{ArC}), 116.3(\mathrm{ArCH}), 123.5(\mathrm{~d}, \mathrm{~J} 8.2 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 125.7(\mathrm{ArC}), 126.6$ (ArCH), 133.5 (ArCNH), 151.3 (ArC-F), 161.8 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 323.0866$, found, 323.0858.

2-(Morpholinosulfonyl)-1,2,3,4-tetrahydroisoquinolin-6-ol (29h) was obtained via demethylation Method B from $\mathbf{2 8 h}$ as a white solid ($45.0 \mathrm{mg}, 25 \%$), mp $168-170^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.53$ ($100 \% \mathrm{EtOAc}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ_{C} $6.94(\mathrm{~d}, \mathrm{~J} 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.72-6.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.69$ (sharp m, 4H, morpholine$2 \mathrm{xCH}_{2} \mathrm{O}$), $3.54\left(\mathrm{t}, \mathrm{J} 5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right.$), $3.22-3.18\left(\mathrm{~m}, 4 \mathrm{H}\right.$, morpholine- $2 \mathrm{xNCH}_{2}$), $2.86\left(\mathrm{t}, \mathrm{J} 5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta \mathrm{c} 29.9\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 45.3\left(\right.$ morpholine- $\left.2 \mathrm{xNCH}_{2}\right), 47.7\left(\mathrm{CH}_{2}\right), 48.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 67.4$ (morpholine- $2 \mathrm{xCH}_{2} \mathrm{O}$), 114.9 (ArCH), $116.0(\mathrm{ArCH}), 124.6(\mathrm{ArC}), 128.3(\mathrm{ArCH}), 135.9(\mathrm{ArC}), 157.1$ (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 299.1066$, found, 299.1055.

General procedure for the lactamization of lactone (32)

A mixture of 6-methoxyisochroman-3-one $\mathbf{3 2}^{42}$ ($300 \mathrm{mg}, 1.68 \mathrm{mmol}$), amine analogues ($\mathbf{a}-\mathrm{g}$) (2.52 mmol) and $\mathrm{AlCl}_{3}(45.0 \mathrm{mg}, 0.340 \mathrm{mmol})$ were combined under anhydrous conditions in a sealed tube and heated at $150{ }^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was poured into aqueous $1 \mathrm{~N} \mathrm{HCl}(5.0 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} \times 2$) to afford a brown residue which was purified with column chromatography ($30: 70 \mathrm{EtOAc} / \mathrm{Hexane}$).
6-Methoxy-2-(4'-methylthiazol-2-yl)-1,2-dihydroisoquinolin-3(4H)-one (33a) was obtained from $\mathbf{3 2}$ as a pale yellow residue ($162 \mathrm{mg}, 35 \%$), $\mathrm{R}_{f} 0.76$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}$, ArH), 6.84-6.75 (m, 2H, ArH), $6.58\left(\mathrm{~s}, 1 \mathrm{H}\right.$, thiazole-H), $5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.83-3.80(\mathrm{~m}, 5 \mathrm{H}$, overlapping signals- OMe and CH_{2}), $2.33\left(\mathrm{~s}, 3 \mathrm{H}\right.$, thiazole-Me). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 17.7$ (thiazole-Me), $39.1\left(\mathrm{ArCH}_{2}\right)$, $49.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.7(\mathrm{OMe}), 110.0$ (thiazole- CH), $112.5(\mathrm{ArCH}), 113.3(\mathrm{ArCH}), 123.7(\mathrm{ArCH}), 127.4(\mathrm{ArC}), 132.8$ (ArC), 147.0 (thiazole-CMe), 158.7 (thiazole-ArCN), 159.8 (C-O), 168.4 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}, 275.0854$, found, 275.0855.
6-Methoxy-2-(4'-methoxyphenyl)-1,2-dihydroisoquinolin-3(4H)-one (33c) was obtained from 32 as a beige oily residue ($191 \mathrm{mg}, 40 \%$), $\mathrm{R}_{f} 0.17$ ($50: 50 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{H} 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.09-7.07 (m, 1H, ArH), 6.93-6.90 (m, 2H, ArH), 6.81-6.75 (m, 2H, ArH), 4.75 (s, 2H, ArCH2N), 3.81-3.73 ($\mathrm{m}, 8 \mathrm{H}$, overlapping signals- 2 xOMe and ArCH_{2}). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta \mathrm{c} 39.2\left(\mathrm{ArCH}_{2}\right), 54.3(2 \mathrm{xOMe}), 55.8$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 112.6(\mathrm{ArCH}), 113.0(\mathrm{ArCH}), 114.5(\mathrm{ArCH}), 124.5(\mathrm{ArCH}), 126.5(\mathrm{ArCH}), 127.3(\mathrm{ArCH}), 134.3(\mathrm{ArC})$, 135.6 (ArC), 158.5 (ArCN), 159.6 ($2 x \mathrm{CC}-\mathrm{O}$), 169.5 ($\mathrm{C}=\mathrm{O}$). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 284.1287$, found, 284.1292.

2-(3'-Chlorophenyl)-6-methoxy-1,2-dihydroisoquinolin-3(4H)-one (33d) was obtained from 32 as a white solid ($277 \mathrm{mg}, 57 \%$), $\mathrm{mp} 87-88{ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.36$ ($40: 60 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta_{\mathrm{H}} 7.37-7.10(\mathrm{~m}, 5 \mathrm{H}$, ArH), 6.82-6.78 (m, 2H, ArH), $4.80\left(\mathrm{~d}, \mathrm{~J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.85-3.75$ ($\mathrm{m}, 5 \mathrm{H}$, overlapping signals-OMe and ArCH2). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, overlapping signals): $\delta_{\mathrm{C}} 39.1\left(\mathrm{ArCH}_{2}\right), 53.4(\mathrm{OMe}), 55.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 112.4$ (ArCH), 112.7 (ArCH), 123.8 (ArCH), 125.8 (ArCH), 126.3 (ArCH), 126.8 (ArC), 130.0 (ArCCl), 132.7 (ArCH), 134.8 (ArCN), 158.4 (C-O), 160.3 (C=O). HRMS ESI calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 288.0791$ (${ }^{35} \mathrm{CI}$), found, 288.0785.
2-(3'-Fluorophenyl)-6-methoxy-1,2-dihydroisoquinolin-3(4H)-one (33e) was obtained from 32 as a white solid ($407 \mathrm{mg}, 89 \%$), mp 108-110 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.41$ ($50: 50 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.38-6.78$ (m, 7H, ArH), $4.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), 4.01-3.55 (m, 5H, overlapping signals- ArCH_{2} and OMe). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, overlapping signals): $\delta_{c} 39.3$ (ArCH_{2}), 53.5 (OMe), 55.6 ($\mathrm{ArCH}_{2} \mathrm{~N}$), 112.7 (d, J $\left.28.50 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}\right), 113.7$ (d, J 21.00 $\mathrm{Hz}, \mathrm{ArCH}-\mathrm{F}), 121.0(\mathrm{ArCH}), 123.9(\mathrm{ArCH}), 126.3(\mathrm{ArCH}), 130.2(\mathrm{ArC}), 133.7(\mathrm{ArCH}), 159.3(\mathrm{C}-\mathrm{O}), 169.8(\mathrm{ArCF})$, 172.9 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 272.1087$, found, 272.1075.

2-(4'-Chlorophenyl)-6-methoxy-1,2-dihydroisoquinolin-3(4H)-one (33f) was obtained from 32 as a yellow solid ($179 \mathrm{mg}, 37 \%$), mp $123-125^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.38$ ($40: 60 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.39-7.28$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}$), $7.12-7.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.92-3.63(\mathrm{~m}, 5 \mathrm{H}$, overlapping signals- ArCH_{2} and OMe). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, overlapping signals): $\delta_{\mathrm{C}} 39.2\left(\mathrm{ArCH}_{2}\right), 53.6$ ($\mathrm{ArCH}_{2} \mathrm{~N}$), $55.6(\mathrm{OMe}), 112.5(\mathrm{ArCH}), 112.9(\mathrm{ArCH}), 124.0(\mathrm{ArC}), 126.4(\mathrm{ArCH}), 127.0(\mathrm{ArCH}), 129.4(\mathrm{ArCH}), 132.2$ (ArCH), 133.9 (ArCH), 140.7 (ArCCl), 157.2 (ArCN), 159.6 (C-O), 169.3 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}, 288.0684\left({ }^{35} \mathrm{Cl}\right)$, found, 288.0782.
2-(4'-Fluorophenyl)-6-methoxy-1,2-dihydroisoquinolin-3(4H)-one (33g) was obtained from $\mathbf{3 2}$ as a brown oil ($133 \mathrm{mg}, 29 \%$), $\mathrm{R}_{f} 0.38$ ($40: 60 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.47-7.23$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}$), 7.00-6.95 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), $4.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.97\left(\mathrm{~m}, 5 \mathrm{H}\right.$, overlapping signals- OMe and CH_{2}). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} 39.2\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 54.1\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$, $55.8(\mathrm{OMe}), 112.8(\mathrm{~d}, \mathrm{~J} 30.00 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 116.2(\mathrm{ArC}), 116.5(\mathrm{ArCH}), 124.3$ (ArC), $126.6(\mathrm{ArCH}), 127.7(\mathrm{ArCH}), 127.8(\mathrm{ArCH}), 134.1$ (ArCN), 159.7 (ArCF), 162.9 ($\mathrm{C}-\mathrm{O}), 169.5$ ($\mathrm{C}=0$). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 272.1087$, found, 272.1090.

6-Hydroxy-2-(4'-methylthiazol-2-yl)-1,2-dihydroisoquinolin-3(4H)-one (35a) was obtained from 33a via demethylation Method A as a yellow solid ($78 \mathrm{mg}, 45 \%$), mp 204-206 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{f} 0.79\left(5: 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} 9.58$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.25 (d, J $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.86 (sharp m, 1H, thiazole-H), 6.69$6.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.32\left(\mathrm{~d}, \mathrm{~J} 1.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, thiazole-Me). ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta_{\mathrm{C}} 17.0$ (thiazole-Me), 38.1 ($\mathrm{ArCH}_{2} \mathrm{O}$), $48.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 109.6$ (thiazole-ArCH), 113.4 (ArCH), 113.6 (ArCH), 121.7 (ArCH), 126.9 (ArC), 132.9 (ArC), 145.9 (thiazole- ArC), 156.9 (C-O), 158.4 (thiazole- ArCN), 168.5 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 261.0653$, found, 261.0701.

6-Hydroxy-2-(4'-hydroxyphenyl)-1,2-dihydroisoquinolin-3(4H)-one (35c) was obtained from 33c via demethylation Method A as a beige solid ($132 \mathrm{mg}, 78 \%$), decomposition temperature $230-240{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}} 0.21$ (40:60 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta_{H} 9.45$ (brs, 2H, 2 xOH), 7.09-7.06 (m, 3H, ArH), 6.75 (d, $J 8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.63 (d, J $8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $4.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.57\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{ArCH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, DMSO- d_{6}, overlapping signals): $\delta_{c} 38.5\left(\mathrm{ArCH}_{2}\right), 53.1\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 113.3(\mathrm{ArCH}), 115.2(\mathrm{ArCH}), 123.3(\mathrm{ArCH}), 126.3$ (ArC), 126.8 (ArC), 134.2 (ArCN), 155.5 (C-O), 156.7 (C-O), 168.5 (C=O). $\mathrm{HRMS}^{\mathrm{ESI}}{ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 256.0929, found, 256.0935.

2-(3'-Fluorophenyl)-6-hydroxy-1,2-dihydroisoquinolin-3(4H)-one (35e) was obtained from 33e via demethylation Method B as a white solid ($159 \mathrm{mg}, 89 \%$), mp $118-200^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.41$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}} 7.56-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.23-6.96(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 6.84-6.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right)$, $3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}} 39.7\left(\mathrm{ArCH}_{2}\right), 54.8\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 114.4(\mathrm{~d}, \mathrm{~J} 21.8 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F})$, 114.7 (d, J $24.0 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 115.1$ (ArCH), 122.8 (ArCH), 124.4 (ArCH), 127.7 (ArCH), 131.7 (ArCH), 134.8 (ArC), 145.5 (ArC), 158.7 (C-O), 162.5 (ArCN), 165.9 (ArCF), 172.5 ($\mathrm{C}=\mathrm{O}$). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 258.0930, found, 258.0919.

2-(4'-Fluorophenyl)-6-hydroxy-1,2-dihydroisoquinolin-3(4H)-one (35g) was obtained from 33g via demethylation Method B as a brown solid ($43 \mathrm{mg}, 24 \%$), mp $115-117{ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.41$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta_{H} 6.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.42-6.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 5.88(\mathrm{~d}, \mathrm{~J} 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.97(\mathrm{~d}, \mathrm{~J} 3.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{~N}$), 3.77 (brs, $1 \mathrm{H}, \mathrm{OH}$), 2.88 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \operatorname{ArC}\right.$ and $\mathrm{C}=\mathrm{O}$ signals not detected): $\delta \mathrm{c} 30.0\left(\mathrm{ArCH}_{2} \mathrm{CO}\right), 45.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 105.4$ (d, J $31.5 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 107.6 (d, J $\left.23.0 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}\right), 118.1$ (ArCH), 119.8 (ArCH), 125.4 (ArCH). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 258.0930$, found, 258.0934 .

General procedure for the reduction of the acetamides $33 .{ }^{49,50}$

To a suspension of $\mathrm{AlH}_{2} \mathrm{Cl}$ made by adding $\mathrm{AlCl}_{3}(140 \mathrm{mg}, 1.06 \mathrm{mmol})$ to a stirred suspension of $\mathrm{LiAlH}_{4}(41.0$ $\mathrm{mg}, 1.08 \mathrm{mmol})$ in anhydrous THF (30 mL) at $-3^{\circ} \mathrm{C}$ in small portions followed by stirring at $24^{\circ} \mathrm{C}$ for 30 min , was added the amides (0.713 mmol) in THF (4.0 mL). The reaction mixture was then stirred under reflux for 5 h, cooled to $24^{\circ} \mathrm{C}$ and carefully treated with water until no further effervescence occurred. The white solid (lithium aluminate) was separated by vacuum filtration and the filtrate extracted with EtOAc ($20 \mathrm{~mL} \times 2$) to give the corresponding amines as pure oils.
2-[6-Methoxy-3,4-dihydroisoquinolin-2(1H)-yl]-4'-methylthiazole (34a) was obtained from 33a as a thick yellow oil ($153 \mathrm{mg}, 82 \%$), $\mathrm{R}_{f} 0.33$ ($20: 80 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta_{\mathrm{H}} 7.09(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.83-6.65 (m, 2H, ArH), $6.12\left(\mathrm{~s}, 1 \mathrm{H}\right.$, thiazole-rH), $4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.87-3.65(\mathrm{~m}, 5 \mathrm{H}$, overlapping signals- OMe and CH_{2}), $2.95\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right.$), 2.28 ($\mathrm{d}, \mathrm{J} 1.1 \mathrm{~Hz}, 3 \mathrm{H}$, thiazole- Me). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} 21.4$ (thiazole-Me), $29.4\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.6(\mathrm{OMe}), 101.2(\mathrm{ArCH}), 112.9$ (ArCH), 113.6 (ArCH), 125.3 (ArC), 127.7 (ArC), 136.0 (ArC), 149.8 (ArC), 158.6 (C-O), 170.8 (ArCN). HRMS ESI ${ }^{+}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}, 261.1062$, found, 261.1070.
6-Methoxy-2-(4'-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (34c) was obtained from 33a as an offwhite solid ($129 \mathrm{mg}, 67 \%$), $\mathrm{mp} 116-118^{\circ} \mathrm{C}$, $\mathrm{R}_{f} 0.73$ ($50: 50 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta_{\mathrm{H}} 7.12-$ $7.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.93-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.78-6.69(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.80$
and 3.82 (each s, each $3 \mathrm{H}, 2 \mathrm{xOMe}$), $3.47\left(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.75\left(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{C} 29.4\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.6(\mathrm{OMe}), 55.7(\mathrm{OMe}), 113.0(\mathrm{ArCH}), 113.8$ (ArCH), 114.8 (ArCH), 124.4 (ArCH), 124.8 (ArCH), 127.6 (ArC), 129.8 (ArC), 134.9 (ArCN), 157.8 (C-O), 158.6 (CO). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 270.1494$, found, 270.1494 .

General synthetic protocol for methoxyphenyl acetamides $36 .{ }^{44}$

To a mixture of N, N^{\prime}-dicyclohexylcarbodimide ($220 \mathrm{mg}, 1.08 \mathrm{mmol}$), DMAP ($11.1 \mathrm{mg}, 9.03 \times 10^{-5} \mathrm{mmol}$) and 3methoxyphenylacetic acid $31(150 \mathrm{mg}, 0.903 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ were added the respective amines (b-g) (0.903 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and the resultant reaction mixture was stirred at $24{ }^{\circ} \mathrm{C}$ for 12 h . The suspension was filtered and the eluent concentrated under reduced pressure to yield a solid residue which was purified by flash chromatography (15:85 EtOAc/Hexane) to afford the products described below. The compounds were characterized by NMR spectroscopy (for some compounds HRMS too) and utilized directly in the next reduction step).
2-(3-Methoxyphenyl)-N-(5'-nitrothiazol-2-yl)acetamide (36b) was obtained from 31 and 2-amino-5-nitrothiazole as an orange solid ($42 \mathrm{mg}, 16 \%$), mp 119-120 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.29$ ($30: 70 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{H}} 9.52$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $8.22(\mathrm{~s}, 1 \mathrm{H}$, thiazole-H), 7.29-7.19 (m, 1H, ArH), 6.85-6.76 (m, 3H, ArH), 4.173.55 ($\mathrm{m}, 5 \mathrm{H}$, overlapping signals- OMe and CH_{2}). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, overlapping signals): $\delta_{\mathrm{c}} 43.4$ (ArCH_{2}), 55.6 (OMe), 113.8 (thiazole- ArCH), 115.78 (ArCH), 121.8 (ArCH), 131.0 (ArCH), 133.4 (ArC), 140.4 (thiazoleArC), 160.7 (thiazole-ArCN), 161.2 (C-O), 169.5 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 294.0549$, found, 294.0547.
N -(3'-Chlorophenyl)-2-(3-methoxyphenyl)acetamide (36d) was obtained from 31 and 3-chloroaniline as a thick white oil ($165 \mathrm{mg}, 66 \%$), $\mathrm{R}_{f} 0.66$ ($50: 50 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H} 7.51$ (d, J 1.8 Hz , 1H, ArH), 7.38-7.14 (m, 3H, ArH), 7.11-7.00 (m, 1H, ArH), 6.95-6.80 (m, 3H, ArH), 3.83 (s, 3H, OMe), 3.71 (s, $2 \mathrm{H}, \mathrm{ArCH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 45.1\left(\mathrm{ArCH}_{2}\right), 55.4(\mathrm{OMe}), 113.4(\mathrm{ArCH}), 115.3(\mathrm{ArCH}), 117.9(\mathrm{ArCH})$, $120.0(\mathrm{ArCH}), 121.8(\mathrm{ArCH}), 124.6(\mathrm{ArCH}), 130.0(\mathrm{ArCH}), 130.5(\mathrm{ArCH}), 134.7(\mathrm{ArCCl}), 135.6\left(\mathrm{ArCCH}_{2}\right), 138.9$ (ArCN), 160.2 (C-O), 169.0 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 276.0791$ (${ }^{35} \mathrm{Cl}$), found, 276.0780.
N -(3'-Fluorophenyl)-2-(3-methoxyphenyl)acetamide (36e) was obtained from 31 and 3-fluoroaniline as a white solid ($221 \mathrm{mg}, 94 \%$), mp 57-58 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.46$ (20:80 EtOAc/Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{NH}\right.$ signal was not detected): $\delta_{H} 7.45-7.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.06-6.69(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, overlapping signals): $\delta \mathrm{c} 44.9\left(\mathrm{ArCH}_{2}\right), 55.5$ (OMe), 107.8 (d, J $\left.26.25 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}\right), 111.4$ (d, J $21.00 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 113.3 (ArCH), 115.5 (d, J $12.75 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F})$], 121.9 (ArCH), 130.3 (d, J $9.00 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 136.0 (ArCN), 139.6 (d, J $10.50 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 161.6 (C-O), 164.8 (ArCF), 170.0 (C=O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 260.1087$, found, 260.1083.
\mathbf{N}-(4'-Chlorophenyl)-2-(3-methoxyphenyl)acetamide (36f) was obtained from 31 and 4-chloroaniline a thick white oil ($217 \mathrm{mg}, 87 \%$), $\mathrm{R}_{f} 0.41$ ($30: 70 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{NH}\right.$ signal was not observed): $\delta_{H} 7.51-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.11-6.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{c} 45.1\left(\mathrm{ArCH}_{2}\right), 55.4(\mathrm{OMe}), 113.4(\mathrm{ArCH}), 115.3(\mathrm{ArCH}), 117.8(\mathrm{ArCH}), 120.0(\mathrm{ArCH}), 121.8(\mathrm{ArCH})$, $124.6(\mathrm{ArCH}), 130.1(\mathrm{ArCCl}), 130.8(\mathrm{ArCH}), 130.4(\mathrm{ArC}), 135.7(\mathrm{ArCNH}), 158.5(\mathrm{C}-\mathrm{O}), 168.2(\mathrm{C}=\mathrm{O})$.
\mathbf{N}-(4'-Fluorophenyl)-2-(3-methoxyphenyl)acetamide (36g) was obtained from 31 and 4-fluoroaniline as a white solid ($131 \mathrm{mg}, 56 \%$), mp $70-72{ }^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.46$ ($30: 70 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}} 7.45-$ $7.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.06-6.69(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ_{c} $44.7\left(\mathrm{ArCH}_{2}\right), 55.3(\mathrm{OMe}), 113.1(\mathrm{ArCH}), 115.2(\mathrm{ArCH}), 115.6(\mathrm{~d}, \mathrm{~J} 22.5 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 121.8(\mathrm{~d}, \mathrm{~J} 7.50 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F})$, 130.3 (ArCH), 133.4 (ArCH), 135.8 (ArCN), 157.9 (ArCCH_{2}), 160.20 (C-O), 161.1 (ArCF), 169.0 (C=O).

Reduction of amides as described above for compounds 34a and 34c

3'-Chloro- \mathbf{N}-(3-methoxyphenethyl)aniline (37d) was obtained from 36d as a thick yellow oil ($184 \mathrm{mg}, 98 \%$), R_{f} 0.82 (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 7.28-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.98-6.60(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 3.80(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.46\left(\mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 2.81\left(\mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{c}} 35.7$ $\left(\mathrm{ArCH}_{2}\right), 45.0\left(\mathrm{CH}_{2}\right), 55.5(\mathrm{OMe}), 111.6(\mathrm{ArCH}), 112.1(\mathrm{ArCH}), 112.8(\mathrm{ArCH}), 114.9(\mathrm{ArCH}), 117.6(\mathrm{ArCH}), 121.4$ (ArCH), $130.0(\mathrm{ArCH}), 130.6(\mathrm{ArCH}), 135.6$ (ArCCl), 140.9 (ArCNH), 149.5 (ArC), 160.2 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}, 262.0999\left({ }^{35} \mathrm{Cl}\right)$, found, 262.0988.
$\mathbf{3}^{\prime}$-Fluoro- \boldsymbol{N}-(3-methoxyphenethyl)aniline (37e) was obtained from $\mathbf{3 6 e}$ as a white oil ($128 \mathrm{mg}, 73 \%$), $\mathrm{R}_{f} 0.63$ (50:50 EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{NH}$ signal was obscured): $\delta_{\mathrm{H}} 7.77-7.29$ (m, $5 \mathrm{H}, \mathrm{ArH}$), 6.42$6.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.38\left(\mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 2.89\left(\mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH} \mathrm{N}_{2} \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}} 35.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 44.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 55.2$ (OMe), 99.6 (d, J $\left.26.25 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}\right), 103.9$ (d, $J 9.00 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 108.8(\mathrm{ArCH}), 111.8(\mathrm{ArCH}), 114.6(\mathrm{ArCH}), 121.1(\mathrm{ArCH}), 120.0(\mathrm{ArCH}), 130.2(\mathrm{ArCH}), 130.4$ (ArC), 140.8 (ArCNH), 160.0 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}, 246.1294$, found, 246.1290.
4^{\prime}-Chloro- N -(3-methoxyphenethyl)aniline (37 f) was obtained from $\mathbf{3 6 f}$ as a thick yellow oil ($164 \mathrm{mg}, 88 \%$), R_{f} 0.80 ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.30-7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 6.87-6.67 (m, 3H, ArH), 6.58-6.47 (m, 2H, ArH), $3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.68$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $3.37(\mathrm{t}, \mathrm{J} 6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $2.88\left(\mathrm{t}, \mathrm{J} 6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, overlapping signals): $\delta \mathrm{c} 35.6\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $45.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 55.5(\mathrm{OMe}), 112.0(\mathrm{ArCH}), 114.3(\mathrm{ArCH}), 114.9(\mathrm{ArCH}), 121.4(\mathrm{ArCH}), 122.5(\mathrm{ArCl}), 129.4$ (ArCH), 130.0 (ArC), 141.6 (ArCNH), 159.8 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}, 262.0999$ (${ }^{35} \mathrm{Cl}$), found, 262.0988.
4^{\prime}-Fluoro- \boldsymbol{N}-(3-methoxyphenethyl)aniline ($\mathbf{3 7 g}$) was obtained from $\mathbf{3 6 g}$ as a translucent oil ($168 \mathrm{mg}, 96 \%$), R_{f} 0.71 ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{NH}$ signal was obscured): $\delta_{\mathrm{H}} 7.29-7.23$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 6.78-6.03 (m, 5H, ArH), 6.58-6.54 (m, 2H, ArH), $3.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.38\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 2.90(\mathrm{t}, \mathrm{J}$ $\left.6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 35.5\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 45.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 55.2(\mathrm{OMe}), 111.7$ (ArCH), 113.8 (d, J $7.50 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 114.6$ (ArCH), 115.7 (d, J $21.75 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 121.1$ (ArCH), 129.7 (ArCH), 141.1 (ArC), 144.1 (ArCNH), 156.8 (ArCF), 159.9 (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}, 246.1294$, found, 246.1292.

General procedure for the Pictet-Spengler cyclization of amines 37.45

A mixture of the amine substrates $37(1.05 \mathrm{mmol})$ and paraformaldehyde (1.15 mmol) were heated in formic acid $(5.0 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with water $(20 \mathrm{~mL})$ and the pH adjusted to 5 with NaHCO_{3} solution, followed by extraction with EtOAc $(20 \mathrm{~mL} \times 2)$. The residue was purified by chromatography in (20:80 EtOAc/Hexane).
2-(3'-Fluorophenyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline (34e) was obtained from 37e as an orange oil ($203 \mathrm{mg}, 75 \%$), ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.28-7.00$ (m, 2H, ArH), 6.87-6.37 (m, 5H, ArH), 4.36 ($\mathrm{s}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{~N}$), $3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.55\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.96\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}, overlapping signals): $\delta_{\mathrm{C}} 29.3\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 45.8\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.3(\mathrm{OMe}), 101.30(\mathrm{~d}, J 25.5 \mathrm{~Hz}$, ArCH-F), 104.4 (d, J $21.75 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}), 109.9$ (ArCH), 112.4 (ArCH), 113.2 (ArCH), 126.2 (ArCH), 127.5 (ArCH), 130.1 (ArC), 136.0 (ArCN), 157.2 (C-O), 159.3 (ArCF). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}, 258.1294$ (${ }^{18} \mathrm{~F}$), found, 258.1288.
2-(4'-Fluorophenyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline (34g) was obtained from $\mathbf{3 7} \mathrm{g}$ as a brown solid ($266 \mathrm{mg}, 98 \%$), $\mathrm{mp} 75-78{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.12-6.87(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.82-6.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.48\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.97\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{c} 29.6\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 48.1\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.6(\mathrm{OMe}), 112.7(\mathrm{ArCH}), 113.6(\mathrm{ArCH}), 115.9$ (d, J $22.50 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 117.5 (d, J $7.50 \mathrm{~Hz}, \mathrm{ArCH}-\mathrm{F}$), 126.8 (ArCH), 127.8 (ArC), 136.0 (ArC), 147.5 (ArCN), 155.2 (ArCF), 158.4 (C-O). HRMS ESI ${ }^{+}$calcd. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOF}[\mathrm{M}+\mathrm{H}]^{+}, 258.1249\left({ }^{18} \mathrm{~F}\right)$, found, 258.1292.

2-(4'-Methylthiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-ol (38a) was obtained from 34a by demethylation Method A as a yellow solid ($73 \mathrm{mg}, 45 \%$), mp 120-122 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{f} 0.24$ ($40: 60 \mathrm{EtOAc} /$ Hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta_{H} 6.34(\mathrm{~d}, J 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.10-5.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.78$ (sharp m, 1H, thiazole-H), 4.29 (brs, 1 H , OH), $3.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.10\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.18\left(\mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.63(\mathrm{~d}, \mathrm{~J} 1.1 \mathrm{~Hz}, 3 \mathrm{H}$, thiazole-Me). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 20.2$ (thiazole-Me), $33.1\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $36.7\left(\mathrm{CH}_{2}\right)$, $69.8\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$, 97.2 (thiazole-CH), 105.1 (ArCH), 106.1 (ArCH), 115.6 (ArCH), 118.6 (ArC), 127.5 (ArC), 134.2 (thiazole- ArC), 147.5 (C-O), 148.2 (thiazole-ArCN). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}, 247.0860$, found, 247.0910.

2-(4'-Hydroxyphenyl)-1,2,3,4-tetrahydroisoquinolin-6-ol (38j) was obtained from 34c via demethylation Method A as a yellow solid ($61 \mathrm{mg}, 38 \%$), mp $178-180^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{H}} 7.05-6.89(\mathrm{~m}, 3 \mathrm{H}$, ArH), 6.83-6.69 (m, 2H, ArH), 6.67-6.53 (m, 2H, ArH), $4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 2.92\left(\mathrm{t}, \mathrm{J} 5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, some quaternary carbons not observed): $\delta \mathrm{c} 30.0\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 51.1\left(\mathrm{CH}_{2}\right), 54.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$, $114.5(\mathrm{ArCH}), 115.7(\mathrm{ArCH}), 116.7(\mathrm{ArC}), 120.7(\mathrm{ArCH}), 126.1(\mathrm{ArC}), 126.8(\mathrm{ArCH}), 135.8(\mathrm{ArCH}), 136.7(\mathrm{ArCH})$. HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 242.1181$, found, 242.1185 .
2-(3'-Chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-6-ol (38d) was obtained via Method B from the transiently prepared 34d (not isolated) as white crystals ($103 \mathrm{mg}, 57 \%$), mp $128-130^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.36$ ($40: 60 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\text {н }} 7.27-7.06$ (m, 1H, ArH), 6.99 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.87 (d, J $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.82$6.51(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 4.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.49\left(\mathrm{t}, \mathrm{J} 5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.87\left(\mathrm{t}, \mathrm{J} 5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 29.4\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 46.3\left(\mathrm{CH}_{2}\right), 50.0\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 113.0(\mathrm{ArCH}), 114.1(\mathrm{ArCH}), 114.8(\mathrm{ArCH}), 115.2$ (ArCH), $118.4(\mathrm{ArCH}), 126.3(\mathrm{ArCH}), 128.0(\mathrm{ArC}), 130.5(\mathrm{ArCH}), 135.4(\mathrm{ArC}), 136.6(\mathrm{ArCCl}), 151.8(\mathrm{ArCN}), 154.8$ (C-O). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}, 260.0842\left({ }^{35} \mathrm{Cl}\right)$, found, 260.0833.
2-(4'-Chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-6-ol (38f) was obtained via Method B from the transiently prepared $\mathbf{3 4 f}$ (not isolated) as a brown solid (104 mg, 58\%), mp 116-117 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.41$ ($50: 50$ EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{H} 7.27-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{~d}, \mathrm{~J} 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.90-6.81(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 6.71-6.58 (m, 2H, ArH), 4.28 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}$), $3.48\left(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.89(\mathrm{t}, \mathrm{J} 5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{C} 29.1\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 46.6\left(\mathrm{CH}_{2}\right), 50.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 113.7(\mathrm{ArCH}), 115.0$ (ArCH), 116.4 (ArCH), $123.2(\mathrm{ArCH}), 124.0(\mathrm{ArCH}), 126.5(\mathrm{ArC}), 127.8(\mathrm{ArCCl}), 129.1(\mathrm{ArCH}), 136.3(\mathrm{ArCH}), 149.1$ (ArC), 149.6 (ArCN), 154.8 (ArCOH). HRMS ESI ${ }^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}, 260.0842$, found, 260.0839.
2-(4-Fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-6-ol (38g) was obtained from $\mathbf{3 4 g}$ via demethylation Method B as an orange solid ($93 \mathrm{mg}, 55 \%$), mp $105-107^{\circ} \mathrm{C}, \mathrm{R}_{f} 0.53$ ($50: 50 \mathrm{EtOAc} / \mathrm{Hexane}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.06-6.88(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.74-6.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.46\left(\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 2.92 ($\mathrm{t}, \mathrm{J} 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, no C-F coupling detected): $\delta \mathrm{c} 29.4\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 48.2$ $\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 113.9(\mathrm{ArCH}), 115.3(\mathrm{ArCH}), 115.8(\mathrm{ArCH}), 116.1(\mathrm{ArCH}), 117.7(\mathrm{ArCH}), 126.1(\mathrm{ArCH}), 126.8$ (ArCH), 128.0 (ArC), 136.4 (ArC), 154.4 (ArCN), 157.8 (ArCOH), 159.9 (ArCF). HRMS ESI ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NOF}$ $[\mathrm{M}+\mathrm{H}]^{+}, 244.1138\left({ }^{18} \mathrm{~F}\right)$, found, 244.1141.

Acknowledgements

TM would like to acknowledge the South African National Research Foundation (NRF) and Stellenbosch University (SU) for financial support during her PhD studies. WvO and IRG thank the NRF (CPRR funding 93528 \& 113322), and Stellenbosch University (Faculty and Departmental support) for research support.

Supplementary Material

A selection of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HRMS spectra are available as representative examples of the final substituted tetrahydroisoquinolin-6-ols (18, 22, 29 and 38) and 6-hydroxy-2-aryl-1,2-dihydroisoquinolin-3(4H)-ones (35) produced in this research.

References

1. Hanessian, S.; Demont, E.; van Otterlo, W. A. L. Tetrahedron Lett. 2000, 41, 4999-5003. https://doi.org/10.1016/s0040-4039(00)00765-6
2. Ascenzi, P.; Bocedi, A.; Marino, M. Mol. Aspects Medicine 2006, 27, 299-402. https://doi.org/10.1016/j.mam.2006.07.001
3. Cui, J.; Shen, Y.; Li, R. Trends Mol. Med. 2013, 19, 197-206. https://doi.org/10.1016/i.molmed.2012.12.007
4. Wen Ng, H.; Perkins, R.; Tong, W.; Hong, H. Int. J. Environ. Res. Public Health 2014, 11, 8709-8742. https://doi.org/10.3390/ijerph110908709
5. Minutolo, F.; Macchia, M.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Med. Res. Rev. 2011, 31, 364442. https://doi.org/10.1002/med. 20186
6. Patel, H. K.; Bihani, T. Pharmacol. Ther. 2018, 186, 1-24. https://doi.org/10.1016/j.pharmthera.2017.12.012
7. Ellis, A. J.; Hendrick, V. M.; Williams, R.; Komm, B. S. Expert Opin. Drug Safety 2015, 14, 921-934. https://doi.org/10.1517/14740338.2015.1014799
8. Singh, I. P.; Shah, P. Expert Opin. Ther. Pat. 2017, 27, 17-36. https://doi.org/10.1080/13543776.2017.1236084
9. Renaud, J.; Bischoff, S. F.; Buhl, T.; Floersheim, P.; Fournier, B.; Halleux, C.; Kallen, J.; Keller, H.; Schlaeppi, J.-M.; Stark, W. J. Med. Chem. 2003, 46, 2945-2957.
https://doi.org/10.1021/jm030086h
10. Renaud, J.; Bischoff, S. F.; Buhl, T.; Floersheim, P.; Fournier, B.; Geiser, M.; Halleux, C.; Kallen, J.; Keller, H.; Ramage, P. J. Med. Chem. 2005, 48, 364-379. https://doi.org/10.1021/jm040858p
11. Chesworth, R.; Zawistoski, M. P.; Lefker, B. A.; Cameron, K. O.; Day, R. F.; Mangano, F. M.; Rosati, R. L.; Colella, S.; Petersen, D. N.; Brault, A.; Lu, B.; Pan, L. C.; Perry, P.; Ng, O.; Castleberry, T. A.; Owen, T. A.; Brown, T. T.; Thompson, D. D.; DaSilva-Jardine, P. Bioorg. Med. Chem. Lett. 2004, 14, 2729-2733. https://doi.org/10.1016/i.bmcl.2004.03.077
12. Eyunni, S. K. V. K.; Gangapuram, M.; Redda, K. K. Lett. Drug Des. Discovery 2014, 11, 428-436. https://doi.org/10.2174/1570180811666131203002502
13. Gangapuram, M.; Jean, R.; Mazzio, E.; Badisa, R.; Eyunni, S.; Goodman, C. B.; Redda, K. K.; Soliman, K. F. Anticancer Res. 2016, 36, 5043-5052. https://doi.org/10.21873/anticanres. 11073
14. Eyunni, S. V. K.; Gangapuram, M.; Mochona, B.; Mateeva, N.; Redda, K. K. J. Cancer Sci. Ther. 2017, 9, 528540.
15. Gangapuram, M.; Eyunni, S.; Redda, K. K. J. Cancer Sci. Ther. 2014, 6, 161-169.
https://doi.org/10.4172/1948-5956.1000266
16. Purohit, A.; Hejaz, H. A. M.; Walden, L.; MacCarthy-Morrogh, L.; Packham, G.; Potter, B. V. L.; Reed, M. J. Int. J. Cancer 2000, 85, 584-589.
https://doi.org/10.1002/(sici)1097-0215(20000215)85:4<584::aid-ijc22>3.3.co;2-h
17. Dohle, W.; Leese, M. P.; Jourdan, F. L.; Chapman, C. J.; Hamel, E.; Ferrandis, E.; Potter, B. V. L. ChemMedChem 2014, 9, 1783-1793. https://doi.org/10.1002/cmdc. 201402025
18. Dohle, W.; Leese, M. P.; Jourdan, F. L.; Major, M. R.; Bai, R.; Hamel, E.; Ferrandis, E.; Kasprzyk, P. G.; Fiore, A.; Newman, S. P.; Purohit, A.; Potter, B. V. L. ChemMedChem 2014, 9, 350-370. https://doi.org/10.1002/cmdc. 201300412
19. Leese, M. P.; Jourdan, F.; Dohle, W.; Kimberley, M. R.; Thomas, M. P.; Bai, R.; Hamel, E.; Ferrandis, E.; Potter, B. V. L. ACS Med. Chem. Lett. 2012, 3, 5-9. https://doi.org/10.1021/ml200232c
20. Leese, M. P.; Jourdan, F. L.; Major, M. R.; Dohle, W.; Hamel, E.; Ferrandis, E.; Fiore, A.; Kasprzyk, P. G.; Potter, B. V. L. ChemMedChem 2014, 9, 85-108. https://doi.org/10.1002/cmdc.201300261
21. Möcklinghoff, S.; van Otterlo, W. A. L.; Rose, R.; Fuchs, S.; Zimmermann, T. J.; Seoane, M. D.; Waldmann, H.; Ottmann, C.; Brunsveld, L. J. Med. Chem. 2011, 54, 2005-2011.
https://doi.org/10.1021/jm1011116
22. Renner, S.; van Otterlo, W. A. L.; Seoane, M. D.; Möcklinghoff, S.; Hofmann, B.; Wetzel, S.; Schuffenhauer, A.; Ertl, P.; Oprea, T. I.; Steinhilber, D.; Brunsveld, L.; Rauh, D.; Waldmann, H. Nat. Chem. Biol. 2009, 5, 585592.
https://doi.org/10.1038/nchembio. 188
23. Scott, J. S.; Bailey, A.; Davies, R. D. M.; Degorce, S. L.; MacFaul, P. A.; Gingell, H.; Moss, T.; Norman, R. A.; Pink, J. H.; Rabow, A. A.; Roberts, B.; Smith, P. D. ACS Med. Chem. Lett. 2016, 7, 94-99. https://doi.org/10.1021/acsmedchemlett.5b00413
24. De Savi, C.; Bradbury, R. H.; Rabow, A. A.; Norman, R. A.; de Almeida, C.; Andrews, D. M.; Ballard, P.; Buttar, D.; Callis, R. J.; Currie, G. S.; Curwen, J. O.; Davies, C. D.; Donald, C. S.; Feron, L. J. L.; Gingell, H.; Glossop, S. C.; Hayter, B. R.; Hussain, S.; Karoutchi, G.; Lamont, S. G.; MacFaul, P.; Moss, T. A.; Pearson, S. E.; Tonge, M.; Walker, G. E.; Weir, H. M.; Wilson, Z. J. Med. Chem. 2015, 58, 8128-8140. https://doi.org/10.1021/acs.jmedchem.5b00984
25. Weir, H. M.; Bradbury, R. H.; Lawson, M.; Rabow, A. A.; Buttar, D.; Callis, R. J.; Curwen, J. O.; de Almeida, C.; Ballard, P.; Hulse, M.; Donald, C. S.; Feron, L. J. L.; Karoutchi, G.; MacFaul, P.; Moss, T.; Norman, R. A.; Pearson, S. E.; Tonge, M.; Davies, G.; Walker, G. E.; Wilson, Z.; Rowlinson, R.; Powell, S.; Sadler, C.; Richmond, G.; Ladd, B.; Pazolli, E.; Mazzola, A. M.; D'Cruz, C.; De Savi, C. Cancer Res. 2016, 76, 3307-3318. https://doi.org/10.1158/0008-5472.can-15-2357
26. Burks, H. E.; Abrams, T.; Kirby, C. A.; Baird, J.; Fekete, A.; Hamann, L. G.; Kim, S.; Lombardo, F.; Loo, A.; Lubicka, D.; Macchi, K.; McDonnell, D. P.; Mishina, Y.; Norris, J. D.; Nunez, J.; Saran, C.; Sun, Y.; Thomsen, N. M.; Wang, C.; Wang, J.; Peukert, S. J. Med. Chem. 2017, 60, 2790-2818. https://doi.org/10.1021/acs.jmedchem.6b01468
27. Lin, H.-R.; Safo, M. K.; Abraham, D. J. Bioorg. Med. Chem. Lett. 2007, 17, 2581-2589. https://doi.org/10.1016/j.bmcl.2007.02.002
28. de Koning, C. B.; Michael, J. P.; van Otterlo, W. A. L. Synlett 2002, 2065-2067.
https://doi.org/10.1055/s-2002-35594
29. de Koning, C. B.; van Otterlo, W. A. L.; Michael, J. P. Tetrahedron 2003, 59, 8337-8345.
https://doi.org/10.1016/j.tet.2003.09.001
30. van Otterlo, W. A. L.; Pathak, R.; de Koning, C. B.; Fernandes, M. A. Tetrahedron Lett. 2004, 45, 9561-9563. https://doi.org/10.1016/j.tetlet.2004.10.155
31. Panayides, J. L.; Pathak, R.; de Koning, C. B.; van Otterlo, W. A. L. Eur. J. Org. Chem. 2007, 4953-4961. https://doi.org/10.1002/ejoc.200700473
32. Pathak, R.; Naicker, P.; Thompson, W. A.; Fernandes, M. A.; de Koning, C. B.; van Otterlo, W. A. L. Eur. J. Org. Chem. 2007, 5337-5345. https://doi.org/10.1002/ejoc. 200700580
33. Zhong, H. M.; Villani, F. J.; Marzouq, R. Org. Process Res. Dev. 2007, 11, 463-465. https://doi.org/10.1021/op7000468
34. Grzyb, J. A.; Shen, M.; Yoshina-Ishii, C.; Chi, W.; Brown, R. S.; Batey, R. A. Tetrahedron 2005, 61, 7153-7175. https://doi.org/10.1016/j.tet.2005.05.056
35. Ganellin, C. R.; Hosseini, S. K.; Khalaf, Y. S.; Tertiuk, W.; Arrang, J.-M.; Garbarg, M.; Ligneau, X.; Schwartz, J.C. J. Med. Chem. 1995, 38, 3342-3350. https://doi.org/10.1021/jm00017a018
36. Berglund, M.; Dalence-Guzmán, M. F.; Skogvall, S.; Sterner, O. Bioorg. Med. Chem. 2008, 16, 2529-2540. https://doi.org/10.1016/j.bmc.2007.11.056
37. Lee, J.; Lee, J.; Kang, M.; Shin, M.; Kim, J.-M.; Kang, S.-U.; Lim, J.-O.; Choi, H.-K.; Suh, Y.-G.; Park, H.-G.; Oh, U.; Kim, H.-D.; Park, Y.-H.; Ha, H.-J.; Kim, Y.-H.; Toth, A.; Wang, Y.; Tran, R.; Pearce, L. V.; Lundberg, D. J.; Blumberg, P. M. J. Med. Chem. 2003, 46, 3116-3126. https://doi.org/10.1021/jm030089u
38. Munch, H.; Hansen, J. S.; Pittelkow, M.; Christensen, J. B.; Boas, U. Tetrahedron Lett. 2008, 49, 3117-3119. https://doi.org/10.1016/j.tetlet.2008.03.045
39. Wong, R.; Dolman, S. J. J. Org. Chem. 2007, 72, 3969-3971. https://doi.org/10.1021/jo070246n
40. Sall, D. J.; Grunewald, G. L. J. Med. Chem. 1987, 30, 2208-2216. https://doi.org/10.1021/im00395a006
41. Beaudoin, S.; Kinsey, K. E.; Burns, J. F. J. Org. Chem. 2003, 68, 115-119. https://doi.org/10.1021/jo026505k
42. Spangler, R. J.; Beckmann, B. G.; Kim, J. H. J. Org. Chem. 1977, 42, 2989-2996. https://doi.org/10.1021/jo00438a009
43. Cheng, C.-Y.; Tsai, H.-B.; Lin, M.-S. J. Heterocycl. Chem. 1995, 32, 73-77. https://doi.org/10.1002/ihet. 5570320113
44. Hassam, M.; Basson, A. E.; Liotta, D. C.; Morris, L.; van Otterlo, W. A. L.; Pelly, S. C. ACS Med. Chem. Lett. 2012, 3, 470-475. https://doi.org/10.1021/ml3000462
45. Kano, S.; Yokomatsu, T.; Yuasa, Y. Heterocycles 1984, 21, 700-701. https://doi.org/10.3987/S-1984-02-0701
46. Erfle, H.; Pepperkok, R.: Arrays of transfected mammalian cells for high content screening microscopy. In Gtpases Regulating Membrane Dynamics; Balch, W. E., Der, C. J., Hall, A., Eds.; Methods in Enzymology, 2005; Vol. 404; pp 1-8.
47. McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron 1968, 24, 2289-2292.
https://doi.org/10.1016/0040-4020(68)88130-X
48. Bhatt, M. V.; Babu, J. R. Tetrahedron Lett. 1984, 25, 3497-3500.
https://doi.org/10.1016/S0040-4039(01)91058-5
49. Davis, H. A.; Brown, R. K. Can. J. Chem. 1971, 49, 2166-2168.
https://doi.org/10.1139/v71-352
50. Nystrom, R. F. J. Am. Chem. Soc. 1955, 77, 2544-2545.
https://doi.org/10.1021/ja01614a053

[^0]: ${ }^{\alpha}$ Unstable molecule; $\quad{ }^{\beta}$ only HRMS was able to be determined; $\quad \gamma$ letters refer to the experimental conditions described in the legend of Scheme 2.

[^1]: ${ }^{\alpha} 35 \%$ of THIQ dimer was also isolated.

[^2]: ${ }^{\alpha}$ No product obtained after work-up; ${ }^{\delta}$ product contains N - p-hydroxyphenyl.

