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Nano-MgO catalyzed synthesis of amidine derivatives is developed under solvent-free reaction condition
at 70 �C. Reusability of the catalyst and shorter reaction time as well as high yields are the advantages of
this procedure.
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More recently, nano magnesium oxide (MgO) has been utilized
extensively because of its potential applications as catalyst.1 In the
domain of catalysis, MgO has a potent basic property which is
exploited in various organic transformations2 and also allows the
high-yield synthesis of the significant molecules.3 Synchronizing
with the theme of green chemistry,4 syntheses of N-bonded com-
pounds under solvent-free conditions have received much
attention.5

Amidines are significant intermediates in the synthesis of many
biologically active compounds6 and there are many strategies re-
ported in the literature for their synthesis.7 They also serve as
important synthons for the preparation of azacyclic compounds.8

Thus, the synthesis of amidines is still a topic of immense scope.
Here we disclose a practical, convenient, and greener procedure
for the synthesis of amidines under solvent-free conditions at
70 �C catalyzed by nano-MgO (Scheme 1). Ogata et al.9 reported
the synthesis of amidines in the presence of polyphosphoric acid
trimethylsilyl ester by treating amine and amide in equimolar ratio
at 160 �C under nitrogen atmosphere. But lower yield of the prod-
ucts, high reaction temperature, application of corrosive reagent
and its non reusability, and tiresome reaction condition made the
methodology less advantageous. To the best of our knowledge,
there is no report on nano-MgO catalyzed synthesis of amidines.

The study was initiated by the model reaction (Scheme 2) be-
tween 4 (5 mmol, 680 mg) and 5 (5 mmol, 0.45 mL) to give 6 with-
out using any catalyst/solvent at 120 �C (Table 1). Under this
condition, a mixture of unknown compounds was detected (Ta-
ble 1, entry 1). Utilizing 5 mL of solvents (Table 1, entries 2–7)
and conducting the reaction at lower temperature did not lead to
product formation. As indicated in Table 1, when pyridine
(10 mol %) was used as catalyst at 70 �C for this transformation
then 6 was isolated in 7% yield (Table 1, entry 8). This observation
prompted us to opt for the best base catalyst for the synthesis of 6.
Several base catalysts were tested under the current condition but
the reaction could not be improved both in terms of yields and
time (Table 1, entries 9–14). When fully characterized nano-
MgO9 was used under the present conditions, it increased the yield
to a reasonable extent (Table 1, entry 15). To obtain better yield of
6, the catalyst loading was optimized (Table 1, entry 15–18) and it
was found that nano-MgO worked efficiently at 5 mol % (Table 1,
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Table 1
Optimization of reaction conditiona

Entry Catalyst Solvent Temp. (�C) Time (h) Yield (%)b

1 None None 120 20 c

2 None EtOH 70 23 NRd

3 None MeOH 70 18 NRd

4 None CH3CN 80 20 NRd

5 None THF 70 22 NRd

6 None H2O 80 24 NRd

7 None DMSO 100 16 NRd

8e Pyridine SFRC 70 12 7
9e K2CO3 SFRC 70 15 5

10e NaOH SFRC 70 19 15
11e KOH SFRC 70 24 10
12e Et3N SFRC 70 13 Trace
13e PPh3 SFRC 70 17 c

14e Imidazole SFRC 70 17 c

15e Nano-MgOi SFRC 70 7 80
16f Nano-MgOi SFRC 70 5 85
17g Nano-MgOi SFRC 70 3 94
18h Nano-MgOi SFRC 70 9 80
19g Bulk MgO SFRC 70 12 68
20g Nano-Al2O3

j SFRC 70 7 70

a Reaction condition: 4 (5 mmol, 680 mg) and 5 (5 mmol, 0.45 mL), SFRC or sol-
vent (5 mL), stirring.

b Isolated yields.
c Mixture of unknown compounds.
d No reaction.
e 10 mol % catalyst was used.
f 7 mol % catalyst was used.
g 5 mol % catalyst was used.
h 3 mol % catalyst was used.
i Particles size (17.4–16.4 nm).
j Particle size (37.4–39.7 nm).

Table 2
Nano-MgO catalyzed synthesis11 of amidine derivatives a vide Scheme 1

Entry R1 R2 Time
(h)

Yieldb,c

(%)
Melting point
(�C)16

1 C6H5 C6H5 3 94 142.8–144.8
2 C6H5 4-

OCH3C6H4

3 94 108.1–109.6

3 C6H5 4-CH3C6H4 3 93 130.8–131.2
4 C6H5 4-NO2C6H4 5 90 182.7–183.5
5 C6H5 4-ClC6H4 6 91 140.1–141.3
6 C6H5 C6H11 5 85 142.0–142.8
7 CH3 C6H5 5 92 126.3–127.8
8 C6H11 C6H5 6 88 110.0–111.7
9 4-

NO2C6H4

C6H5 5 89 150.6–153.4

10 4-ClC6H4 C6H5 5 88 149.1–149.3

a Reaction condition: 1 (1 mmol) and 2 (1 mmol), Nano-MgO (5 mol %), SFRC,
stirring.

b Yields refer to the isolated pure products.
c Products were characterized by IR and NMR (1H and 13C) spectroscopy, MS and

also by comparing their melting points with the authentic ones.
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Scheme 3. Tentative mechanism
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entry 17). When the catalyst was changed to nano-Al2O3 and bulk
MgO at 5 mol % loading under the similar conditions, low yields
were recorded and were found to be inferior to nano-MgO (Table 1,
entries 19–20). Bulk MgO having larger particles with smaller sur-
face area was found to be less reactive than nano-MgO under the
present reaction conditions. Overall, the reaction with nano-MgO
was found to be very clean and no side product/by product (s)
was formed.

With this efficient system in hand, we next extended the scope
of the substrate to various alkyl/aryl amines (Table 2). We found
that the reaction was applicable to a broad range of derivatives.
However, a careful analysis of the results from Table 2 indicates
that amines with electron donating moiety reacted smoothly
requiring less time (Table 2, entries 1–3), but amines substituted
with electron-withdrawing functionality required more time to re-
act (Table 2, entries 4 and 5) providing comparable yields. How-
ever, under the present conditions, in comparison to aryl amines,
cyclohexylamine furnished the desired amidine in good yield (Ta-
ble 2, entry 6). In our studies, aniline was used to accomplish the
corresponding amidine derivatives when treated with N-phenyl-
acetamide and cyclohexanecarboxylic acid phenylamide under
the current reaction conditions (Table 2, entries 7 and 8). When
electron withdrawing groups were present in the amide structure,
the reaction took longer time for the formation of product (Table 2,
entries 9 and 10). This might be due to the steric hindrance pro-
vided by the substituted phenyl groups in amide to the incoming
nucleophile. When the reaction was performed involving both R1

and R2 as a methyl group, it furnished very poor yield (7%).
A tentative mechanism has been proposed for the synthesis of

amidine derivatives (Scheme 3). It is hypothesized that the non-
bonded pair of electron on oxygen atom of carbonyl moiety in
amide possibly co-ordinates to the vacant 3p orbital of Mg2+ of
nano-MgO facilitating the electrophilic activation of amide (I).
Now (II) can attack as a nucleophile to form an intermediate (III).
Finally the elimination of water from (IV) gave rise to the forma-
tion of amidine (V). The activation of the substrate by nano-MgO
has been reported previously.10
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for the synthesis of amidine.

Table 3
Recyclabilitya of nano-MgO

Entry Catalyst recovery (%) Time (h) Yieldb (%)

1st runc 99 3 94
2nd runc 96 4 94
3rd runc 90 6 91
4th runc 84 7 88

a Reaction condition: Nano-MgO (5 mol %), 4 (5 mmol, 680 mg), 5 (5 mmol,
0.45 mL), SFRC.

b Yields refer to the isolated 6.
c The recovered catalyst was used under identical reaction conditions to those for

the 1st run.



Figure 1. Flow sheet representation of catalyst isolation.

Figure 2. (a) UV-Visible spectra and (b) Powder XRD pattern of fresh and reused nano-MgO.
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In this heterogeneous process, the catalyst was recyclable with
a slight loss in its activity (Table 3). After completion of the
reaction (Scheme 2), the catalyst was recovered from the
reaction mixture by adding ethyl acetate (10 mL) under
centrifugation (3500 rpm). The extracted catalyst in this way
was decanted and finally dried in an oven at 100 �C for 7 h. It
was then reused for the fresh reaction (Fig. 1). A slight
decrease in catalytic activity was observed with recyclization
(Table 3).

In addition, the powder X-ray diffraction analysis exhibited
identical peaks for both the fresh and recovered nano-MgO
(Fig. 2(b)). However, the intensity of the peaks (220), (311),
(411), and (331) diminished slightly which might be due to loss
during centrifugation and subsequent removal of the supernatant
liquid. The loss of 15.4% of the catalyst9 (Fig. 2(a)) was determined
by UV visible spectroscopy. This might be the reason for a slight
decrease in catalytic activity of the catalyst.

In conclusion, we have demonstrated that nano-MgO is highly
active in catalyzing the mild and efficient synthesis of amidine
derivatives under solvent-free conditions at 70 �C. The method of-
fers several advantages including excellent yields of the products,
safe handling, experimental simplicity, catalyst recyclability, and
cost effectiveness which make it useful.
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