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ABSTRACT: A novel and efficient stereocontrolled method has been developed for the preparation of chiral 3,4-dihydro-2H-

naphtho[1,2-b][1,4]oxazin-2-ones by the reaction of benzoxepine-4-carboxylates with chiral amino acid ethyl esters for the first

time. The chiral 3,4-dihydro-2H-naphtho-1,4-oxazinones have been achieved in one step by the formation of C-N, C-C and C-O

bonds.

INTRODUCTION

Naphthoxazinones and benzoxazinones constitute an im-
portant class of bio-active compounds and useful interme-
diates for the preparation of pharmaceuticals.! These
heterocyclic compounds particularly benzoxazinones are
synthetic building blocks and present in a variety of natural
products.”? Further, these compounds are photo active
molecules which possess fluorescent, photophysical and
photochemical properties.’> Similarly, chiral 3,4-dihydro-1,4-
naphthoxazin-2-ones and 3,4-dihydro-1,4-benzoxazin-2-ones
represent the structural motif of several natural products with
interesting biological properties. Hence, the preparations of
these heterocyclic compounds have attracted much attention to
synthetic organic and medicinal chemists. To the best of our
knowledge only two approaches are available for the
preparation of chiral dihydrobenzoxazinones (Scheme 1). The
enantioselective cycloaddition of ortho-benzoquinone imides
with  chiral ketene enolates furnished the chiral
dihydrobenzoxazinones.* Asymmetric reduction of
benzoxazinones is the another approach to access the
dihydrobenzoxazinones.” Interestingly, there is only one
method reported by Gorohovsky et al® for the preparation of
chiral dihydronaphthoxazinones by the reaction of 2,3-
dichloro-1,4-naphthoquinones with natural amino acids as

chiral source (Scheme 1). Therefore, the development of new

general strategies for the synthesis of enantiopure
dihydronaphthoxazinone framework has become attractive and

challenging.
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Scheme 1. Previous approaches for the preparation of chiral

dihydro[1,4]benzoxazinones and naphthoxazinone
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Our research group is interested in the development of
novel methods for the preparation of heterocyclic compounds.”
The research work on benzoxepine-4-carboxylates have
produced novel heterocyclic compounds.® In continuation of
our work on benzoxepine-4-carboxylates, recently we have
prepared useful oxygenated heterocycles.® The present work
envision to develop a stereospecific method for the
construction of  3,4-dihydro-2H-1,4-naphtho-1,4-oxazin-2-
ones by the reaction of benzoxepine-4-carboxylates with

chiral amino acid ethyl esters.

RESULTS AND DISCUSSION

In an initial experiment, we have carried out the reaction of
benzoxepine-4-carboxylate (1a, 1 equiv. Prepared as per our
previous reported method) with (S)-2-amino-3-
phenylpropanoic acid (2, 1 equiv.) in the presence of p-TsOH
(30 mol %) with ethanol under reflux conditions (Scheme 2).
A pale yellow solid was obtained after column
chromatography (20% yield). The compound was identified as
ethyl (8)-3-benzyl-2-o0x0-3,4-dihydro-2 H-naphtho[1,2-
b][1,4]oxazine-5-carboxylate 3a based on spectral data. The
reaction is stereocontrolled and specifically obtained
compound 3a. This work represents the first example for the
stereospecific construction of 3,4-dihydro-2H-naphtho[1,2-
b][1,4]oxazin-2-one by the formation of C-N, C-C and C-O

bonds in one-pot starting from benzoxepine-4-carboxylate.

Scheme 2. Preparation of compound 3a
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We observed that the above reaction is very slow and
produced compound 3a in low quantity. The unreacted starting
materials were recovered even after prolonged reaction time.
This may be due to the amino acid is not reacted well under

these conditions. We thought the amino acid ethyl ester is

better species when compared to its acid. Therefore, the ethyl
(8)-2-amino-3-phenylpropanoate 2a was prepared from 2 by
standard esterification protocol.!® Thus obtained ester 2a (1
equiv.) was reacted with 1a (1 equiv.) in the presence of p-
TsOH (30 mol %) with ethanol under reflux conditions
(Scheme 2). This furnished compound 3a with improved yield
(45%, Table 1, entry 2). Other solvents such as MeOH,
toluene, xylene, diethyl ether, DCM, DCE, MeCN and THF
(Table 1, entry 3-10) were also studied to see the effect of
solvents. We observed that DCM and DCE solvents are
superior when compared to other tested solvents and produced
compound 3a in good yields (69%, 58%, Table 1, entry 7-8).
The reaction at room temperature with DCM is inferior when
compared to reflux condition (3a, 36% yield, Table 1, entry
11). A similar result was obtained with both low (20 mol %)
and high (50 mol %) equivalents of p-TsOH (Table 1, entry
12-13) when we tested the reaction of la with 2a in DCM

under reflux conditions.

Table 1. Optimization Study

Os_OC,Hs
COC2Hs CO,CoHs N Ph
@K}O ' WHe T ‘O OIO\
2a 3a

Entry Catalyst (equiv) Solvent Time[h] Yield
01ab p-TsOH (0.3) EtOH 16 20
02b p-TsOH (0.3) EtOH 16 45
03P p-TsOH (0.3) MeOH 18 31
04b p-TsOH (0.3) toluene 18 20
05 p-TsOH (0.3) xylene 18 38
06° p-TsOH (0.3) ether 32 42
07> p-TsOH (0.3) DCM 24 69
08P p-TsOH (0.3) 1,2-DCE 18 58
09° p-TsOH (0.3) MeCN 18 47
100 p-TsOH (0.3) THF 18 43
11¢ p-TsOH (0.3) DCM 48 36
12b p-TsOH (0.2) DCM 32 62
13b p-TsOH (0.5) DCM 22 68
14b HCI (1.0) DCM 15 31
15b AcOH (0.3) DCM 18 37
16P TFA (0.3) DCM 16 30
17b AlCl5 (0.3) DCM 07 34
18P FeCl; (0.3) DCM 16 33
196 Cu(OAc), (0.3) DCM 16 Trace
200 Cul (0.3) DCM 18 Trace
21b Bi(OTf); (0.3) DCM 10 49
22b La(OTf); (0.3) DCM 10 46

a(S)-2-Amino-3-phenylpropanoic acid used as reactant, © reflux,
¢ room temperature, %isolated yield.

Having optimized the reaction conditions, next, the re-
action of 1a with 2a was tested with various catalysts such as

protic acids (Table 1, entry 14-16), Lewis acids (Table 1, entry
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17-20) and triflates (Table 1, entry 21-22) in DCM under
reflux conditions. All these reactions have produced
compound 3a in moderate yields. No product formation was
observed when the reaction was carried out in absence of
catalyst. The above results revealed that 30 mol % p-TsOH is
sufficient to promote the reaction in DCM under reflux
conditions to produce the compound 3a (69% yield, Table 1,
entry 7). The compound 3a was obtained stercospecifically
and this was confirmed by chiral HPLC analysis (Table 2,
enantiomeric purity = 99.89%, see SI). Then we have carried

out the reaction of 1a with ethyl (R)-2-amino-3-

Table 2. Preparation of 3,4-dihydro-2H-naphtho[l,2-

b][1,4]oxazine-5-carboxylates 3a-m
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phenylpropanoate 2b under our optimized reaction conditions
to obtain 3b (Table 2, enantiomeric purity = 99.95%, see SI).
Further, we also carried out the reaction of 1a with ethyl 2-
amino-3-phenylpropanoate 2¢ (Table 2) to furnish racemic (£)
naphthoxazinone compound 3¢ (S = 50.61%; R = 49.39%, see
SI). The HPLC analysis of the chiral compounds 3a-b was
compared with the racemic compound 3c. The present
protocol was found to be stereocontrolled and specifically
formed the chiral compounds.

Further to explore the present protocol, we have
investigated the reaction with substrates present on
benzoxepine-4-carboxylates. ~ Accordingly, the electron
withdrawing (bromo 1b, chloro 1c¢) and electron donating
(methoxy 1d, methyl 1e-f) groups present on benzoxepine-4-
carboxylates were prepared as per our earlier reported
method.® The benzoxepines 1b-f were reacted with ethyl (S)-
2-amino-3-phenylpropanoate 2a and ethyl (R)-2-amino-3-
phenylpropanoate 2b under our optimized conditions. All
these reactions proceeded smoothly and produced the
corresponding chiral naphthoxazinones 3b-m (Table 2). The
electron donating groups produced the compounds with better
yields when compared to electron withdrawing groups. All the
compounds were characterized by spectral data and the
enantiomeric purity of the compounds were analyzed by chiral
HPLC (>97-99%, see SI).

To broaden the scope of the present stereospecific
reaction, the following amino acid ethyl esters 2d-v have been
prepared from their corresponding amino acids (see SI).!
Accordingly, 1a was reacted with 2d-t under our optimized
reaction conditions (Table 3).'"" The reactions underwent
smoothly with amino acid ethyl esters such as 2d-1, 2n-p and
2r provided the corresponding chiral naphthoxazinones 3n-v,
3x-z and 3zb with >92-99% enantiomeric purity (Table 3).
Whereas, the amino acid ethyl esters such as 2m, 2q and 2s-t
could not provide the target compounds under these reaction
conditions and the starting materials were recovered. The
reaction of 1a with ethyl (R)-2-amino-2-phenylacetate 2u and
ethyl (S)-2-amino-2-phenylacetate 2v provided the compounds
3ze and 3zf (Table 4). The compound 3ze afforded with low
enantiomeric purity (R isomer = 16.25%, S isomer = 83.75%
see SI) and compound 3zf obtained in racemic (+) mixture (R

isomer = 46.46%, S isomer = 53.54%, see SI). As the a-
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hydrogen is more acidic in case of 2-amino-2-phenylacetic
acid this type of recemization is possible. 2D NMR spectra
were recorded for the compounds 3zb, 3ze and 3zg and

incorporated in the SI.

Table 3. Preparation of 3,4-dihydro-2H-naphtho[l,2-

b][1,4]oxazine-5-carboxylates 3n-zd
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Since we obtained racemic target compound 3zf from ethyl

(S)-2-amino-2-phenylacetate 2v, then we sought to conduct the

reaction with electron withdrawing and electron donating

group present on benzoxepine-4-carboxyltes in order to check

the racemization. Accordingly, we have carried out the

reaction of benzoxepine-4-carboxylates 1¢ and 1f with 2v
under our optimized conditions (Table 4). Interestingly, the
electron donating group present on benzoxepine produced
chiral compound 3zg (enantiomeric purity for R isomer = >
99%, see SI) and electron withdrawing group present on
benzoxepine could not provided the compound 3zh (Table 4,
see SI). This result indicated that the racemization has not
been observed when electron donating group present on
benzoxepine. All the obtained compounds were characterized
by spectroscopy and enantiomeric purity analyzed by chiral

HPLC (see SI).

Table 4. Preparation of compounds 3ze-zh

O+ OC,Hs 0O+ OC,Hs
H H
IX I
O (e

24h, 43%, 3ze 24h, 42%, 3zf

ee =>67%

i OCZ } HSL :
CH3

48h, 0%, 3zh

24h, 31%, 3zg
ee =>99%

To further demonstrate the present protocol, chiral 3,4-
dihydro-2H-naphtho[1,2-b][1,4]oxazin-2-ones 3a, 3¢ and 3f
have been prepared in gram scale by the reaction of
benzoxepine compounds 1a (2.5 g) with 2a, 1a (2.2 g) with
2¢, and 1c (1.2 g) with 2a under our optimized conditions and

the results were depicted in Scheme 3.

Scheme 3. Gram scale preparation of compounds 3a, 3¢ &
3f

Os__OC,Hs Os__OC,Hs Ox-OC2Hs

YOGS L™
Cl

3a, 67.35% (2.62 g) 3c, 57.60% (1.97 g) 3f, 23.59% (0.42 g)

A plausible reaction pathway for the preparation of 3a was
depicted in Scheme 4. The benzoxepine-4-carboxylate 1a with
ethyl (S)-2-amino-3-phenylpropanoate 2a under acidic
medium forms the Schiff base A. The imine (Schiff base)

upon rearrangement provides enamine intermediate B. The
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rearrangement of  intermediate B and  subsequent
intramolecular cyclization through C-E furnish the compound

3a with the elimination of ethanol.

Scheme 4. Plausible Reaction Mechanism
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CONCLUSIONS

In conclusion, a facile stereospecific method has been
developed for the preparation of chiral 3,4-dihydro-1,4-
naphthoxazin-2-ones by the reaction of benzoxepine-4-
carboxylates with chiral amino acid ethyl esters for the first
time. The present protocol is efficient and practical one-step
process to construct the chiral naphthoxazinones. The
synthesized compounds can be utilized as lead compounds in
the area of pharmaceuticals, agrochemicals and material

science.

EXPERIMENTAL SECTION

General Information. Salicylaldehydes, ethyl 4-chloro-3-
oxobutanoate and amino acids such as glycine, phenylglycine,
alanine, phenylalanine, valine, serine, tyrosine, methionine,
leucine, isoleucine and cystein were procured from Sigma-
Aldrich. Triphenylphosphine, p-TsOH, thionyl chloride and
solvents were obtained from local suppliers. All the reactions
were carried out under reflux conditions using oil bath. The
reactions were monitored by thin layer chromatography (TLC) on
pre-coated silica gel 60 F,s4 (mesh) and spots were visualized
under UV light. Merck silica gel (60-120 mesh) was used for

chromatography. Melting points were determined in open glass

The Journal of Organic Chemistry

capillary tubes on a Stuart melting point apparatus and are
uncorrected. 'H NMR and 3C NMR spectra were recorded on
Avance 400 MHz and 500 MHz spectrometers in CDCl; using
TMS as internal standard. FT-IR spectra were recorded on a
Thermo Nicollet Nexus 670 spectrometer. Mass spectra were
obtained on Agilent LCMS instrument. HRMS were measured on
Agilent Technologies 6510, Q-TOFLC/MS ESI-Technique.
Optical rotations were recorded on Anton Paar, MCP-200
polarimeter with 1 mL cell. Chiral HPLC analysis was carried out
by Shimadzu SPD-M20A, PDA detector using Chiral column:
CHIRALPAK IC-3, 250 mm. Eluent: n-hexane/isopropyl alcohol
= 85:15; flow rate: 0.6 mL/min; 200-500 nm. The Chiral HPLC
analyses for the amino acid ethyl esters 2e-f and 2p-q have been
analyzed by CHIRALPAK IC-G, 250 mm. Eluent: n-
hexane/isopropyl alcohol = 85:15; flow rate: 0.5 mL/min using
RID detector.
General procedure for the preparation of ethyl 3-oxo-2,3-
dihydrobenzo|b]oxepine-4-carboxylates 1a-f: The benzoxepine-
4-carboxylates 1la-f have been prepared from ethyl 2-
(chloromethyl)-2-hydroxy-2 H-chromene-3-carboxylates by Wittig
homologation as per our previous reported method and the
compounds were compared with our reported compounds. 2.9
Typical procedure for the preparation of 3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazin-2-ones: p-TsOH (0.057 g, 0.3 mmol)
was added to the stirred solution of ethyl (S)-2-amino-3-
phenylpropanoate (2a, 0.229 g, 1.0 mmol) and ethyl 3-oxo-2,3-
dihydrobenzo[b]oxepine-4-carboxylate (1a, 0.232 g, 1.0 mmol)
in DCM at room temperature. The contents were refluxed. After
completion of the reaction (TLC, 24h), the solvent was removed
under reduced pressure. The crude product was purified by
column chromatography using silica gel (60:120, hexane: ethyl
acetate, 98:2) as eluent afforded ethyl (S)-3-benzyl-2-ox0-3,4-
dihydro-2H-naphtho[1,2-b][1,4]oxazine-5-carboxylate 3a as pale
yellow solid in 69% yield. The target compounds 3b-v, 3x-z, 3zb
and 3ze-zg were prepared by the reaction of ethyl 3-oxo-2,3-
dihydrobenzo[b]oxepine-4-carboxylates la-f with amino acid
ethyl esters 2b-1, 2n-p, 2r and 2u-v under similar conditions.
Ethyl (S)-3-benzyl-2-ox0-3,4-dihydro-2H-naphtho[ 1, 2-
b][1,4]oxazine-5-carboxylate (3a). Pale yellow solid (108 mg,
69% Yield); [a]p? = +20.12 (¢ = 0.33, CHCl3); mp: 168-170 °C;
"H NMR (500 MHz, CDCl;): § 8.34 (s, 1H), 8.06 (dd, J=8.5, 0.7
Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.58-7.54 (m, 1H), 7.36-7.31
(m, 3H), 7.27 (dd, J = 9.5, 3.4 Hz, 1H), 7.21-7.18 (m, 2H), 7.11
(s, 1H), 4.38-4.25 (m, 3H), 3.35 (dd, J = 13.8, 3.8 Hz, 1H), 3.02
(dd, J = 13.8, 10.0 Hz, 1H), 1.37 (t, J = 7.1 Hz, 3H). 13C {'H}
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NMR (126 MHz, CDCly): ¢ 166.8, 165.5, 135.9, 134.1, 129.6,
129.4, 129.1, 128.9, 128.8, 127.3, 126.3, 126.0, 124.2, 119.2,
115.1, 61.3, 55.6, 37.3, 14.3. FT-IR (KBr): 3332, 2990, 1768,
1688, 1466, 1298, 1211, 1154, 1047, 740 cm™'. MS-ESI: m/z 362
[M+H]"; HRMS-ESI: calcd for CpH,)NO, [M+H]" 362.1392;
found 362.1386. HPLC analysis: enantiomeric purity = 99.89%.

Ethyl (R--3-benzyl-2-o0x0-3,4-dihydro-2H-naphtho[ 1, 2-
b][1,4]oxazine-5-carboxylate (3b). Pale yellow solid (106 mg,
68% Yield); [a]p® = -19.52 (¢ = 0.33, CHCl;); mp: 167-169 °C;
'H NMR (500 MHz, CDCl3): § 8.34 (s, 1H), 8.06 (d, J = 8.5 Hz,
1H), 7.79 (d, J = 8.3 Hz, 1H), 7.58-7.54 (m, 1H), 7.37-7.31 (m,
3H), 7.27 (dd, J=9.5, 3.4 Hz, 1H), 7.20 (d, /= 7.0 Hz, 2H), 7.11
(s, 1H), 4.37-4.26 (m, 3H), 3.35 (dd, J = 13.8, 3.8 Hz, 1H), 3.02
(dd, J = 13.8, 10.1 Hz, 1H), 1.37 (t, J = 7.1 Hz, 3H). 13C {'H}
NMR (126 MHz, CDCL;): ¢ 166.8, 165.2, 135.9, 134.1, 129.6,
129.4, 129.1, 128.9, 128.8, 127.3, 126.3, 126.0, 124.2, 119.2,
115.1, 61.3, 55.6, 37.3, 14.3. FT-IR (KBr): 3331, 2989, 1768,
1688, 1465, 1298, 1210, 1154, 1047, 740 cm’!. MS-ESI: m/z 362
[M+H]"; HRMS-ESI: caled for CypH;oNNaO4 [M+Na]* 384.1206;
found 384.1229. HPLC analysis: enantiomeric purity = 99.95%.

Ethyl 3-benzyl-2-oxo-3,4-dihydro-2H-naphtho[ 1, 2-
b][1,4]oxazine-5-carboxylate (3c). Pale yellow solid (93 mg,
59% Yield); mp: 152-154 °C; 'H NMR (400 MHz, CDCl;): 6 8.35
(s, 1H), 8.06 (dd, J = 8.6, 0.8 Hz, 1H), 7.79 (dd, J = 8.0, 4.5 Hz,
1H), 7.60-7.52 (m, 1H), 7.37-7.26 (m, 4H), 7.22-7.17 (m, 2H),
7.11 (s, 1H), 4.38-4.25 (m, 3H), 3.35 (dd, J = 13.7, 3.8 Hz, 1H),
3.02 (dd, J = 13.7, 10.1 Hz, 1H), 1.40-1.35 (m, 3H). 13C {'H}
NMR (101 MHz, CDCL): ¢ 166.7, 165.5, 135.8, 134.0, 129.6,
129.3, 129.1, 128.6, 128.8, 127.3, 126.3, 125.7, 124.1, 119.1,
115.1, 61.3, 55.5, 37.2, 14.3. FT-IR (KBr): 3563, 3371, 3328,
1766, 1702, 1641, 1520, 1475, 1382, 1304, 1212 cm''. MS-ESI:
m/z 362 [M+H]"; HRMS-ESI: caled for CyHpNO, [M+H]*
362.1392; found 362.1392. HPLC analysis: enantiomeric purity =
50.61% for (S) and 49.39% for (R).

Ethyl (S)-3-benzyl-8-bromo-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3d). Pale yellow
solid (40 mg, 28% Yield) ; [a]p?® = +6.91 (¢ = 0.33, CHCl;); mp:
170-172 °C; 'TH NMR (500 MHz, CDCl,): 6 8.23 (s, 1H), 7.93 (dd,
J =19, 5.3 Hz, 2H), 7.60 (dd, J = 9.0, 1.5 Hz, 1H), 7.32 (t, J =
7.4 Hz, 2H), 7.27 (d, J = 7.6 Hz, 1H), 7.19 (d, J = 7.3 Hz, 2H),
7.16 (s, 1H), 4.38-4.27 (m, 3H), 3.36 (dd, J = 13.8, 3.8 Hz, 1H),
3.02 (dd, J=13.8, 9.9 Hz, 1H), 1.37 (t, J= 7.1 Hz, 3H). 13C {'H}
NMR (126 MHz, CDCl,): d 166.5, 165.1, 135.7, 134.1, 132.5,
130.8, 130.1, 129.3, 128.9, 127.6, 127.4, 127.2, 124.3, 121.0,

117.7, 115.9, 61.5, 55.4, 37.5, 14.3. FT-IR (KBr): 3336, 2992,
1772, 1690, 1465, 1330, 1277, 1159, 1048, 810 cm!. MS-ESI:
m/z 440 [M+H]"; HRMS-ESI: caled for Cp»H9BrNO, [M+H]*
440.0497; found 440.0500. HPLC analysis: enantiomeric purity =
99.76%.

Ethyl (R)-3-benzyl-8-bromo-2-o0xo0-3,4-dihydro-2 H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3e). Pale yellow
solid (38 mg, 27% Yield); [a]p* = -8.60 (¢ = 0.2, CHCIl;); mp:
168-170 °C; 'H NMR (400 MHz, CDCLy): d 8.23 (s, 1H), 7.92 (d,
J=9.7Hz, 2H), 7.60 (dd, J=9.0, 1.8 Hz, 1H), 7.32 (t,J = 7.2 Hz,
2H), 7.27 (d, J = 7.4 Hz, 1H), 7.19 (d, J = 6.9 Hz, 2H), 7.16 (s,
1H), 4.38-4.26 (m, 3H), 3.35 (dd, J = 13.8, 3.8 Hz, 1H), 3.02 (dd,
J=13.7,9.9 Hz, 1H), 1.37 (t, J = 7.1 Hz, 3H). 3C {'H} NMR
(101 MHz, CDCly): 6 166.5, 165.1, 135.7, 134.1, 132.5, 130.8,
130.1, 129.4, 128.9, 127.6, 127.4, 127.2, 124.3, 121.0, 117.7,
1159, 61.5, 55.4, 37.5, 14.3. FT-IR (KBr): 3335, 2990, 1772,
1690, 1464, 1330, 1276, 1159, 1048, 810 cm™. MS-ESIL: m/z 440
[M+H]"; HRMS-ESI: caled for C,,H;oBrNO4 [M+H]" 440.0497;
found 440.0479. HPLC analysis: enantiomeric purity = 98.63%.

Ethyl (S)-3-benzyl-8-chloro-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3f). Pale yellow
solid (36 mg, 25% Yield); [a]p? = +7.55 (c = 0.05, CHCl3); mp:
168-170 °C; '"H NMR (500 MHz, CDCl3): 6 8.23 (s, 1H), 7.99 (d,
J=9.1 Hz, 1H), 7.76 (d, J = 1.9 Hz, 1H), 7.48 (dd, J = 9.1, 2.0
Hz, 1H), 7.32 (t, J = 7.3 Hz, 2H), 7.27 (d, J = 8.4 Hz, 1H), 7.19
(d, J=17.0 Hz, 2H), 7.15 (s, 1H), 4.38-4.27 (m, 3H), 3.36 (dd, J =
13.8, 3.8 Hz, 1H), 3.02 (dd, /= 13.8, 9.9 Hz, 1H), 1.37 (t,J=17.1
Hz, 3H). 3C {'H} NMR (126 MHz, CDCL): § 166.5, 165.1,
135.7, 134.1, 130.1, 129.9, 129.8, 129.4, 128.9, 127.7, 127.5,
127.4, 126.7, 124.2, 121.0, 116.1, 61.5, 55.4, 37.5, 14.3. FT-IR
(KBr): 3337, 2925, 1770, 1690, 1465, 1333, 1279, 1153, 1046,
809 cm’!. MS-ESI: m/z 396 [M+H]"; HRMS-ESI: caled for
CxH9CINO,4 [M+H]" 396.1003; found 396.0965. HPLC analysis:
enantiomeric purity = 99.99%.

Ethyl (R)-3-benzyl-8-chloro-2-oxo0-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3g). Pale yellow
solid (33 mg, 24% Yield); [a]p?® = -7.0 (¢ = 0.2, CHCl3); mp:
167-169 °C; 'H NMR (500 MHz, CDCls): d 8.23 (s, 1H), 7.99 (d,
J=9.1Hz, 1H), 7.76 (d, J = 1.9 Hz, 1H), 7.48 (dd, J = 9.1, 2.0
Hz, 1H), 7.32 (t, J = 7.3 Hz, 2H), 7.27 (d, J = 8.4 Hz, 1H), 7.19
(d, J = 7.0 Hz, 2H), 7.15 (s, 1H), 4.38-4.27 (m, 3H), 3.36 (dd, J =
13.8, 3.8 Hz, 1H), 3.02 (dd, J = 13.8, 9.9 Hz, 1H), 1.37 (t, J= 7.1
Hz, 3H). 3C {'H} NMR (126 MHz, CDCL): § 166.5, 165.1,
135.7, 134.1, 130.1, 129.9, 129.8, 129.3, 128.9, 127.7, 127.5,
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127.4, 126.7, 124.1, 120.9, 116.0, 61.5, 55.4, 37.5, 14.3. FT-IR
(KBr): 3336, 2924, 1770, 1690, 1464, 1333, 1279, 1152, 1046,
809 cm!. MS-ESI: m/z 396 [M+H]*; HRMS-ESI: calcd for
CxH9CINO4 [M+H]" 396.1003; found 396.0971. HPLC analysis:
enantiomeric purity = >99%.

Ethyl (S)-3-benzyl-8-methoxy-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3h). Pale yellow
solid (99 mg, 59% Yield); [a]p? = +26.23 (¢ = 0.33, CHCIl;); mp:
166-168 °C; '"H NMR (400 MHz, CDCl,): ¢ 8.22 (s, 1H), 7.98 (d,
J=9.3Hz, 1H), 7.33 (t, J = 7.2 Hz, 2H), 7.29-7.22 (m, 2H), 7.19
(d, J = 6.9 Hz, 2H), 7.08 (d, J = 2.2 Hz, 1H), 6.95 (s, 1H), 4.36-
4.27 (m, 2H), 4.26-4.21 (m, 1H), 3.90 (s, 3H), 3.34 (dd, J = 13.8,
3.7 Hz, 1H), 3.00 (dd, J = 13.7, 10.1 Hz, 1H), 1.36 (t, /= 7.1 Hz,
3H). BC {'H} NMR (101 MHz, CDCl;): J 166.8, 165.7, 156.4,
136.0, 134.8, 129.4, 128.9, 128.2, 127.5, 127.3, 127.0, 122.6,
121.7, 120.9, 115.6, 106.5, 61.3, 55.6, 55.4, 37.2, 14.3. FT-IR
(KBr): 3320, 2969, 2935, 1757, 1686, 1517, 1339, 1289, 1160,
1024, 826, 698 cm’'. MS-ESL: m/z 392 [M+H]"; HRMS-ESI:
calcd for C,3H2oNOs [M+H]* 392.1498; found 392.1495. HPLC
analysis: enantiomeric purity = >99%.

Ethyl (R)-3-benzyl-8-methoxy-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3i). Pale yellow
solid (99 mg, 59% Yield); [a]p? = -24.92 (¢ = 0.33, CHCl;); mp:
165-167 °C; '"H NMR (500 MHz, CDCls): J 8.24 (s, 1H), 7.99 (d,
J=9.2 Hz, 1H), 7.33 (t, J = 7.3 Hz, 2H), 7.30-7.23 (m, 2H), 7.19
(d, J=17.1 Hz, 2H), 7.09 (d, J = 2.4 Hz, 1H), 6.95 (s, 1H), 4.36-
4.28 (m, 2H), 4.24 (ddt, J = 10.0, 3.6, 1.8 Hz, 1H), 3.90 (s, 3H),
3.34 (dd, J = 13.8, 3.8 Hz, 1H), 3.01 (dd, J = 13.8, 10.1 Hz, 1H),
1.36 (t, J = 7.1 Hz, 3H). BC {{H} NMR (126 MHz, CDCls): &
166.8, 165.7, 156.5, 135.9, 134.8, 129.4, 128.9, 128.2, 127.5,
127.3, 127.0, 122.6, 121.7, 120.9, 115.6, 106.5, 61.3, 55.7, 55.4,
37.2, 14.3. FT-IR (KBr): 3319, 2967, 2934, 1757, 1686, 1517,
1338, 1287, 1160, 1024, 824, 698 cm’!. MS-ESL: m/z 392
[M+H]"; HRMS-ESI: caled for Cy3Hp,NOs [M+H]Y 392.1492;
found 392.1500. HPLC analysis: enantiomeric purity = 99.98%.

Ethyl (S)-3-benzyl-8-methyl-2-o0x0-3,4-dihydro-2 H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3j). Pale yellow
solid (87 mg, 57% Yield); [a]p?® = +18.32 (¢ = 0.33, CHCls); mp:
186-188 °C; '"H NMR (500 MHz, CDCl;): ¢ 8.25 (s, 1H), 7.96 (d,
J=8.7Hz, 1H), 7.55 (s, 1H), 7.40 (d, J=8.7 Hz, 1H), 7.33 (t, J =
7.3 Hz, 2H), 7.29 -7.24 (m, 1H), 7.19 (d, J= 7.3 Hz, 2H), 7.02 (s,
1H), 4.35-4.27 (m, 2H), 4.27-4.22 (m, 1H), 3.34 (dd, /= 13.8, 3.7
Hz, 1H), 3.00 (dd, J = 13.7, 10.2 Hz, 1H), 2.47 (s, 3H), 1.36 (t, J
= 7.1 Hz, 3H). 3C {'H} NMR (126 MHz, CDCl;): 6 166.9, 165.
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7, 135.9, 134.3, 133.8, 131.8, 129.4, 128.9, 128.8, 128.1, 127.8,
127.3,126.7, 124.3, 119.1, 115.1, 61.3, 55.6, 37.2, 21.4, 14.3. FT-
IR (KBr): 3331, 2973, 2927, 1757, 1689, 1488, 1337, 1292, 1158,
1049, 809 cm!. MS-ESI: m/z 376 [M+H]"; HRMS-ESI: calcd for
Cy3HNO, [M+H]* 376.1543; found 376.1554. HPLC analysis:
enantiomeric purity = 99.56%.

Ethyl (R)-3-benzyl-8-methyl-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3k). Pale yellow
solid (85 mg, 58% Yield); [a]p® = -18.12 (¢ = 0.33, CHCl3); mp:
183-185 °C; 'TH NMR (400 MHz, CDCl;): ¢ 8.26 (s, 1H), 7.97 (d,
J=8.7 Hz, 1H), 7.56 (s, 1H), 7.43-7.39 (m, 1H), 7.33 (t, J=7.2
Hz, 1H), 7.30-7.24 (m, 2H), 7.19 (d, J = 6.9 Hz, 2H), 7.03 (s, 1H),
432 (qd, J = 7.1, 3.6 Hz, 2H), 4.25 (dd, J = 10.8, 3.2 Hz, 1H),
3.34 (dd, J=13.7, 3.7 Hz, 1H), 3.01 (dd, J = 13.7, 10.1 Hz, 1H),
2.47 (s, 3H), 1.36 (t, J= 7.1 Hz, 3H). 3C {'H} NMR (101 MHz,
CDCly): 6 166.9, 165.7, 135.9, 134.3, 133.8, 131.7, 129.4, 128.9,
128.8, 128.1, 127.8, 127.3, 126.7, 124.3, 119.1, 115.1, 61.3, 55.6,
37.2, 21.4, 14.3. FT-IR (KBr): 3330, 2972, 2927, 1757, 1689,
1488, 1336, 1292, 1158, 1049, 808 cm'. MS-ESI: m/z 376
[M-+H]*; HRMS-ESI: calcd for Co3HyNNaO, [M+Na]* 398.1363;
found 398.1386. HPLC analysis: enantiomeric purity = 99.59%.

Ethyl (S)-3-benzyl-10-methyl-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3I). Pale yellow
solid (79 mg, 55% Yield); [a]p?® = +19.02 (¢ = 0.33, CHCI;); mp:
189-191 °C; '"H NMR (400 MHz, CDCl;): 6 8.30 (s, 1H), 7.61 (d,
J=8.1 Hz, 1H), 7.32 (dd, J = 13.2, 5.9 Hz, 3H), 7.27 (d, J = 8.1
Hz, 1H), 7.18 (dd, J = 6.9, 5.0 Hz, 4H), 4.37-4.28 (m, 2H), 4.19
(ddd, J=9.8, 3.7, 1.5 Hz, 1H), 3.34 (dd, J = 13.8, 3.8 Hz, 1H),
3.02 (dd, J=13.7, 9.9 Hz, 1H), 2.93 (s, 3H), 1.37 (t, J = 7.1 Hz,
3H). 3C {!H} NMR (101 MHz, CDCL): ¢ 166.7, 165.6, 136.2,
135.9, 132.2, 131.9, 130.8, 129.8, 129.4, 128.9, 127.8, 127.7,
127.3, 125.8, 123.8, 114.7, 61.3, 54.9, 36.9, 24.4, 14.3. FT-IR
(KBr): 3333, 2989, 2930, 1759, 1688, 1448, 1325, 1292, 1163,
1047, 785 cml. MS-ESI: m/z 376 [M+H]"; HRMS-ESI: calcd for
Cp3H,oNO, [M+H]' 376.1549; found 376.1545. HPLC analysis:
enantiomeric purity = 99.30%.

Ethyl (R)-3-benzyl-10-methyl-2-oxo-3,4-dihydro-2 H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3m). Pale yellow
solid (76 mg, 54% Yield); [a]p® = -18.92 (¢ = 0.33, CHCls); mp:
187-189 °C; 'TH NMR (500 MHz, CDCl;): ¢ 8.30 (s, 1H), 7.61 (d,
J=28.1 Hz, 1H), 7.32 (dd, J = 13.9, 6.4 Hz, 3H), 7.27 (d, J = 8.6
Hz, 1H), 7.22-7.16 (m, 4H), 4.37-4.28 (m, 2H), 4.19 (ddd, J = 9.9,
3.9, 1.6 Hz, 1H), 3.34 (dd, J = 13.8, 3.9 Hz, 1H), 3.03 (dd, J =
13.8, 9.9 Hz, 1H), 2.93 (s, 3H), 1.37 (t, J= 7.1 Hz, 3H). 13C {'H}
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NMR (126 MHz, CDCl): ¢ 166.7, 165.6, 136.2, 135.9, 132.2,
131.9, 130.8, 129.7, 129.4, 128.9, 127.8, 127.7, 127.3, 125.8,
123.8, 114.7, 61.3, 54.9, 36.9, 24.4, 14.3. FT-IR (KBr): 3332,
2987, 2929, 1759, 1688, 1448, 1324, 1291, 1163, 1047, 784 cm'.
MS-ESI: m/z 376 [M+H]*; HRMS-ESI: calcd for Cy3H; NNaO,
[M+Na]®* 398.1363; found 398.1389. HPLC analysis:
enantiomeric purity = 99.83%.

Ethyl 2-oxo-3,4-dihydro-2H-naphtho[1,2-b][1,4]oxazine-5-
carboxylate (3n). Pale yellow solid (21 mg, 18% Yield); mp:
127-129 °C; 'TH NMR (500 MHz, CDCl;): ¢ 8.37 (s, 1H), 8.06 (d,
J=8.5Hz, 1H), 7.80 (d, J= 8.3 Hz, 1H), 7.57 (t, J= 7.7 Hz, 1H),
7.35 (t, J = 7.5 Hz, 1H), 7.21 (s, 1H), 4.44 (q, J = 7.1 Hz, 2H),
4.17 (d, J = 1.5 Hz, 2H), 1.47 (t, J= 7.1 Hz, 3H). 3C {{H} NMR
(126 MHz, CDCly): 6 167.4, 163.9, 134.2, 130.9, 129.5, 129.1,
128.8, 126.3, 126.3, 124.2, 119.1, 114.7, 61.4, 44.5, 14.3. FT-IR
(KBr): 3364, 2924, 2854, 1777, 1695, 1461, 1376, 1300, 1042,
786 cml. MS-ESI: m/z 272 [M+H]*. HRMS-ESI: caled for
CsHs2NO4 [M+H]" 272.0923; found 272.0920.

Ethyl (S)-3-methyl-2-ox0-3,4-dihydro-2H-naphtho[ 1, 2-
b][1,4]oxazine-5-carboxylate (30). Pale yellow solid (38 mg,
31% Yield); [a]p? = +9.01 (¢ = 0.2, CHCl;); mp: 102-104 °C; 'H
NMR (400 MHz, CDCls): 6 8.36 (s, 1H), 8.09-8.03 (m, 1H), 7.80
(d, J = 8.3 Hz, 1H), 7.56 (m, 1H), 7.38-7.32 (m, 1H), 7.17 (s,
1H), 4.44 (q, J = 7.1 Hz, 2H), 4.09 (m, 1H), 1.63 (d, J= 6.7 Hz,
3H), 1.47 (t, J= 7.1 Hz, 3H). 3C {'H} NMR (101 MHz, CDCl):
0 167.4, 166.5, 134.4, 130.8, 129.4, 129.1, 128.6, 126.3, 126.2,
124.2, 119.2, 114.7, 61.4, 49.8, 17.3, 14.3. FT-IR (KBr): 3330,
2980, 2925, 1772, 1692, 1466, 1377, 1298, 1212, 1042, 784 cm’!.
MS-ESI: m/z 286 [M+H]*; HRMS-ESI: caled for C;¢H¢NO4
[M+H]* 286.1074; found 286.1090. HPLC analysis: enantiomeric
purity = 97.84%.

Ethyl (R)-3-methyl-2-0x0-3,4-dihydro-2H-naphtho[ 1, 2-
b][1,4]oxazine-5-carboxylate (3p). Pale yellow solid (68 mg,
55% Yield); [a]p?® = -8.81 (¢ = 0.3818, CHCl3); mp: 124-126 °C;
'"H NMR (400 MHz, CDCls): J 8.36 (s, 1H), 8.06 (dd, /= 8.6, 0.9
Hz, 1H), 7.83-7.75 (m, 1H), 7.61-7.51 (m, 1H), 7.35 (m, 1H),
7.19 (s, 1H), 4.48-4.40 (m, 2H), 4.13-4.06 (m, 1H), 1.63 (d, J =
6.7 Hz, 3H), 1.50-1.44 (m, 3H). C {'H} NMR (101 MHz,
CDCly): 0 167.4, 166.5, 134.3, 130.8, 129.3, 129.1, 128.5, 126.3,
126.1, 124.1, 119.2, 114.7, 61.4, 49.7, 17.2, 14.2. FT-IR (KBr):
3363, 3023, 1174, 1696, 1471, 1381, 1304, 1215 cm’'. MS-ESI:
m/z 286 [M+H]"; HRMS-ESI: caled for C,¢H(NO, [M+H]*
286.1079; found 286.1094. HPLC analysis: enantiomeric purity =
99.63%.

Ethyl  (S)-3-isopropyl-2-oxo-3,4-dihydro-2H-naphtho[ 1, 2-
b][1,4]oxazine-5-carboxylate (3q). Pale yellow solid (60 mg,
44% Yield); [a]p® = +65.16 (¢ = 0.33, CHCl;); mp: 72-74 °C; 'H
NMR (400 MHz, CDCls): 6 8.35 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H),
7.77 (d, J = 8.2 Hz, 1H), 7.57-7.51 (m, 1H), 7.45 (s, 1H), 7.32 (t,
J=1.5 Hz, 1H), 445 (tt, J = 7.2, 3.6 Hz, 2H), 3.94 (dd, J = 6.1,
1.8 Hz, 1H), 2.28 (m, 1H), 1.47 (t, J= 7.1 Hz, 3H), 1.12 (d, J =
6.9 Hz, 3H), 1.03 (d, J = 6.7 Hz, 3H). *C {'H} NMR (101 MHz,
CDCly): 6 167.5, 165.0, 133.5, 130.2, 129.3, 129.1, 128.6, 125.9,
123.8, 119.1, 114.3, 61.4, 59.9, 30.3, 19.0, 17.8, 14.3. FT-IR
(KBr): 3327, 2963, 2928, 1764, 1692, 1475, 1342, 1296, 1156,
1046, 783 cm!. MS-ESI: m/z 314 [M+H]*; HRMS-ESI: calcd for
CgHpoNO, [M+H]* 314.1392; found 314.1391. HPLC analysis:
enantiomeric purity =>99%.

Ethyl  (R)-3-isopropyl-2-oxo-3,4-dihydro-2H-naphtho[1,2-
b][1,4]oxazine-5-carboxylate (3r). Pale yellow solid (60 mg,
44% Yield); [a]p?® = -60.66 (¢ = 0.33, CHCl;); mp: 70-72 °C; 'H
NMR (500 MHz, CDCL3): 6 8.35 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H),
7.77 (d, J = 8.2 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.45 (s, 1H),
7.31 (t,J=7.5 Hz, 1H), 4.45 (dd, J=13.2, 6.7 Hz, 2H), 3.94 (d, J
=5.0 Hz, 1H), 2.28 (m, 1H), 1.47 (t, J=7.1 Hz, 3H), 1.12 (d, J =
6.8 Hz, 3H), 1.03 (d, J = 6.7 Hz, 3H). 3C {'H} NMR (126 MHz,
CDCly): 0 167.5, 165.0, 133.5, 130.2, 129.3, 129.1, 128.6, 125.9,
123.8, 119.1, 114.4, 61.4, 59.9, 30.3, 19.0, 17.8, 14.4. FT-IR
(KBr): 3326, 2962, 2928, 1764, 1692, 1474, 1342, 1295, 1156,
1045, 783 cm'. MS-ESI: m/z 314 [M+H]*; HRMS-ESI: calcd for
CisHz0NO, [M+H]* 314.1387; found 314.1376. HPLC analysis:
enantiomeric purity = 99.88%.

Ethyl  (S)-3-isobutyl-2-0x0-3,4-dihydro-2H-naphtho[1,2-
b][1,4]oxazine-5-carboxylate (3s). Pale yellow solid (58 mg,
41% Yield); [a]p2 = +4.76 (¢ = 0.4181, CHCL); mp: 76-78 °C;
'H NMR (400 MHz, CDCl3): d 8.36 (s, 1H), 8.08-8.02 (m, 1H),
7.82-7.76 (m, 1H), 7.58-7.52 (m, 1H), 7.33 (dd, J=9.2, 5.1, 1.7
Hz, 2H), 4.48-4.40 (m, 2H), 4.11 (dd, J = 8.8, 4.9, 1.6 Hz, 1H),
1.91-1.73 (m, 3H), 1.49-1.45 (m, 3H), 1.00 (dd, J = 6.2, 5.3 Hz,
6H). 3C {'H} NMR (101 MHz, CDCL): § 167.4, 166.2, 133.9,
130.2, 129.3, 129.1, 128.6, 126.2, 126.0, 124.0, 119.1, 114.7,
61.4,52.2,39.6,24.3, 23.1, 21.3, 14.3. FT-IR (KBr): 3324, 3053,
2978, 2928, 1728, 1652, 1490, 1316, 1232, 1101, 1047 cm’'. MS-
ESI: m/z 328 [M+H]"; HRMS-ESI: calcd for CgHy,NO4 [M+H]*
328.1549; found 328.1557. HPLC analysis: enantiomeric purity =
>99%.

Ethyl  (R)-3-isobutyl-2-oxo-3,4-dihydro-2H-naphtho[1,2-
b][1,4]oxazine-5-carboxylate (3t). Pale yellow solid (66 mg,
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47% Yield); [o]p2 = -2.24 (c = 0.6454, CHCL;); mp: 90-92 °C; 'H
NMR (400 MHz, CDCls): 6 8.28 (d, J= 6.9 Hz, 1H), 7.98 (dd, J =
8.5, 0.7 Hz, 1H), 7.71 (t, J = 6.3 Hz, 1H), 7.52-7.45 (m, 1H),
7.30-7.23 (m, 2H), 4.40-4.33 (m, 2H), 4.06-4.00 (m, 1H), 1.84-
1.67 (m, 3H), 1.42-1.38 (m, 3H), 0.92 (dd, J = 6.2, 5.2 Hz, 6H).
BC {H} NMR (101 MHz, CDCl;): § 166.4, 165.2, 133.0, 129.2,
128.3, 128.1, 127.6, 125.2, 125.0, 123.0, 118.1, 113.7, 60.4, 51.2,
38.6, 23.4, 22.1, 20.3, 13.3. FT-IR (KBr): 3355, 2964, 1776,
1697, 1640, 1525, 1476, 1382, 1306, 1210 cm'. MS-ESI: m/z 328
[M+H]*; HRMS-ESI: caled for C;oH,NO, [M+H]* 328.1531;
found 328.1549. HPLC analysis: enantiomeric purity = >99%.

Ethyl  (S)-3-(2-(methylthio)ethyl)-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3u). Pale yellow
solid (60 mg, 40% Yield); [a]p?® = +9.18 (c = 0.4636, CHCl;);
mp: 111-113 °C; 'H NMR (400 MHz, CDCl3): ¢ 8.37 (s, 1H),
8.05 (dd, J = 8.6, 0.9 Hz, 1H), 7.84-7.75 (m, 1H), 7.56 (m, 1H),
7.40-7.32 (m, 2H), 4.49-4.40 (m, 2H), 4.29 (m, 1H), 2.80-2.65 (m,
2H), 2.35-2.23 (m, 1H), 2.20-2.15 (m, 4H), 1.50-1.44 (m, 3H). 13C
{'H} NMR (101 MHz, CDCL): ¢ 167.3, 165.7, 133.9, 129.9,
129.4, 129.1, 128.7, 126.3, 126.0, 124.1, 119.1, 114.7, 61.9, 61.4,
52.7, 30.2, 29.7, 15.4, 14.3. FT-IR (KBr): 3601, 3358, 3012,
2555, 1777, 1699, 1641, 1526, 1480, 1382, 1301, 1215 cm™!. MS-
ESI: m/z 346 [M+H]"; HRMS-ESI: calcd for C;sHy)NO4S
[M+H]" 346.1113; found 346.1104. HPLC analysis: enantiomeric
purity = 96.11%.

Ethyl  (R)-3-(2-(methylthio)ethyl)-2-o0x0-3,4-dihydro-2 H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3v). Pale yellow
solid (56 mg, 44% Yield); [a]p* =-9.70 (¢ = 0.2909, CHCl); mp:
102-104 °C; '"H NMR (400 MHz, CDCls): 6 8.37 (s, 1H), 8.05
(dd, J = 8.6, 0.8 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.56 (dd, J =
8.4, 6.8, 1.2 Hz, 1H), 7.37 (d, J = 1.1 Hz, 1H), 7.36-7.32 (m, 1H),
4.48-4.41 (m, 2H), 4.29 (dd, J = 7.4, 5.0, 1.4 Hz, 1H), 2.80-2.65
(m, 2H), 2.34-2.23 (m, 1H), 2.20-2.10 (m, 4H), 1.50-1.44 (m,
3H). BC {!H} NMR (101 MHz, CDCl,): J 167.4, 165.7, 133.9,
129.9, 129.4, 129.1, 128.7, 126.3, 126.0, 124.1, 119.1, 114.7,
61.4,52.7,30.2,29.8, 15.4, 14.3. FT-IR (KBr): 3684, 3022, 2405,
1773, 1695, 1215 cm!. MS-ESI: m/z 346 [M+H]*; HRMS-ESI:
caled for C1gHpoNO4S [M+H]" 346.1113; found 346.1102. HPLC
analysis: enantiomeric purity = 97.28%.

Ethyl (S)-3-(4-hydroxybenzyl)-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3x). Pale yellow
solid (33 mg, 19% Yield); [a]p?® = +2.0 (¢ = 0.3, CHCl3); mp:
158-160 °C; '"H NMR (300 MHz, CDCl;): ¢ 8.34 (s, 1H), 8.05 (d,
J=8.5Hz, 1H), 7.78 (d, J= 8.2 Hz, 1H), 7.56 (t, J= 7.7 Hz, 1H),
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7.34 (t, J= 7.5 Hz, 1H), 7.12 (s, 1H), 7.05 (d, J = 8.4 Hz, 2H),
6.79 (d, J= 8.4 Hz, 2H), 4.34 (qd, /= 7.1, 3.6 Hz, 2H), 4.26-4.19
(m, 1H), 3.27 (dd, J = 13.9, 3.8 Hz, 1H), 2.95 (dd, J = 13.9, 10.0
Hz, 1H), 1.39 (t, J = 7.1 Hz, 3H). >C {{H} NMR (75 MHz,
CDCl): 6 166.9, 165.7, 155.0, 134.0, 130.6, 129.7, 129.4, 129.13,
128.9, 127.8, 126.3, 126.0, 124.2, 119.2, 115.8, 114.9, 61.4, 55.6,
36.5, 14.3. FT-IR (KBr): 3446, 3332, 2985, 1765, 1687, 1511,
1471, 1332, 1298, 1210, 1158, 1046, 783 cm'!. MS-ESI: m/z 378
[M+H]"; HRMS-ESI: calcd for CpH,oNOs [M+H]" 378.1341;
found 378.1346. HPLC analysis: enantiomeric purity = 99.79%.

Ethyl (R)-3-(4-hydroxybenzyl)-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3y). Pale yellow
solid 31 mg, 18% Yield); [a]p* = -1.67 (¢ = 0.3, CHCIl;); mp:
160-162 °C; '"H NMR (400 MHz, CDCLs): 6 8.35 (s, 1H), 8.05 (d,
J=8.5Hz, 1H), 7.79 (d, J= 8.2 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H),
7.34 (t, J= 7.5 Hz, 1H), 7.13 (s, 1H), 7.06 (d, J = 8.2 Hz, 2H),
6.79 (d, J = 8.2 Hz, 2H), 4.40-4.30 (m, 2H), 4.23 (d, J = 7.4 Hz,
1H), 3.27 (dd, J = 13.9, 3.6 Hz, 1H), 2.96 (dd, J = 13.8, 10.0 Hz,
1H), 1.39 (t, J = 7.1 Hz, 3H). 13C {'H} NMR (101 MHz, CDCl;):
0 166.9, 165.7, 154.9, 134.0, 130.6, 129.7, 129.4, 129.13, 128.9,
127.9, 126.3, 126.0, 124.2, 119.2, 115.8, 115.0, 61.4, 55.6, 36.5,
14.3. FT-IR (KBr): 3445, 3330, 2986, 1766, 1687, 1510, 1471,
1330, 1298, 1211, 1155, 1044, 820 c¢m’'. MS-ESI: m/z 378
[M+H]*; HRMS-ESI: calcd for Cp,H9yNNaOs [M+Na]* 400.1155;
found 400.1149. HPLC analysis: enantiomeric purity = 99.79%.

Ethyl (S)-3-(hydroxymethyl)-2-oxo-3,4-dihydro-2H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (37). Pale yellow
solid (19 mg, 14% Yield); [a]p® = +3.86 (c = 0.23, CHCl3); mp:
152-154 °C: 'TH NMR (400 MHz, CDCl3): 6 8.37 (s, 1H), 8.04 (d,
J=8.5Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.56 (t, J= 7.4 Hz, 1H),
7.47 (s, 1H), 7.35 (t, J = 7.4 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H),
4.20 (dd, J = 13.0, 8.4 Hz, 2H), 4.08 (d, J = 5.7 Hz, 1H), 2.38 (s,
1H), 1.46 (t, J = 7.1 Hz, 3H). °C {'H} NMR (101 MHz, CDCl,):
0 167.4, 165.1, 133.8, 130.2, 129.5, 129.2, 128.9, 126.3, 126.1,
124.2, 119.1, 114.7, 62.6, 61.5, 55.3, 14.3. FT-IR (KBr): 3335,
2981, 1769, 1693, 1471, 1377, 1300, 1176, 1041, 786 cm’'. MS-
ESI: m/z 324 [M+Na]"; HRMS-ESI: calcd for C;sH;sNNaOs
[M+Na]* 324.0827; found 324.0842. HPLC analysis:
enantiomeric purity =>99%.

Ethyl  (S)-3-sec-butyl-2-oxo-3,4-dihydro-2H-naphtho[1,2-
b][1,4]oxazine-5-carboxylate (3zb). Pale yellow liquid (47 mg,
33% Yield); [a]p? = +2.63 (¢ = 0.5727, CHCl;); 'H NMR (400
MHz, CDCly): 6 8.26 (s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.69 (d, J
= 8.3 Hz, 1H), 7.49-7.43 (m, 1H), 7.34 (s, 1H), 7.22 (dd, J = 6.3,
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4.6, 0.7 Hz, 1H), 4.40-4.33 (m, 2H), 3.95 (dd, J = 6.0, 1.9 Hz,
1H), 1.99-1.90 (m, 1H), 1.62-1.45 (m, 2H), 1.41-1.37 (m, 3H),
1.07-0.97 (m, 3H), 0.82 (t, J = 7.4 Hz, 3H). 3C {'H} NMR (101
MHz, CDCly): J 166.4, 163.9, 132.3, 129.2, 128.2, 128.1, 127.6,
124.9, 124.8, 122.7, 117.9, 113.2, 60.3, 58.0, 35.8, 23.6, 13.3,
10.2. FT-IR (KBr): 3735, 3594, 3374, 2972, 1778, 1698, 1526,
1476, 1383, 1339, 1302, 1207 cm™l. MS-ESI: m/z 328 [M+H]";
HRMS-ESI: caled for C9H;,NO, [M+H]* 328.1549; found
328.1553. HPLC analysis: enantiomeric purity = >99%.

Ethyl (S)-2-0x0-3-phenyl-3,4-dihydro-2H-naphtho[1,2-
b][1,4]oxazine-5-carboxylate (3ze). Pale yellow solid (64 mg,
43% Yield); [a]p® = -24.26 (¢ = 0.1909, CHCl;); mp: 138-140
°C; '"H NMR (500 MHz, CDCl;): § 8.40 (s, 1H), 8.06 (dd, J = 8.5,
0.7 Hz, 1H), 7.79 (t, J = 8.6 Hz, 1H), 7.72 (s, 1H), 7.56 (dd, J =
8.3, 6.8, 1.1 Hz, 1H), 7.47-7.40 (m, 2H), 7.39-7.30 (m, 4H), 5.30
(d, J = 1.5 Hz, 1H), 4.48-4.41 (m, 2H), 1.49-1.44 (m, 3H). 1°C
{IH} NMR (126 MHz, CDCl3): ¢ 167.4, 164.2, 136.2, 133.8,
130.0, 129.4, 129.1, 128.9, 128.8, 127.0, 126.3, 126.1, 124.2,
119.2, 114.5, 61.4, 58.2, 14.3. FT-IR (KBr): 3307, 3022, 1779,
1698, 1636, 1525, 1383, 1300, 1214, 1049 cm-'. MS-ESI: m/z 348
[M+H]"; HRMS-ESI: calcd for C,H;sgNO, [M+H]" 348.1236;
found 348.1240. HPLC analysis: enantiomeric purity = 83.75%.

Ethyl-2-oxo0-3-phenyl-3,4-dihydro-2H-naphtho[ 1, 2-
b][1,4]oxazine-5-carboxylate (3zf). Pale yellow solid (62 mg,
42% Yield); mp: 142-144 °C; '"H NMR (400 MHz, CDCIl;): ¢ 8.40
(s, 1H), 8.06 (dd, J = 8.6, 0.8 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H),
7.72 (s, 1H), 7.60-7.53 (m, 1H), 7.46-7.41 (m, 2H), 7.39-7.31 (m,
4H), 5.30 (d, J = 1.7 Hz, 1H), 4.49-4.40 (m, 2H), 1.50-1.44 (m,
3H). 3C {'H} NMR (101 MHz, CDCl3): § 167.5, 164.3, 136.3,
133.8, 130.1, 129.5, 129.2, 129.0, 128.9, 128.8, 127.1, 126.3,
126.2, 124.2, 119.3, 114.6, 61.5, 58.3, 14.3. FT-IR (KBr): 3364,
3075, 2928, 2341, 1774, 1706, 1387, 1216, 1153 cm’'. MS-ESI:
m/z 348 [M+H]"; HRMS-ESI: caled for C,HigNO, [M+H]*
348.1236; found 348.1240. HPLC analysis: enantiomeric purity of
R isomer = 46.46%, S isomer = 53.54%.

Ethyl (R)-10-methyl-2-oxo-3-phenyl-3,4-dihydro-2 H-
naphtho[1,2-b][1,4]oxazine-5-carboxylate (3zg). Pale yellow
solid (45 mg, 31% Yield); [a]p®® = +0.69 (¢ = 0.7272, CHCly);
mp: 108-110 °C; 'H NMR (400 MHz, CDCl3): § 8.36 (s, 1H),
7.81 (s, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.43 (d, J = 6.6 Hz, 2H),
7.36-7.29 (m, 4H), 7.19 (t, J = 7.6 Hz, 1H), 5.21 (s, 1H), 4.45 (q,
J=7.0 Hz, 2H), 2.91 (s, 3H), 1.46 (t, J = 7.0 Hz, 3H). 13C {1H}
NMR (101 MHz, CDCl;): 6 166.3, 151.3, 147.7, 145.4, 136.3,
134.4, 134.1, 131.9, 131.5, 129.5, 129.0, 128.5, 128.3, 127.9,
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127.5, 126.2, 123.0, 61.8, 60.3, 24.6, 14.5. FT-IR (KBr): 3697,
3021, 2407, 1763, 1524, 1312, 1215, 1026 cm!. MS-ESI: m/z 362
[M+H]*; HRMS-ESI: caled for C;HyoNO, [M+H]* 362.1392;
found 362.1400. HPLC analysis: enantiomeric purity = >99%.
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