Tetrahedron Letters, Vol. 33, No. 18, pp. 2581-2582, 1992 Printed in Great Britain

0040-4039/92 \$5.00 + .00 Pergamon Press Ltd

Carboindation of Alkynols. A Facile Synthesis of Yomogi Alcohol

Shuki ARAKI, Akira IMAI, Ken SHIMIZU, and Yasuo BUTSUGAN*

Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan

Key Words: Indium, Carbometallation, Alkynol, Allylic Alcohol, Yomogi Alcohol

Abstract: Carboindation of alkynols by allylic indium sesquihalides proceeded in DWF at 100 - 140 °C via a syn-addition; yomogi alcohol was prepared in one-pot by this method.

We have recently demonstrated that organoindium reagents are new and useful tools in synthetic chemistry.¹ In particular, allylic indium sesquihalides are easily preparable and show unique reaction behaviour with satisfactory regio- and chemo-selectivity.² In this paper are described the first example of carbometallation⁸ of alkynols by allylic indium reagents (carboindation) and its application to the one-step synthesis of the naturally occurring monoterpene alcohol, yomogi alcohol.

A mixture of propargyl alcohol (1 mmol) and prenylindium sesquibromide, prepared from indium metal (1 mmol) and prenyl bromide (1.5 mmol), was heated in N.N-dimethylformamide (DMF) (2 ml) at 115 °C for 6 h. Aqueous workup and purification by column chromatography on silica gel gave two carboindation products, 4,4-dimethyl-2,5-hexadien-1-ol and 2-methylene-3,3-dimethyl-4penten-1-ol, in 91% combined yield. The ratio of these anti-Markownikov to Markownikov adducts was 65 : 35. Results for other allylic indium reagents and alkynols are summarized in Table. which shows the following characteristics: (i) allylic indium reagents react selectively at the γ -carbon, (ii) regioselectivity concerning alkynol (anti-Markownikov vs. Markownikov) depends upon the structures of both alkynol and allylindium, (iii) double bond geometry of the anti-Markownikov adducts is E, indicating that the carboindation process is a syn-addition. (iv) only terminal alkynes undergo carboindation: 2-butyn-l-ol, for example, did not react at all with prenylindium, and (v)hydroxyl functionality near triple bond is essential; i.e. propargyl methyl ether and 4-pentyn-1-ol were unsusceptible to carboindation.

Entry 2 demonstrates a facile synthesis of yomogi alcohol.⁴ Although several synthetic methods have hitherto been developed for this terpene.⁸ multi-step sequences are required. Our procedure based on carboindation is highly regio- and stereo-selective, providing 83% yield of the isomerically pure product in one-pot.

Detail mechanistic considerations and further synthetic applications of this carboindation will be reported elsewhere.

Entry	Alkynol	Allylindium	Produ	Yield/% ^C	
1	≫∕ он	(J ^{JIn} 2 ^{Br} 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Пон	91 (65:35)
2	М он	•	Т		83 (100:0)
3	<i>≫∕∕</i> °#		ОН	мон	85 (73:27)
4	В олен	(^{ph} /3 ^{In} 2 ^{Br} 3	Ph	Ph	56 (14:86)
5	Мон		Ph OH	Ph	68 (90:10)
6	<i>р</i> ов	(7773 ¹ n 2 ^{B1} 3	The second	Т	59 (75:25)
7	№ Х _{ов}	×	Y OH		75 (100:0)

Table. Carboindation of Alkynols by Allylic Indium Reagents*

*All reactions were carried out in DNF at 100 - 140 °C for 3 - 6 h. *All products gave spectral and analytical data in agreement with the proposed structures. 'Figures in parentheses refer to the ratio anti-Warkownikov : Warkownikov adducts.

REFERENCES

1.	Araki, S.;	Shimiz	:u, T.;	Butsugan,	Y.	<u>Chem.</u>	Express,	1991,	<u>6</u> ,	583,	and
	references	cited	therei	n.							

- Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem., 1988, <u>53</u>, 1831; Araki, S.; Katsumura, N.; Ito, H.; Butsugan, Y. <u>Tetrahedron Lett.</u>, 1989, <u>30</u>, 1581; Araki, S.; Shimizu, T.; Johar, P. S.; Jin, S.-J.; Butsugan, Y. J. Org. Chem., 1991, <u>56</u>, 2538; Araki, S.; Shimizu, T.; Jin, S.-J., Butsugan, Y. J. Chem. Soc., Chem. Commun., 1991, 824; Araki, S.; Katsumura, N.; Butsugan, Y. J. Organomet. Chem., 1991, <u>415</u>, 7; Araki, S.; Butsugan, Y. J. Chem. Soc., Perkin Trans. 1, 1991, 2395.
- For a review on carbometallation, see: Normant, J. F.; Alexakis, A. Synthesis, 1981, 841.
- 4. Hayashi, S.; Yano, K.; Matsuura, T. <u>Tetrahedron Lett.</u>, 1968, 6241.
- For a recent example, see: Boldrini. G. P.: Savoia. D.: Togliavini. E.: Trombini, C.: Umani-Ronchi, A. J. Organomet. Chem., 1985, 280, 307.

(Received in Japan 7 February 1992)