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Novel functionalized quaternary ammonium curcuminoids have been synthesized from piperazinyl cur-
cuminoids and Baylis–Hillman reaction derived allyl bromides. These molecules are found to be highly
water soluble with increased cytotoxicity compared to native curcumin against three cancer cell lines
MIAPaCa-2, MDA-MB-231, and 4T1. Preliminary in vivo toxicity evaluation of a representative curcumi-
noid 5a in healthy mice indicates that this molecule is well tolerated based on normal body weight gains
compared to control group. Furthermore, the efficacy of 5a has been tested in a pancreatic cancer xeno-
graft model of MIAPaCa-2 and has been found to exhibit good tumor growth inhibition as a single agent
and also in combination with clinical pancreatic cancer drug gemcitabine.

� 2015 Elsevier Ltd. All rights reserved.
Curcumin is a yellow organic compound isolated from rhizome
of the herbaceous perennial plant Curcuma longa L. Curcumin has
been shown to possess a multitude of pharmacological properties
including cancer chemoprevention and anticancer properties.1–16

Although curcumin is readily available, inexpensive and non-toxic,
it is besieged with numerous problems for clinical use. Some of the
problems include insolubility in water, poor absorption, fast meta-
bolism, and also rapid glucuronidic elimination.17 To circumvent
these problems, there have been several attempts to improve its
water solubility and potency.1–3,9,10,12,14 However, many of these
studies were met with limited clinical success and development
of novel curcuminoids with high water solubility and good
in vivo activity is important.

The Baylis–Hillman (BH) reaction has gained a lot of attention
as an important C–C bond forming reaction because of its simple
experimental conditions, high atom efficiency, and easy assembly
of densely functionalized allyl alcohols and amines.18–29 The allyl
alcohol product can be further functionalized in numerous ways
to produce important synthons for organic synthesis. Allyl bro-
mides derived from BH alcohols can be readily isomerized with
various nucleophiles in SN2 or SN2

0
fashion (Scheme 1). Recently, BH

reaction products have also received attention as pharmacologi-
cally important structural motifs for various types of
diseases.18,22,26

Our interest in developing novel small molecule therapeutics
has prompted us to explore molecules derived from BH allyl bro-
mides as anti-cancer agents.30–32 BH derived allyl bromides are
highly reactive electrophiles with the ability to react with various
types of N, S, O, C nucleophiles.18–29 We envisioned that these func-
tionalized allyl bromides would interact with intracellular N and/
or S molecules such as DNA, glutathione, or cysteine causing cellu-
lar death.33–36 As representative examples, we synthesized BH allyl
alcohols and bromides 1a–1e by the reaction of formaldehyde and
benzaldehyde with corresponding acrylates or acrylamide.
Initially, we evaluated 1a, 1b and their parent alcohols for cytotox-
icity against triple negative breast cancer cell line MDA-MB-231. It
was found that BH alcohols did not show any significant activity up
to 50 lM but their bromides 1a and 1b exhibited cytotoxicity at
lower concentrations of �20–50 lM. However, these bromides
do not have the required chemical stability and water solubility
to develop them as anti-cancer agents.

Owing to the above mentioned problems associated with cur-
cumin and BH bromides, we hypothesized that hybridization of
these two structural units on a single molecular framework would
lead to novel molecules with desirable pharmacological and phar-
maceutical properties. We also envisioned that quaternary ammo-
nium curcuminoids derived from BH allyl bromides would retain
some of their electrophilic character and would have the required
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Scheme 1. Baylis–Hillman reaction and nucleophilic rearrangements of Baylis–
Hillman Bromides: (a) DABCO, rt, 7 days; (b) HBr, H2SO4, 0 �C, 15 min.

Scheme 2. Baylis–Hillman bromide derived quaternary ammonium curcuminoids:
(a) K2CO3, DMSO, 100 �C, 12 h; (b) (i) B2O3, DMF, 170 �C, 10 min, (ii) tributylborate,
piperidine, 120 �C, 1 h; (c) allylic bromide, DMF, rt, 1 h.
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chemical stability and water solubility to develop them as explora-
tory anti-cancer agents (Fig. 1). Herein, we report the synthesis of
novel Baylis–Hillman (BH) reaction based quaternary ammonium
curcuminoids, their in vitro cytotoxicity in breast and pancreatic
cancer cell lines, preliminary in vivo systemic toxicity in healthy
mice, and in vivo tumor growth inhibition properties of a lead
derivative in a pancreatic tumor xenograft model.

The required piperazinyl benzaldehydes 3 and 4 were prepared
from mono-N-substituted piperazine via a base mediated ipso
substitution of 4-fluorobenzaldehyde.37 Aldehydes 3 and 4 were
condensed with 2,4-pentanedione to synthesize piperazinyl cur-
cuminoids 5 and 6 using established literature protocols
(Scheme 2).38–41 Compounds 5 and 6 were evaluated for their
in vitro cytotoxic properties utilizing the standard 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell
viability assay.42 Human pancreatic cancer (MIAPaCa-2), human
triple negative breast cancer (MDA-MB-231), and highly meta-
static murine breast cancer (4T1) cell lines were chosen for
Figure 1. Quaternary piperazinyl curcuminoids.
cytotoxic evaluation as these cancers have limited treatment
options and high patient mortality. Curcuminoids 5 and 6 did not
show significant cytotoxicity even at 100 lM concentration and
hence were considered to be non-toxic.

Utilizing the piperazinyl curcuminoid template 5, we then syn-
thesized their corresponding quaternary ammonium salts 5a–5e.43

Reaction of 5 with BH bromides 1a–1e in DMF provided curcumi-
noid salts 5a–5e in moderate to good yields (Scheme 2). These
novel derivatives have been found to exhibit excellent water solu-
bility in the range of�1 mg/mL to >100 mg/mL. Gratifyingly, 5a–5e
exhibited increased cytotoxicity compared to the native curcumin
2 in all three cell lines (Table 1). Quaternary ammonium salt 5a
derived from formaldehyde BH bromide 1a has good activity of
3.6 lM against MDA-MB-231 cell line when compared to parent
curcuminoid 5 (>100 lM) and also native curcumin 2 (�15 lM).
Similarly, 5a exhibited cytotoxicity against MIAPaCa-2 and 4T1 in
Table 1
IC50 values of curcuminoids in MDA-MB-231, MIAPaCa-2 and 4T1 cell lines (in lM)*

Sl. No. MDA-MB-231 MIAPaCa-2 4T1

2 �15 �20 �20
5 >100 >100 >100
6 >100 >100 >100
5a 3.6 ± 0.7 2.7 ± 0.5 4.1 ± 1.1
5b 6.2 ± 1.4 4.1 ± 0.3 5.0 ± 1.6
5c 3.7 ± 0.8 4.4 ± 0.4 4.1 ± 1.6
5d 4.2 ± 0.5 4.2 ± 0.7 3.4 ± 0.8
5e 15.1 ± 1.8 14.2 ± 0.4 17.2 ± 2.8
5f >100 >100 >100
5g >100 >100 >100

* Values are reported as an average of a minimum of three individual experi-
ments ±SEM.



Scheme 3. Synthesis of allylic quaternary ammonium salts of N-methylmorpho-
line: (a) allylic bromide, Et2O, rt, 1 h.

Figure 2. In vivo toxicity study of 5a in CD-1 mice (n = 6).

Figure 3. In vivo tumor growth inhibition of 5a based on isolated tumor mass in
MIAPaCa-2 xenograft model (n = 6, *P 6 0.05).
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low micro molar concentrations (Table 1). Compound 5b derived
from benzaldehyde BH bromide 1b also exhibited a similar type
of cytotoxicity against these three cell lines. To further understand
the structure activity relationship (SAR), we modified the methyl
ester to butyl 5c and hexyl 5d esters and also replaced the ester
moiety with N,N-dimethyl amide 5e. However, these modifications
did not result in enhanced activity compared to the methyl ester.

We then synthesized the quaternary ammonium curcuminoids
5f and 5g from simple allyl and benzyl bromides to understand the
role and importance of BH derived allyl bromides. These molecules
5f and 5g have good water solubility (�15 mg/mL) but did not
exhibit in vitro cytotoxicity against three cancer cell lines even at
higher concentrations of 100 lM. Quaternary ammonium curcum-
inoid salt derived from piperazinyl ethanol curcuminoid 6 and BH
bromide 1a was found to be highly deliquescent and did not show
any enhanced activity compared to 5a.

We also investigated the role of the curcuminoid template in
relation to the cytotoxic properties. In this regard, we have synthe-
sized quaternary ammonium salts 7a–7c derived from N-methyl-
morpholine 7 in place of curcuminoid unit (Scheme 3). Although
these salts 7a–7c were found to be highly water soluble
(>100 mg/mL), they did not exhibit any appreciable cytotoxic prop-
erties (IC50 > 100 lM, 4T1 cells). These results clearly illustrate the
importance of allylic rearrangement with SN2 , SN2

0
, or 1,4-addition

mechanism in combination with curcuminoid template in provid-
ing the pharmacological activity.

To explore the translational potential of these quaternary
ammonium curcuminoid salts as anticancer agents, we carried
out systemic toxicity and in vivo tumor growth inhibition studies
in mice.44–47 As a representative example, compound 5a was cho-
sen for all the in vivo studies due to its higher water solubility
(>100 mg/mL) and slightly better potency than the other deriva-
tives. For systemic toxicity studies, we utilized healthy CD-1 mice.
Group 1 and 2 mice (n = 6) were administered twice daily (bid),
intraperitoneally (ip) with compound 5a (30 mg/kg) and vehicle
(saline), respectively. The dosage for group 1 was increased to
50 mg/kg after 7 days. In both cases, body weight gains were found
to be similar in treated group and control group (Fig. 2). All the
treated animals survived and 5a was found to be well tolerated
based on observed normal body weights compared to the control
group. None of the animals exhibited any signs of stress during
the treatment.

We next carried out an in vivo tumor growth inhibition study
using flank based tumor xenografts in female athymic nude mice.
For this study, we utilized human pancreatic cancer cell line
MIAPaCa-2. We chose this tumor model due to the lack of effective
therapeutics for pancreatic cancer treatment. MIAPaCa-2 cells
(5 � 106) in 1:1 PBS–matrigel were inoculated onto the right flank
of mice. When the tumor volume reached �250 mm3, mice were
assigned into four groups (n = 6). Mice in group 1 were adminis-
tered with compound 5a (40 mg/Kg, ip, bid) whereas group 2 mice
were treated with gemcitabine (100 mg/Kg, ip, twice weekly).
Group 3 mice were given a combination of 5a (40 mg/Kg, ip, bid)
and gemcitabine (100 mg/Kg, ip, twice weekly) and group 4 was
designated as a control group (saline administration). At the end
of the study, mice were euthanized and tumors were resected
and weighed. Based on these studies, 42%, 47%, and 57% tumor
growth inhibition was observed in groups 1, 2 and 3, respectively,
compared to the control group (Fig. 3).

In conclusion, we have developed several BH bromide based
highly water soluble quaternary ammonium curcuminoids as
potential anti-cancer agents. Many of these novel derivatives have
been found to exhibit several fold higher activity than native cur-
cumin against three solid tumor cell lines. We have evaluated
the systemic toxicity of one of the derivatives (5a) in healthy
CD-1 mice. Compound 5a has been found to be well tolerated
based on normal body weight changes compared to control group.
Furthermore, we have carried out tumor growth inhibition studies
with 5a in a pancreatic cancer xenograft model. 5a has good tumor
growth inhibition as a single agent and also in combination with
gemcitabine. Future studies include determining the mechanism
of action, pharmacokinetics, pharmacodynamics, metabolic stabil-
ity and off-target effects of these novel derivatives.
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