The vibrational spectra of some dialkylamido derivatives of phosphorus and arsenic

G. Davidson and S. Phillips
Department of Chemistry. University of Nottingham. Nottingham NG7 2RD. U.K.

(Received 28 February 1978)

Abstract

Infrared and Raman spectra have been obtained and assigned for $\mathrm{X}\left(\mathrm{NR}_{2}\right)_{3}$. where $\mathrm{X}=\mathrm{P}$ or As. $\mathbf{R}=\mathrm{Me}$ or Et . The internal alkyl group modes could be analysed using a local symmetry of C_{s} for an isolated NR_{2} unit. Skeletal modes were most consistent with an overall molecular symmetry of C_{3}.

INTRODUCTION

Compounds containing coordinated dialkylamide groups have not been studied very frequently by vibrational spectroscopists. A review by Bradley [1] summarised data available on the vibrational spectra of such compounds of metals up to 1971. Dimethyl-amidodichloro- and -difluorophosphines have been examined $[2,3]$, the data on the latter being much more complete [3]. A trans-geometry, of C_{s} symmetry, sufficed to explain the observed spectrum of $\left(\mathrm{Me}_{2} \mathrm{~N}\right)$ PF_{2}, and no evidence was found for the presence of rotational isomers. The arsenic-chloro analogue ($\left.\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{AsCl}_{2}$, howẹver, exists as a mixture of two isomers, trans (C_{s} symmetry) and gauche (C_{1} symmetry), even at 80 K [4].

The only published work on $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ has been that of Goubeau et al. [5], who have also examined XP$\left(\mathrm{NMe}_{2}\right)_{2} \mathrm{Cl}, ~ \mathrm{XP}\left(\mathrm{NMe}_{2}\right) \mathrm{Cl}_{2}$ and $\mathrm{XP}\left(\mathrm{NMe}_{2}\right)_{3-n} \mathrm{Me}_{n}$ ($\mathrm{X}=\mathrm{O}$ or $\mathrm{S} ; n=0,1,2$ or 3) [6, 7]. For $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$, it was suggested that the highest molecular symmetry compatible with the observations was C_{s}, although it is impossible to assess the validity of their conclusions, as complete spectral data were not listed and no Raman polarizations were reported.

A gas-phase electron diffraction study of $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$. together with $\mathrm{P}\left[\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right]_{3}$. on the other hand [8] indicates that the tris(dimethylamido)phosphine does possess three-fold symmetry.

In order to resolve this ambiguity, we have recorded the i.r. and Raman spectra of $\mathrm{P}\left(\mathrm{NR}_{2}\right)_{3}$ and $\mathrm{As}\left(\mathrm{NR}_{2}\right)_{3}$, where $\mathrm{R}=\mathrm{Me}$ or Et . and assigned as many bands as possible to normal vibrational modes.

EXPERIMENTAL

All preparations were carried out under an atmosphere of pure dry argon. Dimethylamine and diethylamine were dried by distillation from sodium wire, and the ether solvent was dried using LiAlH_{4}. The general method for preparing the four dialkylamide-compounds was based on those of BURG and Slota [9] and Moedritzer [10]. A six-fold molar excess of the appropriate amine was added to an ethereal solution of the metal trichloride. with stirring. at -10 C . After warming to room temperature the precipitated amine hydrochloride was filtered off under vacuum. The ether was removed using a rotary evaporator, and the tris(dialkyl-
amide) isolated by distillation in vacuo. Satisfactory \mathbf{C}, H and N analyses were obtained in all cases.

Infrared spectra were obtained using a Perkin-Elmer 521 spectrometer ($4000-250 \mathrm{~cm}^{-1}$). Solid-. liquid- and vapourphase samples were used (for dimethylamido compounds; liquid-phase only for those containing diethylamido groups). The spectra were calibrated using known wavenumbers of $\mathrm{CH}_{4} . \mathrm{HBr} . \mathrm{CO}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. All of the observed wavenumbers are accurate to $\pm 2 \mathrm{~cm}^{-1}\left(\pm 5 \mathrm{~cm}^{-1}\right.$ for very weak or broad features.)

A Cary 81 spectrometer. modified by Anaspec Ltd., was used to record the Raman spectra. the excitation source being a Spectra-Physics 164 Argon ion laser (power output ca. 1 W at both 488.0 and 514.5 nm). Liquid samples were distilled directly into glass capillaries (approx. 1 mm i.d.). and polarization measurements carried out by examining the spectrum with the incident light successively parallel and perpendicular to the axis of a polaroid analyser. The depolarization values so obtained were proportional to the true values.

RESULTS

The i.r. and Raman spectra of $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}, \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$, $\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}$ and $\mathrm{As}\left(\mathrm{NEt}_{2}\right)_{3}$ are listed in Table 1-4. The proposed assignments are summarised below.

DISCUSSION

It will be convenient to divide this section as follows: (a) internal modes of the NMe_{2} group, (b) internal modes of the NEt_{2} group (c) skeletal modes of $\mathrm{P}\left(\mathrm{NC}_{2}\right)_{3}$ and (d) skeletal modes of $\mathrm{As}\left(\mathrm{NC}_{2}\right)_{3}$. In sections (a) and (b). data from both the P and $\mathrm{A} s$ compound will be included.

(a) Internal NMe_{2} modes

As assignment of the fundamental modes of dimethylamine is available [11. 12]. which may be used as a basis for this assignment. The electron diffraction data of Vilkov et al. [8$]$. suggest that the NMe_{2} unit in $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ has a planar skeleton (local symmetry $C_{2 v}$). It is known [13], however, that pyramidal NX_{3} units have a very low barrier to inversion at the N atom (in the absence of restraining factors such as ring formation, and therefore it is likely that this apparent planarity is due to rapid inversion. We will assume XNMe_{2} ($\mathrm{X}=\mathrm{P}$ or As) to be pyramidal. of local symmetry C_{s}. The numbers and symmetry types of the

Table 1. The vibrational spectrum of tris(dimethylamido)phosphine (all numbers in wavenumbers $/ \mathrm{cm}^{-1}$)

Solid	Infrared liquid	Vapour	Raman liquid	Proposed assignment			
2997 m	$3000 \mathrm{sh}^{*}$	$3000 \mathrm{sh}^{\text {r }}$					
2965 w		2974 ms	2974, sh', dp	CH_{3} stretch ($\mathrm{A}^{\prime \prime}$)			
2930 s	2940 vs	2940 vs	2931 ms dp	CH_{3} stretch (A^{*})			
2870 vs	2890 s	2888 s	2889 ms dp	CH_{3} stretch ($\mathrm{A}^{\prime \prime}$)			
2785 s	2798 ms	2798 s	2797 s pol	CH_{3} stretch (A^{\prime})			
2485 m	$\begin{aligned} & 2470 \mathrm{~m} \\ & 2368 \mathrm{~ms} \end{aligned}$						
		2340 w					
	2150 w						
		2070 w					
1648 m	1658 w	1658 w	1630 w				
	1481 ms	$1486 \mathrm{sh}^{\prime}$	1481 s. dp	CH_{3} deformation (A^{*})			
$1465 \mathrm{sh}^{\text {r }}$	1463 ms	1465 ms	1465 ms	CH_{3} deformation (A')			
1454 s	1458 ms	1444 sh *		CH_{3} deformation (A^{\prime})			
			$1441 \mathrm{~s} . \mathrm{dp}$	CH_{3} deformation (A^{*})			
1419 w1406 w	$1417 \mathrm{sh}^{*}$		$1417 \mathrm{~m} . \mathrm{dp}$	CH_{3} deformation ($A^{\prime \prime}$)			
		1404 w					
1364 w	1376 vw						
1356 w							
1322 m	1318 s			CH_{3} deformation (A^{\prime})			
$1295 \mathrm{sh}^{\prime}$							
1278 s		1277 ms	1273 m	$1280 \mathrm{mw}, \mathrm{dp}$	CH_{3} rock $\left(A^{\prime}\right)$		
1246 m	1248 w						
1190) ${ }^{\text {vs }}$	1191 s	1204 ms	1195 vw, dp	CH_{3} rock ($A^{\prime \prime}$)			
	$1178 \mathrm{sh}^{\mathbf{r}}$						
1164 s		$\left.\begin{array}{l} 1166 \\ 1159 \\ 1148 \end{array}\right\}$					
1150 3	$\begin{aligned} & 1150 \mathrm{sh}^{r} \\ & 1123 \mathrm{vw} \end{aligned}$		1147 w, poi	$\mathrm{CH}_{3} \operatorname{rock}\left(A^{\prime}\right)$			
		1148					
1105 m	$1104 \mathrm{sh}^{\text {r }}$						
	1086 m			CH_{3} rock (A^{\prime})			
1068 s	1069 m			NC_{2} stretch (E)			
$1060 \mathrm{sh}^{\prime}$		1062 mw					
$1034 \mathrm{mw}$		1040 w					
	$1016 \mathrm{sh}^{\text {r }}$	1024 w					
988 vs	984 vs	978 sh"	$981 \mathrm{~ms}, \mathrm{dp}$	NC_{2} stretch (E)			
958 vvs	962 vs	960 s	$963 \mathrm{sh}^{\text {r }}$, pol	NC_{2} stretch (A)			
946 s	947 sh ${ }^{\text {r }}$ 904 shr $^{\text {r }}$	$945 \mathrm{sh}^{\prime}$		NC_{2} stretch (A)			
$\begin{aligned} & 895 \mathrm{~m} \\ & 807 \mathrm{w} \end{aligned}$							
	738 w	$\begin{aligned} & 745 \mathrm{~m} \\ & 720 \mathrm{~m} \end{aligned}$					
706 \$	704 mw	705 sh	$697 \mathrm{sh}^{\text {r }}$	PN_{3} stretch (E)			
675 s	680 s	675 s	676 vs. pol	PN_{3} stretch (A)			
654 s	659 m	$652 \mathrm{sh}^{\text {r }}$	$647 \mathrm{sh}^{\text {r }}$				
570 w	550 w						
506 w	510 w						
491 m	494 mw		499 w	PNC deformation (E)			
417 s	420 m		416 w	PNC deformation (E)			
	405 mw			$\begin{aligned} & \mathrm{NC}_{2} \text { deformation (A } \\ & \text { or } E \text {) } \end{aligned}$			
389 s	392 mw		390 w	NC_{2} deformation (A or E)			
	384 w						
	360 vw						
340 mw	345 mm						
333 mw	332 ww		337 s. pol	PNC deformation (A)			
	310 m						
			295 s , pol	CH_{3} torsion (A^{\prime})			
			193 w. dp	NC_{2} torsion (E)			
			127 mw , dp	PN_{3} deformation (E)			

Table 2. The vibrational spectrum of tris(dimethylamido) arsine (all numbers in wavenumbers $/ \mathrm{cm}^{-1}$)

Solid	Infrared		Raman liquid	Proposed assignment
	Liquid	Vapour		
$\begin{aligned} & 2965 \mathrm{~s} \\ & 2955 \mathrm{~s} \end{aligned}$	$2993 \mathrm{sh}^{-}$	$2998 \mathrm{sh}^{\text {r }}$		
	2963 sh ${ }^{\text {r }}$	$2964 \mathrm{sh}^{\text {r }}$	2965 ms, dp	CH_{3} stretch ($\mathrm{A}^{\prime \prime}$)
2860 ms	2932 ms	2932 ms	2927 ms, dp	CH_{3} stretch (A^{*})
	2886 ms	2888 ms		CH_{3} stretch (A^{*})
	2838 m	$2840 \mathrm{sh}^{\text {r }}$	2839 ms, pol	CH_{3} stretch (A^{\prime})
2785 s	2798 ms	2798 ms	2794 ms, pol	CH_{3} stretch (A^{\prime})
2450 s	$\begin{aligned} & 2440 \mathrm{w} \\ & 1830 \mathrm{w} \end{aligned}$	2450 w		
1610 m				

Table 3. The vibrational spectrum of tris(diethylamido)phosphine (all figures in wavenumbers $/ \mathrm{cm}^{-1}$)

Infrared Liquid	Raman Liquid	Proposed Assignment

$522 \mathrm{w} \quad 525 \mathrm{vvw}, \mathrm{dp}$
508 vvw, dp
$495 \mathrm{w} \quad 492 \mathrm{vw}, \mathrm{pol}$
$460 \mathrm{w} \quad 462 \mathrm{vw}$, pol
420 w
$392 \mathrm{w} \quad 387 \mathrm{~m}, \mathrm{pol}$
$311 \mathrm{~s}, \mathrm{pol}$
PNC deformation (A)
?PNC deformation
NC_{2} deformation (A)
CH_{3} torsion (A^{\prime})
N.B. i.p. and o.o.p. are abbreviations for in-phase, out-ofphase respectively.

Table 4. The vibrational spectrum of tris(diethylamido)arsine (all figures in wavenumbers $/ \mathrm{cm}^{-1}$)

Infrared liquid	Raman liquid	Proposed assignment
2973 s	2975 m	CH_{3} stretch ($A^{\prime \prime}$)
2968 s	2965 m, dp	CH_{3} stretch ($A^{\prime \prime}$)
2933 s	2931 s. pol	CH_{2} stretch (i.p.) (A^{\prime})
	2901 shr, dp	CH_{2} stretch (o.o.p) ($A^{* *}$)
	2885 shr, dp	CH_{3} stretch ($A^{\prime \prime}$)
2873 s	2871 s , pol	CH_{2} stretch (i.p.) (A^{\prime})
	2863 s	CH_{2} stretch (0.0.p) ($A^{\prime \prime}$)
2843 s		CH_{3} stretch (A^{\prime})
2783 m	2781 w	CH_{3} stretch (A^{\prime})
2753 shr		? CH_{3} stretch (A^{\prime})
2728 shr		
2714 w	2719 vw	
2483 w		
2391 w		
1595 w		
1485 shr	1480 shr	CH_{3} deformation ($A^{\prime \prime}$)
1462 m	1458 shr	CH_{3} deformation (A^{\prime})
1452 m	1452 s , dp	CH_{3} deformation ($A^{\prime \prime}$)
1394 shr	1398 w	CH_{3} deformation (A^{\prime})
1373 m	1371 w, dp	CH_{2} o.o.p. scissors (A^{*})
1362 shr	1364 w	CH_{2} i.p. scissors (A^{\prime})
1344 w	1343 dp	CH_{3} deformation ($A^{\prime \prime}$)
	1323 m	CH_{3} deformation ($A^{\prime \prime}$)
1292 m	$1292 \mathrm{~m}, \mathrm{dp}$	CH_{3} rock ($A^{\prime \prime}$)
1190 m	1194 w. pol	CH_{2} i.p. wag (A^{\prime})
1160 m	1161 w	CH_{2} 0.0.p. wag (A^{*})
1102 w	1099 w, dp	CH_{3} rock (? A^{\prime})
	1077 s, pol	CH_{3} rock (A^{\prime})
1052 m		CH_{2} i.p. twist (A^{\prime})
	1055 w, dp	CH_{2} o.o.p. twist ($A^{\prime \prime}$)
	1048 w	CH_{3} rock ($A^{\prime \prime}$)
1017 shr	$1020 \mathrm{~m}, \mathrm{pol}$	$\mathrm{C}-\mathrm{C}$ stretch (A^{\prime})
$\begin{array}{r} 1005 \mathrm{~m} \\ 917 \mathrm{w} \end{array}$	1007 w	$\mathrm{C}-\mathrm{C}$ stretch ($A^{\prime \prime}$)
	917 m, dp	NC_{2} stretch (E)
	898 m , dp	NC_{2} stretch (E)
877 m	875 w, dp	NC_{2} stretch (? A)
808 shr	809 w	CH_{2} o.o.p. rock ($A^{\prime \prime}$)
790 m777 shr $\mathrm{789} \mathrm{w} \quad \mathrm{CH}_{2}$ 1.p. rock (A^{\prime})		
723 w		
700 w	704 vw	
592 w	$\begin{aligned} & 597 \mathrm{~s} . \mathrm{pol} \\ & 501 \mathrm{w} \end{aligned}$	$\operatorname{AsN}_{3} \operatorname{stretch}(A+E)$
492 w		
477 w	479 w	AsNC deformation (E)
	433 w	? AsNC deformation (E)
	383 w	NC_{2} deformation (E)
	374 w	NC_{2} deformation (E)
	353 w	AsNC deformation (A)
	333 w, dp	${ }^{\text {? }} \mathrm{CH}_{3}$ torsion ($A^{\prime \prime}$)
	297 s. pol	CH_{3} torsion (A^{\prime})

N.B. i.p. o.o.p. are abbreviations for in-phase and out-of phase respectively.
NMe_{2} normal modes are set out in Table 5. If significant coupling occurs between the NMe_{2} units, then further bands would arise, and the problem would have to be treated under the overall symmetry of the molecule (C_{3} or $C_{3 v}$).

Finch et al. carried out an approximate normal coordinate analysis of an XNMe_{2} group with X taken to be of variable mass (1-100 a.m.u.) [12] This showed that for larger X there is likely to be extensive mixing of modes, especially involving the methyl rocks and the $\mathrm{N}-\mathrm{X}$ stretches.

Table 5. Vibrational modes of an isolated - NMe_{2} ligand of C_{s} symmetry

CH_{3} stretches	$3 A^{\prime}+3 A^{\prime \prime}$
CH_{3} deformations	$3 A^{\prime}+3 A^{\prime \prime}$
CH_{3} rocks	$2 A^{\prime \prime}+2 A^{\prime \prime}$
CH_{3} torsion	$A^{\prime}+A^{\prime \prime}$
NC_{2} deformation	A^{\prime}
$\left(-\mathrm{NC}_{2}\right.$ torsion	$\left.A^{\prime \prime}\right)$

In describing the assignment of internal NMe_{2} modes, figures quoted will refer to $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$. The equivalent features in $\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}$ almost always occur at very similar wavenumbers.

The highest-wavenumber fundamentals will, of course, be the $\mathrm{C}-\mathrm{H}$ stretches. Table 6 shows that for an isolated $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ group we expect 6-three of which should be polarized in the Raman spectrum. The anti-

Table 6. Vibrational modes for an NEt_{2} unit of C_{s} symmetry

CH_{3} stretches	$3 A^{\prime}+3 A^{\prime \prime}$
CH_{2} stretches	$2 A^{\prime}+2 A^{\prime \prime}$
CH_{3} deformations	$3 A^{\prime}+3 A^{\prime \prime}$
CH_{2} scisors	$A^{\prime}+A^{\prime \prime}$
CH_{2} wags	$A^{\prime}+A^{\prime \prime}$
CH_{3} rocks	$2 A^{\prime}+2 A^{\prime \prime}$
CH_{2} twists	$A^{\prime}+A^{\prime \prime}$
CH_{2} rocks	$A^{\prime}+A^{\prime \prime}$
CH_{3} torsions	$A^{\prime}+A^{\prime \prime}$
$\mathrm{C}-\mathrm{C}$ stretches	$A^{\prime}+A^{\prime \prime}$
NC_{2} stretches	$A^{\prime}+A^{\prime \prime}$
NC_{2} deformation	A^{\prime}
NCC deformations	$2 A^{\prime}+2 A^{\prime \prime}$

symmetric CH_{3} stretches generally occur at higher wavenumber than the symmetric, and can be assigned here to three medium-strong Raman bands, all depolarized at. 2974, 2931 and $2889 \mathrm{~cm}^{-1}$; all have i.r. counterparts. Of the three predicted symmetric modes. however. only two give observable features-strong and polarized Raman bands at 2843 and $2797 \mathrm{~cm}^{-1}$ (with corresponding i.r. features). These are in the region expected for this type of mode in $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ compounds [14], but no band due to the final symmetric mode could be detected.
The methyl deformations should also give six bands,
three antisymmetric, predicted to fall within the range $1470-1410 \mathrm{~cm}^{-1}$, and three symmetric, of much more variable wavenumber (dependent upon the electronegativity of the attached atom) [15]. Depolarized Raman bands at 1481,1441 and $1417 \mathrm{~cm}^{-1}$ are definitely due to the three antisymmetric deformations, but no polarized Raman bands occur anywhere near these wavenumbers. Strong i.r. absorptions are, however, noted at 1463,1458 and $1318 \mathrm{~cm}^{-1}$, and these are assigned as the deformations of A^{\prime} symmetry. This complete absence of symmetric modes from the Raman spectrum is most unusual.

The modes described so far are probably quite free from "mixing," but this is no longer true when discussing the CH_{3} rocking and NC_{2} stretching modes. Descriptions of modes appearing in the $900-1300 \mathrm{~cm}^{-1}$ region are likely to be approximate, as shown by the calculations of Finch et al. [12], and assignments will be tentative. The following assignments are all quite reasonable, however. Four methyl rocking modes are expected, and can be assigned to four strong i.r. absorptions, at $1277,1190,1150$ and $1086 \mathrm{~cm}^{-1}$. A pglarized Raman band at $1147 \mathrm{~cm}^{-1}$ shows that this corresponds to an A^{\prime} mode, while depolarized bands at 1280 and $1195 \mathrm{~cm}^{-1}$ indicate that these are of $A^{\prime \prime}$ symmetry. The i.r. band at $1086 \mathrm{~cm}^{-1}$ has no Raman counterpart, but is necessarily the remaining A^{\prime} mode.

For the modes which involve only the CH_{3} groups, no evidence has been found for coupling between the NMe_{2} groups. For the NC_{2} stretches, however, it is possible that such coupling may be significant. As Table 5 shows, an isolated NMe_{2} group would give only two such modes ($A^{\prime}+A^{\prime \prime}$), but Table 7 (which will be discussed in detail for the skeletal modes of X $\left.\left(\mathrm{NMe}_{2}\right)_{3}\right)$ reveals that for the "whole molecule" model there would be 4 distinct NC_{2} stretches, all i.r. and Raman active for C_{3} symmetry $(2 A+2 E)$, but only three active modes for $C_{3 v}$ symmetry $\left(A_{1}+2 E ; A_{2}\right.$ totally inactive.)

Table 7. Skeletal vibrations of $\mathrm{X}\left(\mathrm{NC}_{2}\right)_{3}$ units

Mode type	Effective symmetry	
C_{3}	$C_{3 v}$	
$\mathrm{X}-\mathrm{N}$ stretch	$A+E$	$A_{1}+E$
$\mathrm{NC} C_{2}$ stretch	$2 A+2 E$	$A_{1}+A_{2}+2 E$
$\mathrm{X}-\mathrm{N}-\mathrm{C}$ deformation	$2 A+2 E$	$A_{1}+A_{2}+2 E$
NC_{2} deformation	$A+E$	$A_{1}+E$
NC_{2} torsion	$A+E$	$A_{2}+E$

There is some uncertainty as to the position expected of the antisymmetric NC_{2} stretch. Thus, DURIG and CASPER [4] favour a value of $c a .1250 \mathrm{~cm}^{-1}$, while other workers [3.6] favour a lower wavenumber. Since in HNMe_{2} the NC_{2} stretches are at $930 \mathrm{~cm}^{-1}\left(A^{\prime}\right)$ and $1024 \mathrm{~cm}^{-1}\left(A^{\prime \prime}\right)$, we follow the latter alternative. In the Raman spectrum of $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ we observe bands at $963 \mathrm{~cm}^{-1}$ (pol) and $981 \mathrm{~cm}^{-1}$ (depol.), which are clearly
due to symmetric and antisymmetric modes respectively. There are very strong i.r. absorptions corresponding to both of these and, in addition, absorptions at 1069 and $947 \mathrm{~cm}^{-1}$ which are of medium intensity in the liquid-phase, and strong in solid-phase spectra. These can also be assigned as NC_{2} stretching fundamentals and we can therefore conclude (i) that there is sufficient vibrational coupling between the NMe_{2} units to break down the "local symmetry" approximation for NC_{2} stretches, and (ii) that the effective molecular symmetry must be C_{3} rather than C_{30}, since in the latter case only three stretches would be seen.

The $\mathrm{X}-\mathrm{N}-\mathrm{C}$ and NC_{2} deformations are most conveniently discussed as molecular skeletal modes, leaving only the methyl torsions to be assigned in this section. In HNMe_{2} these are at $290 \mathrm{~cm}^{-1}\left(A^{\prime}\right)$ and $250 \mathrm{~cm}^{-1}\left(A^{\prime \prime}\right)$ [11] in $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ a polarized Raman band is present at $295 \mathrm{~cm}^{-1}$, while in $\operatorname{As}\left(\mathrm{NMe}_{2}\right)_{3}$ a very similar feature is seen at $273 \mathrm{~cm}^{-1}$; these are assigned to the symmetric torsion, and no evidence was found for the antisymmetric mode.

(b) Internal NEt_{2} modes

In this discussion data from $\mathrm{As}\left(\mathrm{NEt}_{2}\right)_{3}$ will generally be used for illustration, as the spectrum of $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$ was less well resolved. In addition, the greater complexity of the data will lead to uncertainties in the assignments. and only very brief discussions will be given. The numbers and symmetry types of vibrations for an NEt_{2} group of C_{s} symmetry are summarised in Table 6. Ten CH stretches should be present, and there are 10 observed wavenumbers, but assignment to specific modes is not easy. The assignments in Table 4 are, however, consistent with accepted characteristic wavenumbers in this region.

Methylene scissors deformation modes, when the CH_{2} is adjacent to an amine residue, are generally within the range $1475-1445 \mathrm{~cm}^{-1}$ [16]. We have two candidates, at 1485 and $1462 \mathrm{~cm}^{-1}$; the polarizations of neither could be detected in the Raman spectrum, so they are assigned arbitrarily as $A^{\prime \prime}, A^{\prime}$ respectively. Six bands can be assigned as CH_{3} deformations, 1452$1323 \mathrm{~cm}^{-1}$ (Table 4).

All of the remaining CH_{2} deformations (twist, wag, rock) and CH_{3} rocking modes can be assigned similarly to features in the normaily expected regions, and are summarised in Table 4.
$\mathrm{C}-\mathrm{C}$ stretching modes in a number of diethylamido derivatives of boron are assigned ${ }^{17}$ as $1008 \mathrm{~cm}^{-1}$ (symmetric) and $1080 \mathrm{~cm}^{-1}$ (antisymmetric). In As$\left(\mathrm{NEt}_{2}\right)_{3}$, a medium-intensity, polarized Raman band is seen at $1020 \mathrm{~cm}^{-1}$, and is assigned as the A^{\prime} mode (i.r. at $1017 \mathrm{~cm}^{-1}$). The only band near this which could be due to the $A^{\prime \prime}$ mode is at $1007 \mathrm{~cm}^{-1}$ (of undetermined polarization).

As for the $\mathrm{X}\left(\mathrm{NMe}_{2}\right)_{3}$ compounds, more NC_{2} stretches are seen than can be accounted for by a single, uncoupled NR_{2} group. In $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$, four bands are seen. as expected for a C_{3} model, at $973.887 \mathrm{~cm}^{-1}(A$ symmetry). $942.917 \mathrm{~cm}^{-1}(E$ symmetry $) . \operatorname{As}\left(\mathrm{NEt}_{2}\right)_{3}$
gives only three such bands, $876(A) .917,898 \mathrm{~cm}^{-1}$ (E)-but the same symmetry is likely to apply here also. These wavenumbers are lower than for the NMe_{2} compounds. This may be due to mass effects, or to coupling with $\nu \mathrm{C}-\mathrm{C}$ or CH_{3} rocks and CH_{2} twists.

As for the NMe_{2} groups, the $\mathrm{X}-\mathrm{N}-\mathrm{C}$ and NC_{2} deformations are discussed as skeletal modes. This leaves only the CH_{3} torsion-for which a Raman band (polarized) at $297 \mathrm{~cm}^{-1}$ is assigned as the A^{\prime} mode, with a depolarized feature at $333 \mathrm{~cm}^{-1}$ possibly being the $A^{\prime \prime}$ mode (As compound); the former feature is at $311 \mathrm{~cm}^{-1}$ in $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$.
(c) Skeletal modes of $\mathrm{P}\left(\mathrm{NR}_{2}\right)_{3}$

Detailed discussion will be given for $R=M e$, as assignments for the ethyl analogue are very similar. Predicted modes are summarised in Table 7. The NC_{2} stretches have already been described, and the nexthighest fundamentals will be the PN_{3} antisymmetric stretches. Goubeau et al. showed [6] that for OP$\left(\mathrm{NMe}_{2}\right)_{3}$ and $\mathrm{SP}\left(\mathrm{NMe}_{2}\right)_{3}$ these were at $752.742 \mathrm{~cm}^{-1}$ respectively, with $v_{s} \mathrm{PN}_{3}$ at $636,722 \mathrm{~cm}^{-1}$ respectively. Exocyclic PN stretches in $\mathrm{P}_{3} \mathrm{~N}_{3} \mathrm{~F}_{6-n}\left(\mathrm{NMe}_{2}\right)_{n}$ gave bands at $680 \mathrm{~cm}^{-1}$ (symmetric) and $748 \mathrm{~cm}^{-1}$ (antisymmetric) [18]. $v_{s} \mathrm{PN}_{3}$ in $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ is very easily assigned to a very strong, polarized Raman band at $671 \mathrm{~cm}^{-1}$, while $v_{a s}$ is apparently only slightly higher, at $700 \mathrm{~cm}^{-1}$.

Both PN_{3} modes are shifted to lower wavenumber in $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{3}$, probably due to simple mass effects (v_{s} $655 \mathrm{~cm}^{-1}, v_{a s} 667 \mathrm{~cm}^{-1}$).

PNC and NC_{2} deformation modes will certainly be mixed extensively, and so assignments will be approximate. In $\mathrm{HNMe}_{2}, \delta \mathrm{NC}_{2}$ is at $397 \mathrm{~cm}^{-1}$ [12], and at $393 \mathrm{~cm}^{-1}$ in MeNPF_{2} [3]. Consequently, a tentative assignment of two NC_{2} deformations in $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ is made to bands at 390 (i.r.), $392 \mathrm{~cm}^{-1}$ (Raman, unknown polarization) and $405 \mathrm{~cm}^{-1}$ (i.r. only) cm^{-1}. It is impossible to differentiate between that of A and that of E symmetry. This leaves candidates for δ PNC as follows: (symmetric) $337 \mathrm{~cm}^{-1}$ (strong, polarized Raman band); (antisymmetric) $494 \mathrm{~cm}^{-1}$ (i.r.)/497 cm^{-1} (Raman). and $420 \mathrm{~cm}^{-1}$ (i.r.)/416 cm^{-1} (Raman). No evidence was found for the second symmetric deformation.

Two depolarized Raman bands are seen, at 197 and $127 \mathrm{~cm}^{-1}$, due to the NC_{2} torsion and $\delta_{a s} \mathrm{PN}_{3}$ respectively. The $\delta_{s} \mathrm{PN}_{3}$ would be expected below $100 \mathrm{~cm}^{-1}$, and was not detected, while the symmetric torsion mode is likely to only weakly allowed, since it is derived from an A_{2} mode (forbidden) under $C_{3 v}$ symmetry.
(d) Skeletal modes of $\mathrm{As}\left(\mathrm{NR}_{2}\right)_{3}$

As in (c) above. the case with $\mathrm{R}=\mathrm{Me}$ will be considered in greater detail. The NC_{2} stretches, as for $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ are all above $900 \mathrm{~cm}^{-1}$, the A modes giving a broad. polarized feature with maxima at 951 and $937 \mathrm{~cm}^{-1}$, the E modes being at 1063 and (probably) $1024 \mathrm{~cm}^{-1}$.

The next features to be considered at those due to v_{s}
and $v_{a s}$ AsN $_{3}$. Kober has reported [19] that $v \mathrm{AsN}$ in several $\mathrm{Me}_{2} \mathrm{AsNR} 2_{2}$ compounds is always close to $580 \mathrm{~cm}^{-1}$, while DURIG showed that in $\mathrm{Me}_{2} \mathrm{NAsCl}_{2}$ it is at $585 \mathrm{~cm}^{-1}$ (trans) or $569 \mathrm{~cm}^{-1}$ (gauche) [4]. Thus, in $\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}$ it is clear that $v_{5} \mathrm{AsN}_{3}$ corresponds to the strong, polarized Raman band at $574 \mathrm{~cm}^{-1}$ (with an i.r. counterpart). In $P\left(\mathrm{NR}_{2}\right)_{3}$, as seen above v_{s} and $v_{a s} \mathrm{PN}_{3}$ are separated by $c a .20 \mathrm{~cm}^{-1}$. It is a general rule that on increasing the mass of the central atom X, the separation between v_{s} and $v_{a s}$ for XY_{n} decreases. In fact no other band is seen between 580 and $600 \mathrm{~cm}^{-1}$ for $\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}$ or $\mathrm{As}\left(\mathrm{NEt}_{2}\right)_{3}$, and thus v_{s} and $v_{a s}$ appear to be accidentally degenerate. Support for this view comes from the observation of only one $\nu \mathrm{SN}$ band in $\mathrm{S}\left(\mathrm{NMe}_{2}\right)_{2}$ [20], and only one $v \mathrm{SbN}$ in $\mathrm{Sb}\left(\mathrm{NMe}_{2}\right)_{3}$ (the only assignment given for this species) [21].

As in the phosphorus analogues, some mixing is expected between $\delta \mathrm{AsNC}$ and $\delta \mathrm{NC}_{2}$ modes, so descriptions will be approximate. An i.r. band at $480 \mathrm{~cm}^{-1}$ in $\mathrm{As}\left(\mathrm{NMe}_{2}\right)_{3}$ (no Raman counterpart) is assigned as $\delta_{a s} A s N C$, while the equivalent symmetric mode is at $308 \mathrm{~cm}^{-1}$ (strong, polarized Raman band), and a second antisymmetric mode at $339 \mathrm{~cm}^{-1}$ (depolarized, Raman only). The symmetric NC_{2} deformation is at $397 \mathrm{~cm}^{-1}$ (strong, polarized Raman band), with an antisymmetric deformation at $378 \mathrm{~cm}^{-1}$.

An NC_{2} torsional mode gives a depolarized Raman band at $153 \mathrm{~cm}^{-1}$, with $\delta_{a 5} A s N_{3}$ at $109 \mathrm{~cm}^{-1}$. The symmetric AsN_{3} deformation ($<100 \mathrm{~cm}^{-1}$) was not detected.

CONCLUSION

We have been able to assign satisfactorily the internal modes of the NR_{2} units in $\mathrm{X}\left(\mathrm{NR}_{2}\right)_{3}$, where $\mathrm{X}=\mathrm{P}$ or As; $\mathbf{R}=\mathrm{Me}$ or Et. Except for NC_{2} modes, a model involving non-interacting NR_{2} units, of C_{s} symmetry, was sufficient. For skeletal modes (including NC_{2}) the possible symmetries were C_{3} and $C_{3 v}$. For $v \mathrm{NC}_{2}$ there were definitely too many fundamental bands for the latter, and so C_{3} appears to be the effective molecular symmetry.

REFERENCES

[1] D. C. Bradley, Adv. Inorg. Radiochem. 15, 259 (1972).
[2] R. B. Harvey and H. E. Mayhood. Can. J. Chem. 23, 1552 (1955).
[3] M. A. Fleming, R. J. Wyma and R. C. Taylor, Spectrochim. Acta. 21A, 1189 (1965).
[4] J. R. Durig and J. M. Casper, J. Mol. Struct. 10. 427 (1971).
[5] F. Rauchle. W. Pöhl, B. Blaich and J. Goubeau, Ber. Buns. Ges. Phy's. Chem. 75, 66 (1971).
[6] D. Kottgen. H. Stoll. A. Lentz, R. Pantzer and H. Goubeau. Z. Anorg. Chem. 385, 56 (1971).
[7] R. Pantzer. W. D. Burkhardt, E. Walter and J. Goubeau. Z. Anorg. Chem. 416. 297 (1975).
[8] A. Vilkov. L. S. Khaikin and V. V. Evdokimov, J. Struct Chem. LiS.S.R. 13. 4 (1972).
[9] A. B. Burg and P. J. Slota. J. Am. Chem. Soc. 80, 1107 (1958).
[10] K. Moedritzer. Chem. Ber. 92. 2637 (1959).
[11] J. R. Barcello and H. Bellanato. Spectrochim Acta. 8. 27 (1956).
[12] A. Finch, I. J. Hyams and D. Steele, J. Mol. Spectrosc. 16, 103 (1965).
[13] F. C. Kohout and F. W. Lampe, J. Am. Chem. Soc. 87, 5796 (1965).
[14] N. B. Coithup, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 2nd edition. p. 222. Academic Press, New York (1975).
[15] ibid. pp. 226-227.
[16] ibid. p. 228.
[17] H. J. Becher and H. T. Baechle. Z. Phis. (hem 48. 359 (1966).
[18] D. B. Sowerby, J. Chem. Soc. A. 3487 (1971)
[19] F. Kober. Z. Anory. Chcm. 400. 285119731.
[20] R. Paetzold and E. Rönsch, Spectrochim. Acta. 26A. 569 (1970).
[21] A. Kiennemann, G. Levy, F. Schué and C. Taniélian. J. Organomet. Chem. 35. 143 (1972).

