35 (23-52) mg./kg., respectively. Subsequent doses depressed the polysynaptic pathway to a greater degree than the monosynaptic reflex. The duration of the effect was from 40 to 60 min.

Potentiation of the loss of righting reflex induced by hexobarbital (100 mg./kg.) was observed in the mouse while ether-induced loss of righting reflex was much more influenced in the rat. When administered to mice just recovering from hexobarbital hypnosis¹⁵ recurrence of the loss of righting reflex resulted in 100% of the animals tested.

Discussion

The exact mode of action of these substituted biurets on inhibition of gastric secretion and incidence of ulcer formation is not clear. Various classes of compounds will inhibit these gastric parameters in the ligated rat (*i.e.*, anticholinergics, antispasmodics, carbonic anhydrase inhibitors, CNS depressants). While no data are available on possible inhibition of carbonic anhydrase, no evidence of diuresis (qualitative observed with acetazolamide) was noted at near-lethal doses. Phenethylbiuret did not demonstrate properties of anticholinergic or antispasmodic agents as tested by the antichromodacryorrhea and charcoal meal test in animals. It possesses some action at the level of the central nervous system as evidenced by anticonvulsant activity, inhibition of poly- and monosynaptic reflexes, and conditioned avoidance response. The potentiation and recurrence of hexobarbitalinduced loss of righting reflex is further evidence of a central effect, according to the interpretation of Brodie, et al.¹⁵ However, by comparison with other central nervous system agents, such as phenobarbital and meprobamate, these effects are relatively weak. Doses of phenobarbital and meprobamate required to produce comparable protection against ulcer formation produced signs of neurological depression not observed with phenethylbiuret.

(15) B. Brodie, P. A. Shore, S. L. Silver, and R. Pulver, *Nature*, **175**, 1133 (1955).

Bacteriostats. VI.^{1a} Bacteriostatic Activities of Some Substituted Guanidines^{1b}

A. F. MCKAY, D. L. GARMAISE, H. A. BAKER, L. R. HAWKINS, V. FALTA, R. GAUDRY, AND G. Y. PARIS

Monsanto Canada Limited, Montreal, Quebec, and Ayerst, McKenna and Harrison Limited, Montreal, Quebec

Received April 3, 1963

A number of guanidine derivatives were prepared for screening for antibacterial activity. Some of these derivatives were quite active against both Gram-positive and Gram-negative bacteria. The bacteriostatic activity of 1,10-di(3,4-dichlorobenzylguanidino)decane dihydrochloride was comparable with Hibitane.

The performance of 1,6-di(4-chlorophenyldiguanido)hexane (Hibitane)² as a bacteriostat prompted the synthesis of a number of guanidines for screening as antibacterial agents. Although it was reported² that 1,6-di(4-chlorophenylguanidino)hexane possessed $1/_{30}$ The guanidine derivatives generally were prepared by condensing amines with the corresponding S-methylisothiuronium iodides. New thioureas and isothiuronium salts prepared during this investigation are listed in Tables I and II, respectively. Tables III to VII,

TABLE I

THIOUREAS, (RNH)₂CS

							Anal	yses, %—			
		Yield,	Empirical	~C)	—Н	[]	N	<i></i>	s
R	M.p., °C.	%	formula	Caled.	Found	Calcd.	Found	Calcd.	Found	Caled.	Found
4-Methylbenzyl	$135 - 136^{a}$	100	$C_{17}H_{20}N_2S$	71.80	72.02	7.09	7.33	9.85	9.81	11.28	11.26
$3,4 ext{-Dimethylbenzyl}$	$98 - 99^{b}$	99	$\mathrm{C_{19}H_{24}N_{2}S}$	73.03	72.87	7.74	7.66	8.97	8.78	10.26	10.36
3,4-Dichlorophenethyl	$124 - 125^{\circ}$	82	$\mathrm{C_{17}H_{16}Cl_4N_2S}^d$	48.36	48.54	3.82	3.96	6.64	6.82	7.59	7.58
α -Naphthylmethyl	$168 - 169^{o}$	70	$\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{S}$	77.48	77.34	5.65	5.62	7.86	7.35	8.99	8.60
3,4-Dimethoxyphenethyl	$135 - 136^{a}$	9 3	$\mathrm{C_{21}H_{28}N_2O_4S}$	62.35	62.20	6.98	6.90	6.93	7.22	7.93	7.98
2,5-Dichlorobenzyl	169 - 170'	76	$\mathrm{C}_{15}\mathrm{H}_{12}\mathrm{Cl_4N_2S}$	45.71	46.08	3.07	3.13	7.11	7.39	8.13	8.05
Furfuryl	$83 - 85^{b}$	88	$C_{11}H_{12}N_2O_2S$	55.90	55.51	5.12	5.33	11.86	11.60	13.57	13.35

^a Crystallized from ethanol. ^b From aqueous ethanol. ^e From ether-hexane. ^d Calcd.: Cl, 33.86. Found: Cl, 33.60. ^e Crystallized from aqueous dimethylformamide. ^f From acetone. ^g Calcd.: Cl, 35.98. Found: Cl, 36.06.

the antibacterial activity of Hibitane, the benzylguanidine derivatives were expected³ to exhibit higher bacteriostatic activities than the corresponding phenylguanidines.

(2) G. E. Davies, J. Francis, A. R. Martin, F. L. Rose, and G. Swain, Brit. J. Pharmacol., 9, 192 (1954).

(3) A. F. McKay, Soap and Chemical Specialties, 36, No. 11, 99 (1960).

inclusive, describe the properties of the substituted guanidines.

In the disubstituted guanidine series, *n*-nonyl, *n*-decyl, *n*-undecyl, and *n*-dodecyl derivatives of 4chlorobenzyl- and 3,4-dichlorobenzylguanidines displayed the highest bacteriostatic activities while in the benzylguanidine series, the undecyl and dodecyl derivatives were the most active (see Table VIII). N-Nonyl-N'-3,4-dichlorobenzylguanidine hydrochloride exhibited

^{(1) (}a) Paper V: D. L. Garmaise, R. W. Kay, R. Gaudry, H. A. Baker, and A. F. McKay, *Can. J. Chem.*, **39**, 1493 (1961); (b) Contribution No. 39, Monsanto Canada Limited.

			Viold	Emirical		(1e		Analys	Λ nalyses, $\tilde{\chi}$	2		v		
К	R′	M.p., °C.		formula	Caled.	Found	Caled.	_	Caled.	Found	Caled.	Found	Caled.	Found	
lsenzyl	lí	-001-66	16	C ₉ H ₁₃ IN ₂ S	35.08	35.32	4.25	4.32	41.17	41.38	60.6		10.40	10.46	
4-Chlorobenzyl	Н	92 - 95	06	C ₉ H ₁₂ CIIN ₂ S	31.54	31.10	3.53		47.38	47.64	8.18	8.09	9.36	9.44	
2,5-Dichlorobenzyl	JI	169-170	s_{\pm}^{\pm}	C ₉ H ₁₁ Cl ₂ IN ₂ S	28.66	28.49	2.94		52.46	52.49	7.43	7.58	8.50	8.66	
3,4-Dichlorobenzyl	11	811711	95	C ₉ H ₁₁ Cl ₂ IN ₂ S	28.66	28.96	2.94		52.46	52.16	7.43	7.40	8.50	8.37	
4-Chlorobenzyl	4-Chlorobenzyl	141142	73	C ₁₆ H ₁₇ Cl ₂ IN ₂ S	41.13	41.31	3.67		41.33	41.54	6.00	6.16	6.86	6.85	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	$175-176^{b}$	85	C ₁₆ H ₁₆ Cl ₅ N ₂ S	43.22	43.28	3.46		39,87	30.50	6.30	6.55	7.21	7.19	
3,4-Dichlorobenzyl	2-Tetrahydropyrano-	711-611	9 <u>8</u>	ClaH21Cl2IN2OS	37.91	37.92	4.45		41.36	41.35	5.90	5.92	6.75	6.86	
	methyl														
4-Methylbenzyl	4-Methylbenzyl	129 - 130	100	$\mathrm{C}_{18}\mathrm{H}_{23}\mathrm{IN}_{28}\mathrm{S}$	50.70	50.81	5.44	5.39	29.76	29.74	6.57	6.58	7.52	7.57	
3,4-1)imethylbenzyl	3,4-1)imethylbenzyl	120 - 120. 5	100	$\mathrm{C}_{20}\mathrm{H}_{27}\mathrm{IN}_{2S}$	52.86	52.64	5.99	6.06	27.93	27.95	6.17	6.00	7 06	66.9	
3,4-Dichlorophenethyl	3,4-Dichlorophenethyl	125~126	76	$C_{18}H_{19}Cl_4IN_2S$	38.33	38.65	3.40	3.41	47.64	47.54	4.97	4.86	5.68	5.76	
α -Naphthylmethyl	α -Naphthylmethyl	113 - 115	66	C26H29IN2S · C2H3OH	57.36	57.04	5.37	5.36	23.30	23.03	5.15	4.94	5.89	6.78	
2,5-Dichlorobenzyl	2,5-Dichlorobenzyl	204 - 206	22	CieHisCl4IN ₂ S	35.85	35.44	2.82	2.80	50.14	50.18	5.23	5.37	5.98	6.10	
n-Dodecyl	n-Dodecyl	61 - 62	ŝ	$\mathrm{C}_{26}\mathrm{H}_{55}\mathrm{IN}_{2S}$	56.29	56.03	9.93	1.7.6	22.8S	23.26	5.05	5.34	5.78	6.05	
Furfuryl	Furfuryl	123-125	62	Cl ₂ H ₁₅ IN ₂ O ₅ S	38.11	38.05	00 [.] f	4.08	33.56	33.21	01-1	7.63	NT X	5.58	
^a All of the compoun	a All of the compounds were recrystallized from ethanol-ether. b Hydroch	m ethanolethe	эг. ⁶ Цу	drochloride salt.											·

outstanding activity against both Gram-positive and Gram-negative bacteria.

Among the trisubstituted guanidines listed in Table IX, N,N'-di(3,4-dichlorobenzyl)-N''-benzyl-, N,N'-di(3,4-dichlorobenzyl)-N''-(α -naphthylmethyl)-, N,N'.-N''-tri(3,4-dichlorobenzyl)guanidines were most active against Gram-positive microorganisms. These trisubstituted guanidines were comparable in antibacterial activity with Hibitane but their performance in the presence of 10% serum was much lower (cf. values in Tables IX and X). Serum drastically lowered the bacteriostatic activities of all di- and trisubstituted guanidines evaluated.

The α,ω -di(3,4-dichlorobenzyl)alkanes (Table X) exhibited quite similar bacteriostatic activities against both Gram-negative and Gram-positive bacteria. 1,10-Di(3,4-dichlorobenzylguanidino)decane exhibited antibacterial activity comparable with Hibitane both in the absence and presence of 10% serum. The α,ω di(substituted-benzylguanidino)alkanes in general performed better in the presence of serum than the simple di- and trisubstituted guanidines.

The aminoguanidine moiety required a longer-chain aliphatic substituent to reach optimum bacteriostatic activity compared with the benzyl- and substituted benzylguanidines. Tetradecylaminoguanidine displayed the highest activity in this series (cf. Table XI).

Some of the guanidine derivatives listed in Tables III to VII were evaluated for fungistatic activities. A few of the more active compounds are listed in Table XII. N-n-Nonyl-N'-3,4-dichlorobenzylguanidine hydrochloride possessed oustanding activity against both *Microsporum gypseum* and *Trichophyton granulosum*.

Experimental⁴

Symmetrically Substituted Thioureas.—4-Methylbenzylamine (121 g., 1.0 mole) was added to a solution of carbon disulfide (38 g., 0.50 mole) in ethanol (500 ml.) at 0–30° over a 30 min. period, and the suspension was heated under reflux for 22 hr. The solution on concentration and cooling gave 1,3-di(4-methylbenzyl)-thiourea, m.p. 130–135°, yield 142 g. (100%). Recrystallization from ethanol raised the m.p. to 135–136°.

The thioureas listed in Table I were prepared in the same general way. In some cases the reagents were refluxed in butanol rather than ethanol.

2,5-Dichlorobenzyl Isothiocyanate.—2,5-Dichlorobenzyl isothiocyanate, b.p. $150-151^{\circ}$ (1 mm.), was prepared in 76% yield by the method previously⁵ described for the preparation of isothiocyanates.

Anal. Caled. for $C_8H_4Cl_2NS$: C, 44.10; H, 2.31; Cl, 32.50; N, 6.42; S, 14.67. Found: C, 44.22; H, 2.30; Cl, 32.52; N, 6.82; S, 14.64.

2,5-Dichlorobenzylthiourea.—Aqueous ammonium hydroxide (10 ml. of 28% solution) was added to 2,5-dichlorobenzyl isothiocyanate (10.0 g., 0.05 mole) in ethanol (50 ml.) and the solution was allowed to stand for 1 hr. After evaporation of the solution, the residue was crystallized from dilute ethanol to give material of m.p. 176–177°, yield 8.8 g. (82%). Anal. Caled. for C₈H₈Cl₄IN₃: C, 46.53; H, 5.31; halogen.

Anal. Caled. for $C_8H_8Cl_4IN_3$; C, 46.53; H, 5.31; halogen, 41.65; N, 6.51. Found: C, 46.56; H, 5.36; halogen, 41.19; N, 6.85.

N-(2-Tetrahydropyranomethyl)-N'-(3,4-dichiorobenzyl)thiourea.--A solution of 3,4-dichlorobenzyl isothiocyanate (10.9 g., 0.05 mole) and 2-aminomethyltetrahydropyran (5.8 g., 0.05 mole) in ethanol (20 ml.) was allowed to stand overnight. The

(5) A. F. McKay, D. L. Garmaise, R. Gaudry, H. A. Baker, G. Y. Paris, R. W. Kay, G. E. Just, and R. Schwartz, J. Am. Chem. Soc., 81, 4328 (1959).

S-METHYLISOTHIOUREA HYDRIODIDES, RNHC(SCH₃) =NR'·HI

TABLE II

⁽⁴⁾ All meeting points are uncorrected. This work was completed before the requirement for corrected melting points was introduced by American Chemical Society journals. Microanalyses were performed by Micro-Tech Laboratories, Skokie, Illinois, and by Dr. C. Daessle, Montreal, Quebec.

					ļ			——Analyses, %	.86, %			(
¢	ŝ		Yield,	Empirical		(]	H-H-	E.			-N	Found
Ч	.н	M.p., 'C.	%	Iormula	Caled.	round	Calcu.	DEIDO J	Calcu.	Dino.	Called.	Dino.r
4-Chlorobenzyl	4-Chlorobenzyl	150-151"."	70	Cli5H16Cl2IN3	41.27	41.37	3.70	4.05	45.35	45.10	9.64	9.70
4-Chlorobenzyl	4-Chlorobenzyl	$150-151.5^{c,d}$	86	C ₁₅ H ₁₆ Cl ₃ N ₃	52.14	52.09	4.68	4.55	30.86	30.96	12.19	12.21
3,4-Dichlorobenzyl	4-Chlorobenzyl	$166.5 - 168^{a,b}$	79	C ₁₅ H ₁₅ Cl ₃ IN ₃	38.27	38.41	3.21	3.40	49.56	49.78	8.93	8.44
3,4-Dichlorobenzyl	2,4-Dichlorobenzyl	$189 - 190^{a,e}$	42	C ₁₅ H ₁₄ Cl ₄ IN ₃	35.67	35.52	2.79	3.04	53.20	52.94	8.32	8.32
3,4-Dichlorobenzyl	2,4-Dichlorobenzyl	$160 - 161^{c,d}$	93	C ₁₆ H ₁₄ Cl ₆ N ₃	43.46	43.40	3.41	3.50	42.77	43.16	10.16	10.16
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	$148-150^{a,f}$	69	C ₁₅ H ₁₄ Cl ₄ IN ₃	35.67	35.21	2.79	3.08	53.20	53.32	8.32	8.62
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	$153-154^{e,d}$	93	C ₁₅ H ₁₄ Cl ₅ N ₃	43.46	43.43	3.41	3.62	42.77	42.96	10.16	9.84
3,4-Dichlorobenzyl	n-Propyl	117.5-118.5"."	95	C ₁₁ H ₁₆ Cl ₂ IN ₃	34.04	34.13	4.16	4.13	50.97	50.85	10.83	10.57
3,4-Dichlorobenzyl	$n ext{-Butyl}$	110-111 "	6 6	C ₁₂ H ₁₈ Cl ₂ IN ₃	35.84	35.90	4.51	4.51	49.19	49.20	10.45	10.44
3,4-Dichlorobenzyl	n-Amvl	$124-126^{a,y}$	88	C ₁₃ H ₂₀ Cl ₂ IN ₃	37.52	37.72	4.84	4.82	47.54	47.25	10.10	9.96
3.4-Dichlorobenzyl	n-Hexvl	107-108".0	88	C ₁₄ H ₂₂ Cl ₂ IN ₃	39.09	39.28	5.16	5.23	45.98	45.85	9.77	9.83
3,4-Dichlorobenzyl	$n ext{-Heptvl}$	$109.2 - 111^{a'}$	81	C15H24Cl2IN3	40.56	40.59	5.45	5.60	44.53	44.54	9.46	9.31
3,4-Dichlorobenzyl	n-Octvl	$109-110^{a_i}$	67	C ₁₆ H ₂₆ Cl ₂ IN ₃	41.94	42.12	5.72	5.91	43.17	43.34	9.17	8.98
3,4-Dichlorobenzyl	n-Nonvl	$95-96^{a,f}$	66	C17H28Cl2IN3	43.23	43.16	5.98	6.01	41.90	41.50	8.90	9.18
3,4-Dichlorobenzyl	n-Nonvl	65–67°, ^J	95	C ₁₇ H ₂₈ Cl ₃ N ₃	53.62	53.42	7.41	7.13	27.93	28.00	11.04	11.35
3.4-Dichlorobenzvl	$n ext{-Decvl}$	$98-100^{a,h}$	84	C ₁₈ H ₂₀ Cl ₂ IN ₃	44.46	44.62	6.22	6.21	40.68	40.67	8.64	8.64
3.4-Dichlorobenzyl	n-Decvl	$69-71^{e,f}$	66	C ₁₈ H ₃₆ Cl ₃ N ₃	54.75	54.49	7.66	7.65	26.94	27.15	10.64	10.43
3.4-Dichlorobenzyl	n-Undeevl	$94 5-95^{a,h}$	85	C, H, Cl, IN,	45.61	45.53	6.45	6.40	39.44	39.83	8.40	8.50
3.4-Dichlorobenzyl	n-Undecvl	$67-69^{e,f}$	95	C ₁₀ H ₃₂ Cl ₃ N ₃	55.81	55.89	7.89	7.90	26.02	26.39	10.28	10.40
3.4-Dichlorobenzyl	n-Dodecvl	<i>∎</i> "96–96	67	C.,H.,Cl.IN.	46.70	46.65	6.66	6.46	38.47	38.90	8.17	8.39
3.4-Dichlorobenzyl	n-Dodecvl	$69-70^{e,i}$	98	C ₂₀ H ₃₄ Cl ₃ N ₃	56.80	56.40	8.10	8.16	25.15	24.96	9.94	9.74
4-Chlorobenzvl	n-Nonvl	85-86 ^a . ^p	96	CITH. CIIN.	46.63	46.92	6.68	6.71	37.09	36.98	09.60	9.55
4-Chlorobenzyl	n-Nonvl	67-68°,"	66	Cr1H20Cl2N3	58.95	58.79	8.44	8.35	20.47	20.23	12.13	11.95
4-Chlorobenzyl	$n ext{-Decvl}$	$85.5 - 86.5^{a,y}$	69	C ₁₈ H ₃₁ CIIN ₃	47.84	47.92	6.92	6.92	35.94	36.31	9.30	9.08
4-Chlorobenzyl	$n-\mathrm{Decyl}$	$62-63^{c,a}$	100	C ₁₈ H ₃₁ Cl ₂ N ₃	59.99	59.70	8.67	8.69	19.68	19.55	11.66	11.34
4-Chlorobenzyl	$n ext{-Undecyl}$	$94-94.5^{a,\theta}$	95	C ₁₉ H ₃₃ CIIN ₃	48.98	49.27	7.14	7.33	34.85	34.75	9.02	8.97
4-Chlorobenzyl	n-Undecyl	$65-67^{c,g}$	98	$C_{19}H_{33}Cl_2N_3$	60.95	61.05	8.88	8.85	18.94	19.04	11.22	11.35
4-Chlorobenzyl	$n ext{-}Dodecyl$	$92-93^{a, y}$	93	$C_{20}H_{35}CHN_3$	50.05	50.12	7.35	7.40	33.84	34.03	8.76	8.65
4-Chlorobenzyl	$n ext{-Dodecyl}$	65-67°, ⁹	66	$C_{20}H_{36}Cl_2N_3$	61.84	61.53	9.08	9.15	18.26	18.32	10.82	10.84
4-Chlorobenzyl	$n ext{-Hexadecyl}$	$85-86^{a.f}$	67	C ₂₄ H ₄₃ CIIN ₃	53.78	53.66	8.09	8.23	30.29	30.48	7.84	7.74
Benzyl	$n ext{-Heptyl}$	92-93°.1	56	C ₁₅ H ₂₆ CIN ₃	63.48	63.21	9.24	9.23	12.49	12.57	14.81	14.59
\mathbf{Benzyl}	$n ext{-Octyl}$	70-72a.5	90	$C_{16}H_{28}IN_3$	49.36	49.47	7.25	7.09	32.60	32.60	10.79	10.71
${f Benzyl}$	$n ext{-Oetyl}$	85-86°J	74	C ₁₆ H ₂₈ CIN ₃	64.51	64.34	9.47	9.29	11.90	12.11	14.11	14.56
Benzyl	$n ext{-Nonyl}$	$84-85^{a.f}$	98	$C_{17}H_{30}IN_3$	50.62	50.43	7.50	7.56	31.47	31.60	10.42	10.50
Benzyl	n-Nonyl	$102 - 103^{c.1}$	16	C ₁₇ H ₃₀ CIN ₃	65.46	65.18	0.70	9.53	11.37	11.18	13.47	13.59
Benzyl	n-Decyl	90-91a.f	96	$C_{18}H_{32}IN_3$	51.79	51.72	7.74	7.72	30.41	30.42	10.07	10.26
Benzyl	n-I)ecyl	$106-107^{c.J}$	66	C ₁₈ H ₃₂ CIN ₃	66.33	66.31	06.6	9.76	10.88	11.16	12.89	12.82
Benzyl	$n ext{-Undecyl}$	87-894.5	90	$C_{19}H_{34}IN_3$	52.89	52.88	7.94	8.00	29.42	29.24	9.74	9.62
Benzyl	n-Undecyl	110-1110-1	90	C ₁₉ H ₃₄ CIN ₃	67.13	67.14	10.08	9.97	10.43	10.68	12.36	12.25
Benzyl	n-Dodecyl	$85.5 - 86.5^{a.f}$	98	$C_{20}H_{36}IN_3$	53.92	54.25	8.15	8.00	28.49	28.70	9.43	9.22
Benzyl	n-Dodecyl	113-114°.1	100	C ₂₀ H ₃₆ CIN ₃	67.86	68.19	10.25	10.27	10.02	10.07	11.87	11.89
rdriodide.	^b Crystallized from acetone–ether.	 Hvdrochloride. 	^d Crystallized fr	^d Crystallized from ethanol-chloroform.	. ^e From ethanol.		f From ethanol-ether.	anol-ether.		" From ethyl acetate-ether.	ate-ether.	h From
	f From water.		\$									

TABLE III N,N'-DISUBSTITUTED GUANDINES RNHC(=NH)NHR'

			STITUTED (AUAN)	IDINES,	RISUBSTITUTED GUANIDINES, RAHO = AR') NHR''									
Я	R,	R.''	M.p. °C.	Yield, %	Finpirical formula	c = -0	Fornd	Caled 1		Network Calad	Found	Caled		
2.4-Dichlorobenzyl	3.4-1)ichlorohenzyl	Methyl	$108-200^{a}$ ^b	73	C. H. CLIN.	64) <u>7</u> 8	06-16	_		ын 19 21 - 19	81 80	0 10	0.07	
3.4-Dichlorobenzyl	3.4-Dichlorobenzyl	Methyl	$98-100^{-h}$	3 3	Cieff.sCieN., Che,OH	45.64	45-73 45-73	9.11 1 68	0.40 4 70	01.10 37.43	91.09 37 70	0.10 0.10	8.09 19 19	
3.4-Dichlorobenzyl	3.4-Dichlorobenzyl	Ethvl	$124-125^{a,d}$	26	1	38 30	37-01	3 40	3 64	er 09	50.61	0.0 8 8	9.61 7 04	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	2-Hydroxyethyl	$158 - 159^{a, h}$	47	C ₁₇ H ₁₈ Cl ₄ IN ₃ ()	37.18	37.43	3.30	3.53	48.93		7.65	7 49	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	2-Hydroxyethyl	$118-119^{c}$	66	$C_{17}H_{18}Cl_5N_3() \cdot H_2()$	42.93	43.15	4.24	4.10	37.27	37.35	8.83	8.62	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	n-Propyl	$149-150^{a}$	79	$\mathrm{C}_{18}\mathrm{H}_{20}\mathrm{Cl}_4\mathrm{IN}_3$	39.52	39.58	3.69	3.92	49.12	40.04	7.68	7.76	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	n-Propyl	$104 - 105^{e,e}$	98	$C_{18}H_{20}Cl_5N_3$	47.46	47.03	4.43	4.65	38.92	38.88	9.23	9.15	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	Allyl	$130-140^{a,b}$	40	C ₁₈ H ₁₈ Cl4IN ₃	39.66	39.78	3.33	3.21		48.96	7.71	7.45	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	3-Hydroxypropyl	139 -140 ^{e,b}	55	$C_{18}H_{20}Cl_5N_3O$	45.84	45.56	4.28	4.37	37.59	37.74	8.91	8.99	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	n-Butyl	$112 - 114^{a}$	92	$C_{19}H_{22}Cl_4IN_3$	40.67	40.82	3.95	4.14	47.88	48.11	7.49	7.53	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	$n ext{-Butyl}$	$94-96^{c.c}$	94	$C_{19}H_{22}Cl_5N_3$	48.58	48.13	4.72	4.73	37.75	38.10	8.95	8.92	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	n-Octyl	$131 - 132^{a,b}$	44	$C_{23}H_{30}Cl_4IN_3$	44.80	44.85	4.90	5.03			6.82	7.13	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	n-Octyl	$129-130^{c,b}$	48	$\mathrm{C}_{23}\mathrm{H}_{30}\mathrm{Cl}_{5}\mathrm{N}_{3}$	52.54	52.54	5.75	5.94	33.72	33.24	1.99	8.08	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	n-Hexadecyl	$138 - 139^{a,d}$	32	$C_{31}H_{46}Cl_4IN_3$	51.04	50.98	6.36	6.62			5.76	ŏ.71	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	β -(Dimethylaminoethyl)	$124 - 125^{a,b}$	94	C ₁₉ H ₂₃ Cl ₄ IN ₄		39.61	4.02	4.17	46.64	46.39	9.72	9.92	·
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	Benzyl	175176".7	67	$C_{22}H_{20}Cl_4IN_3$	44.39	44.63	3.39	3.47	45.16	44.93	7.06	5.09	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	Benzyl	$179 - 181^{c,\theta}$	85	C ₂₂ H ₂₀ Cl ₅ N ₃	52.46	52.37	4.00	4.01	35.20	35.07	8.31	8.41	
3,4-1)ichlorobenzyl	3,4-Dichlorobenzy1	3,4-Dichlorobenzyl	$94 - 95^{a,c,h}$	87	$C_{22}H_{17}Cl_6N_3$	49.28	45.45	3.20	3.30	39.67	39.65	7.81	7.95	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	229-230"."	83	$C_{22}H_{18}Cl_6IN_3$	39.79	40.05	2.73	3.00	51.14	50.98	6.33	6.45	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	3,4-1)ichlorobenzyl	$217-219^{c}$	83	$C_{22}H_{18}Cl_7N_3$	46.14	46.11	3.17	2.90	43.35		7.34	7.32	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	2,4,5-Trimethylbenzyl	$208-210^{a,1}$	74	$C_{25}H_{26}Cl_4IN_3$	47.12	47.25	4.II	1.23	42.17	42.20	6.59	6.50	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	2,4,5-Trimethylbenzyl	232-233%	9 6	$C_{25}H_{26}Cl_5N_3$	55.01	55.26	4.80	4.98	32.49	32.30	7.70	7.59	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	4-Isopropylbenzyl	178-1794	72	$\mathrm{C}_{25}\mathrm{H}_{26}\mathrm{Cl}_4\mathrm{IN}_3$	47.12	46.97	4.11	1.10 J	42.17	42.07	6.59	6.53	1
3,4-1)ichlorobenzył	3,4-Dichlorobenzyl	4-Isopropylbenzyl	$178 - 180^{e_{1}d}$	74	$C_{z5}H_{26}Cl_5N_3$	10.55	54.82	1.80	1.81	32.49	32.51	0212	7.59	
3,4-Dichlorobenzyl	3,4-1)ichlorobenzyl	3,4-Dimethoxyphenethyl	$152 - 153^{a, l}$	83	$C_{25}H_{26}Cl_4IN_3O_2$	44.87	45.15	3.92	4.04	40.15	39.95	6 2S	6.42	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	3,4-Dimethoxyphenethyl	136 - 138 ^{c,b}	ž	$\mathrm{C}_{25}\mathrm{H}_{26}\mathrm{Cl}_5\mathrm{N}_3\mathrm{O}_2$	51.95	51.67	1.5.4	4.48	30.67	30.40	1.21	7.15	
3,4-Dichlorobenzyl	3,4-1)ichlorobenzyl	lpha-Naphthylmethyl	$226-227^{a,k}$	13	$C_{26}H_{22}Cl_4IN_3$	48.41	48.45	3.44	3.68	41.65	41.36	6.51	6.38	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	lpha-Naphthylmethyl	$209-210^{c,k}$	66	C ₂₆ H ₂₂ Cl ₅ N ₃ ·H ₂ O	54.62	54.69	$\pm.23$	3.97	31.01	31.40	7,35	7.43	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	Furfuryl	$135 - 136^{a,b}$	53	$C_{20}H_{18}Cl_4IN_3O$	41.06	40.86	3.10	3.25	45.03	+6.01	<u>x</u>	7.37	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	Furfuryl	148-1495%		$C_{20}H_{18}Cl_5N_3O$		48.68	3.67	3.59	35.91	36.16	S , $\overline{54}$	8.74 8	
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	2-Tetrahydropyranomethyl	92-94°°	96	$C_{21}H_{24}Cl_5N_3O$			1.73	17. F		34.92	8.21	8.15	
3,4-1)ichlorobenzyl	3,4-Dichlorobenzyl	Phenethyl	129-130	++	CasH2CINS		53.23	4.2S	4.23		34.19	N. 12	8.19	
3,4-Dichlorobenzyl	ßenzyl	Benzyl	183 -184"·	66	C ₁₂ H ₂₂ Cl ₂ IN ₃	50.21	50.52	12.4	± 38		37.57	6672	7.85	
3,4-Diehlorobenzyl	Benzyl	Isenzyi	188-189"."	97	C22H22Cl3N3			5.10	5.02	24.47	24.60	9.66	21.0	
3,4-Dichlorobenzyl	α -Naphthylmethyl	α -Naphthylmethyl	100-201"."	94	C ₃₀ H ₂₆ Cl ₂ IN ₃			4. <u>1</u> 8	4.26	31.58	31.58	6.71	6.59	
3,4-Dichlorobenzyl	α -Naphthylmethyl	lpha-Naphthylmethyl	240-241%	85 85	$C_{20}H_{26}Cl_3N_3$		67.29	06° F	5.06	687 61	19.61	1,86	1.48	
3,4-Dichlorobenzyl	2-Tetrahydropyranomethyl	2-Tetrahydropyranomethyl	120-122"."	80	$C_{20}H_{30}Cl_2IN_3O_2$		44.12	5.58	ŏ.34	36.48	36.57	22 - 1 - 12	7.64	
3,4-Dichlorophenethyl	β -(3,4-Dichlorophenylethyl)	3,4-Dichlorophenethyl	$140-141^{a'a}$	78	C ₂₅ H ₂₄ Cl ₆ IN ₃		42.66	3.43	3.43	48.09	47.96	5.95	6.17	
3,4-Dichlorophenethyl	β -(3,4-Dichlorophenyle(hyl)	3,4-Dichlorophenethyl	$114 - 115^{6/2}$	3 8	$C_{25}H_{24}Cl_7N_3$	48.85	48.88	3.94	4.27	40.37	39.87	9 'S-	6.92	
2,5-Dichlorobenzyl	2,5-Dichlorobenzyl	<i>n</i> -Decyl	$165 - 166^{c/d}$	09	$C_{25}H_{34}Cl_4IN_3$	16.53	46.56	5.31	5.36	41.65	41.49	6.51	6.85	
4-Methylbenzyl	4-Methylbenzyl	4-Methylbenzyl	88-88.5"	95	$C_{25}H_{29}N_3$	80.82	80.64	18.1	1.97			11.31	11.33	
4-Methylbenzyl	4-Methylbenzyl	4-Methylbenzyl	211-212".	ŝ	$C_{25}H_{30}IN_2$	60.12	91.09	6.05	6.03	25.41	25.49	8.42	8°60	
4-Methylbenzyl	4-Methylbenzyl	4-Methylbenzyl	237-238"	94	CashH30CIN3	73.59		14.	7.53	8,69	$\frac{1}{x}$	10.30	10.42	
3,4-Dimethylbenzyl	3,4-Dimethylbenzyl	3,4-Dimethylbenzyl	182-184".	22	$C_{28}H_{36}IN_3$	62.10	62.21	6.70	6.68	23.43	23.35	7.76	7.63	
3,4-Dimethylbenzyl	3,4-Dumethylbenzyl	3,4-Dimethylbenzyl	215-216	2	$C_{23}H_{36}CIN_{\odot}$		74 .34	2.06 X	7.97	XX I	7.98	9.34	9.25	
3,4-1)imethylbenzyl	3,4-1)methylbenzyl	Ethyd	150 -152"	8	$C_{21}H_{36}IN_3$	12. SI	55.37	6.70	6.65	28. H	Fal Xa	9.31	10.07	

Table IV N,N',-Trisubstruted Guandines, RNHC(=NR')NHR''

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a construction of the structure of the s
69.88 8.40 8.3 57.60 7.15 7.2 45.26 4.25 4.4 56.96 5.40 5.4	om sectone-of
70.08 69.88 57.61 57.60 44.99 45.26 57.23 56.96	The sthere of the
C ₂₁ H ₃₀ ClN ₃ C ₂₃ H ₃₄ lN ₃ C ₁₆ H ₁₈ lN ₃ O ₃ C ₁₆ H ₁₈ LN ₃ O ₃	to atten 6 Duces
$\begin{array}{c} 88\\ 60\\ 63\\ 93\\ \end{array}$	la se la
$\begin{array}{c} 164{-}165^{e_{1}e_{2}}\\ 102{-}104^{a_{1}e_{2}}\\ 173{-}175^{a_{1}b_{1}}\\ 138{-}130^{b_{1}e_{2}}\end{array}$	
Ethyl n-Butyl Furfuryl Furfuryl	
3,4-Dimethylbenzyl 3,4-Dimethylbenzyl Furfuryl Furfuryl	
3,4-Dimethylbenzyl 3,4-Dimethylbenzyl Furfuryl Furfuryl	

ether. ^e From aqueous ethanol. ^J From acetone-^a Itydriodide. ^b Recrystallized from ethanol-ether. ^c Hydrochloride. ^d Crystallized from ethyl acetate-ether. Free base. ^d Crystallized from dimethylformamide-ether. ^J From ethanol. ^k From aqueous dimethylformamide. ^h Free base. ^t Crystallized from dimethylformamide-ether. ^J From ethanol.

TABLE V: 0,0-DI(GUANIDINO)ALKANES, RNHC(=NR')NH(CH2)_nNHC(=NR')NHR

				Viald	R.m.nirical		(T l		-X		N	{
\$	2	R'	M.n. °C.		formula	Caled.	Found	Caled.	Found	Caled.	Found	Caled. Found	Found
u	4		d source of the	70 2		01 06	90.16	00 6	10.5	55 10	54 95	11 70	11 53
2	3.4-Dichlorobenzvl	H	248-249	90	C181122C1412IN6	01.06	01.10	0.03	17.0	01.00	00.10		
6	3.4-Dichlorohenzyl	Н	$205-206^{b}.^{c}$	100	C ₁₈ H ₂₂ Cl ₆ N ₆	40.40	40.53	4.14	4.34	39.75	39.57	15.71	15.59
۹ C	9 A Dicklouchandred	2 4. Dichlorohanzvl	$976-977^{a,d}$	56	C.,H.,Cl,I.N.	37.10	37.32	2.92	3.04	51.88	51.60	8.11	8.23
4 C	9,4 Dichlenchengt	2.4 Dichlorobenzy	953-954°.4	46	C.H.OH	45.41	45.86	4.04	4.31			9.35	9.35
4 0	0,4-1/101101005112y1	9, T-L'ICHIOLODGILEY I TI	010 E_0194.	61	Co.H.J.N.	37 25	37 27	4.52	4.52	43.74	43.73	14.48	14.48
	Benzyi 9 1 D: -hlhl		900-9016.6	3 8	Clatter 2012 N.	42,65	42.60	4 65	4.85			14.92	14.63
4.	3,4-Dichlorobenzyl	п 9-4 Diablanchanard	2 ⁹ 94417407	27 80		46.34	46 34 46 08 3 89	3,89	4.10	40.24	40.14	9.54	9.48
4	3,4-Diculorobenzyl	5,4-1)16010000001291	140-140 20 bl	B 5		10.01	49,01	3.51	3 53	14 53	14.68	17.22	16.98
9	3,4-Dichlorobenzyl	Н	0.001-001	10	24H3404M12014	10.15	10. H	11.	00.1	10 J	06 94	00 11	11 79
9	4-Chlorobenzyl	Η	$Amorphous^{a,e}$		C22H32Cl212N6	37.46	37.20	4.5/	4.82	40.04	07.04	11.34	71.11
9	Benzvl	Н	$165 - 167^{a,b}$	76	$C_{2:}H_{34}I_2N_6$	41.52	41.62	5.39	5.45	39.89	40.07	13.21	13.04
10	3 4-Dichlorohenzyl	Н	Amorphous".	100	C ₂₆ H ₂₈ Cl412N6	37.61	37.88	4.61	4.72	47.70	47.61	10.12	9.91
21	3.4-Dichlorobanzyl	н	Amorphous ^{a,e}	06	C:7H40Cl41.N6	38.41	38.86	4.77	4.86	46.87	46.55	9.95	9.83
16	3 4-Dichlorohenzyl	H	$167.5 - 169.5^{a,b}$	76.5	C. H. CIIIN	39.18	39.47	4.93	4.95	46.10	46.08	9.79	9.95
^a Hy	driodide. ^b Recrystallize	a Hydriodide. b Recrystallized from ethanol. c Hydrochloride. d Recry	chloride. ^d Recrysta	ullized fron	ı dimethylformamide-eth	anol. ^e Fro	^e From ethanol–ether	-ether.	I Picrate.				

 $\begin{array}{c} 222.04\\ 21.16\\ 14.96\\ 17.90\\ 17.90\\ 16.68\\ 15.67\\ 23.87\\ 23.87\end{array}$ 21.1510.9013.44 12.41 10.3511.4513.6516.156457Found 20. 12. ź $\begin{array}{c} 20.09\\ 16.73\\ 16.73\\ 15.74\\ 15.44\\ 15.44\\ 15.23.85\\ 223.85\\ 223.85\\ 221.21\\ 10.77\\ 13.07\\ 112.42\\ 10.40\\ 10.40\\ \end{array}$ 12.5211.3213.8921.1615.1316.3722.34Calcd. 9.48 8.37 29.96 15.46 41.67 43.85 23.67 $\frac{13.43}{34.18}$ 11.76 10.42 $\frac{39.93}{51.70}$ 7.9717.81 37.01 14.17 91 Found ethanol. 32.5 × aqueous $\begin{array}{c} 13.39\\ 34.28\\ 112.72\\ 111.55\\ 10.58\\ 9.77\\ 8.29\\ 30.16\\ 115.34\\ 39.45\\ 39.45\end{array}$ 43.8523.567.9232.80 14.1451.6741.375837.08Calcd. 17 " From 9.268.28 11.40 11.4011.90 3.505.482.963.842.903.493.63 10.2712.55 7.17 11.16 11.01 Found 8.01 10.91 fRecrystallized from ethanol. ġ 11.2011.4911.73 11.94 3.305.152.84 $2.91 \\ 3.53$ 3.8010.29 $7.33 \\ 8.99$ 7.9510.85 4.11 12.458.4411.04 Caled. $\begin{array}{c} 60\,.63\\ 62\,.94\\ 39\,.24\end{array}$ 41.2936.55 35.75 34.80 42.30 55.7658.2639.83 48.5042.1355.5452.7354.4065.83 38.81 24 Found 59 Ý $\begin{array}{c} 62.86\\ 39.30\\ 39.30\\ 36.38\\ 35.63\\ 35.63\\ 334.63\\ 334.03\\ 339.93\\ 39.93\\ 55.74\\ \end{array}$ 48.5354.4242.1755.98 $58.70 \\ 60.95$ 67.0859.5438.5952.68Caled. a Hydriodide. b Recrystallized from water. c IIydrochloride. d Recrystallized from eth-unol-ether. c Picrate. Empirical formula C14H13Cl2N707 C₁₄H₁₄CIN₇O₇ C₁₅H₁₆Cl₄IN₄ C₁₅H₁₇Cl₂IN₄ C₁₅H₁₅Cl₅N₄ C₂₀H₃₆Cl₂N₄ C₁₉H₄₃CIN₄ C20H36CHN, C17H39CIN4 C₈H₁₂Cl₂N₄ C₈H₁₁Cl₃N₄ C12H29CIN4 C₁₅H₃₅CIN4 C11HzrCIN4 C25 H55 CIN1 C₁₃H₃₁CIN₄ C₂₅H₅₅IN4 C₁₃H₃₁IN₄ **JuHzJIN** Yield, $\begin{array}{c} 550 \\ 666 \\ 661 \\ 113 \\ 255 \\$ % 61.5-62.5" $91.5-93.5^{c,d}$ $107-108.5^{a,d}$ $70-170.5^{a,d}$ $178.5 - 180^{e,d}$ $207-208^{u,d}$ $118-120^{e,d}$ $(18-120^{c,d})$ $167-168^{c,d}$ M.p., °C. 23-124°.4 $(18-120^{c,d})$ $(18-120^{c,d})$ 115-117°,d $157 - 158^{c,d}$ $62-163^{e,f}$ 147-148°1 p'316-68 $83-85^{a,b}$ $88-90^{a^{+}p}$ 3,4-Dichlorobenzyl 3,4-Dichlorobenzyl 4-Chlorobenzyl è: n-Dodecyl n-Dodecyl n-Dodecyl n-Dodecyl ннннннннн Ξ 3,4-Dichlorobenzyl 3,4-Dichlorobenzyl 3,4-Dichlorobenzyl 3,4-Dichlorobenzyl 4-Chlorobenzyl 4-Chlorobenzyl 4-Chlorobenzyl 4-Chlorobenzyl 4-Chlorobenzyl n-Tetradecyl n-Hexadecyl n-Octadecyl Ľ n-Dodecyl n-Dodecyl n-Undecyl n-Dodecyl n-Dodecyl n-Decyl n-Decyl

Table VI: Mono- and Disubstituted Aminoguanidines, $RNHC(=NR')NHNH_2$

TABLE VII α,ω-DI(AMINOGUANIDINO)ALKANES, NH2NHC(==NH)NH(CH2)nNHC(==NH)NHNH2

							- Anal	yses. ⁷ é 			
		Yield,	Empirical	(·		11	/?	N	;	N
n	M.p., °C.	C7 . C	formula	Calcd.	Found	Caled.	Found	Caled.	Found	Caled.	Found
2	$202 - 203^{a,b}$	37	$\mathrm{C_4H_{16}I_2N_8}$	11.17	11.27	3.75	3 80	59/02	58.83	26.06	26.25
2	$240.5 extsf{-}241.5^{b, extsf{c}}$	100	$C_4H_{16}Cl_2N_8$	19.44	19.72	6.53	6.90	28.69	28.70	45.34	45.67
4	$161 - 162^{a,d}$	35	$\mathrm{C_6H_{20}I_2N_8}$	15.73	15.84	4.40	1.82	55.41	55.17	24.46	24.63
6	$201.5 - 203^{a,b}$	87	$\mathrm{C_8H_{24}I_1N_8}$	19.76	19.77	4.97	5 08	52.21	51.97	23.05	23.32
	1.1.1. 6.75				1.1.1.1	4					

" Hydriodide. b Recrystallized from methanol-ether. Hydrochloride. d Recrystallized from butanol.

product (m.p. $89{-}90^\circ)$ was isolated by the addition of petroleum ether, yield 14.2 g. (85%).

Anal. Caled. for $C_{14}H_{18}Cl_2N_2OS$: C, 50.45; H, 5.44; Cl, 21.28; N, 8.41; S, 9.62. Found: C, 50.25; H, 5.11; Cl, 21.75; N, 8.61; S, 9.46.

S-Methylisothiuronium Iodides.—1,3-Di(4-methylbenzyl)thiourea (28.4 g., 0.1 mole) was added to methyl iodide (28.4 g., 0.2 mole) in ethanol (40 ml.) and the solution was allowed to stand overnight. Evaporation of the solution gave S-methyl-N,N'di(4-methylbenzyl)isothiuronium iodide, m.p. 129–130°, yield 42.6 g. (100%). Recrystallization from ethanol-ether solution did not change the melting point.

The other isothiuronium salts listed in Table II were prepared by this general method.

S-Methyl-N,N'-di(3,4-dichlorobenzyl)isothiuronium chloride was prepared by passing the corresponding hydriodide through a column of Amberlite IRA 400 in the chloride form.

Preparation of Guanidines.—A solution of S-methyl-N,N'di(4-methylbenzyl)isothiuronium iodide (42.6 g., 0.1 mole) and 4methylbenzylamine (12.1 g., 0.1 mole) in ethanol (70 ml.) was heated under reflux for 1 hr. Addition of ether (70 ml.) precipitated N,N',N''-tri(4-methylbenzyl)guanidine hydriodide, m.p. $208-209^\circ$, yield 41.2 g. (83%).

The hydriodide salt (39.6 g., 0.08 mole) in ethanol (500 ml.) was passed through a column of Amberlite IRA 460 in the chloride form (250 ml.), and the column was washed with ethanol (250 ml.). Evaporation of the eluate gave the hydrochloride salt, m.p. 236-238°, yield 30.5 g. (95%). Recrystallization from ethanol-ether raised the melting point to $237-238^\circ$.

The disubstituted guanidines (Table III), trisubstituted guanidines (Table IV), and α,ω -di(guanidino)alkanes (Table V) were all prepared by this general method. To obtain optimum yields individual preparations were varied with regard to time, temperature, and solvent. Butanol and isoamyl alcohol were used as well as ethanol, while in some cases the reagents were heated together without solvent.

3,4-Dichlorobenzylguanidine Hydrochloride.—A solution of 3,4-dichlorobenzylamine (35.2 g., 0.2 mole) and S-methylisothiuronium iodide (43.6 g., 0.2 mole) in ethanol (100 ml.) was heated under reflux for 3 hr. The solution was evaporated and the residue was crystallized from ethanol-ether to give 3,4-dichlorobenzylguanidine hydriodide, m.p. 167–168°, yield 52.1 g. (75%).

Anal. Caled. for $C_{b}H_{10}Cl_{2}IN_{3}$; C, 27.77; H, 2.91; halogen, 57.17; N, 12.15. Found: C, 27.80; H, 2.91; halogen, 56.77; N, 11.66.

A solution of the hydriodide (10.5 g., 0.03 mole) in ethanol (50 ml.) was passed through a column of Amberlite IRA 400 in the chloride form, and the column was washed with ethanol (200 ml.). The eluate was evaporated and the residue was crystallized from ethanol-ether to give 3,4-dichlorobenzylguanidine hydrochloride, m.p. 165-166.5°, yield 5.9 g. (74%).

hydrochloride, m.p. 165–166.5°, yield 5.9 g. (74%). Anal. Caled. for $C_8H_{16}Cl_3N_3$: C, 37.73; H, 3.96; Cl, 41.78; N, 16.50. Found: C, 37.70; H, 4.02; Cl, 42.00; N, 16.04.

N,N'-Di(3,4-dichlorobenzoyl)guanidine.—A solution of 3,4dichlorobenzoyl chloride (4.2 g., 0.02 mole) in ether (50 ml.) was added to guanidine hydrochloride (3.82 g., 0.04 mole) in N sodium hydroxide (40 ml.), and the mixture was stirred at room temperature for 4 hr. The products was obtained by evaporation of the ether solution, m.p. 224–225°, yield 3.3 g. (81%). Recrystallization from aqueous dimethylformamide did not change the melting point.

Anal. Caled. for $C_{15}H_9Cl_4N_3O_2$: C, 44.36; H, 2.24; Cl, 35.00; N, 10.37. Found: C, 44.31; H, 2.52; Cl, 35.01; N, 10.47.

N-(3,4-Dichlorobenzoyl)-N'-(3,4-dichlorobenzyl)guanidine Hydrochloride.--A solution of 3,4-dichlorobenzylguanidine hy-

driodide (3.46 g., 0.01 mole) in ethanol (20 ml.) was neutralized with sodium hydroxide (0.40 g., 0.01 mole) in water (40 ml.). The solution was extracted with ether (70 ml.), and the ether layer was washed with water and dried. 3,4-Dichlorobenzoyl chloride (2.10 g., 0.01 mole) was added and the solution was allowed to stand overnight. The precipitate was filtered and recrystallized from ethanol to give the product as the hydrochloride, m.p. 223-224°, yield 0.71 g. (16%).

Anal. Calcd. for $C_{18}H_{12}Cl_5N_8O$; C, 42.13; H, 2.83; Cl, 41.47; N, 9.83. Found: C, 41.92; H, 2.78; Cl, 41.40; N, 10.00.

11-Bromo-N,N-dimethylundecanoamide.—11-Bromoundecanoic acid (29.4 g., 0.11 mole) in thionyl chloride (30 g.) was heated under reflux for 1 hr. The solution was evaporated and the residue of crude 11-bromoundecanoyl chloride was distilled, b.p. $125-128^{\circ}$ (0.1 mm.) [lit.⁶ b.p. $174-175^{\circ}$ (10 mm.)], yield 28.4 g. (91^{+}) .

A solution of dimethylamine (4.50 g., 0.10 mole) in ether (25 ml.) was added dropwise to 11-bromoundecanoyl chloride (10.0 g., 0.04 mole) in ether (25 ml.) at 0°. After being allowed to stand at room temperature for 1 hr., the solution was evaporated. Crystallization of the residue from aqueous ethanol gave 11-bromo-N,N-dimethylundecanoanide, m.p. 51–53°, yield 8.3 g. $(81C_{\ell})$.

Anal. Caled. for $C_{13}H_{26}BrNO$; C, 53.42; H, 8.97; Br, 27.34; N, 4.79. Found: C, 53.47; H, 8.81; Br, 26.98; N, 4.58.

11-Amino-N,N-dimethylundecanoamide.—A solution of 11bromo-N,N-dimethylundecanoamide (6.6 g., 0.02 mole) and concentrated annonium hydroxide (200 ml.) in dimethylformanide (50 ml.) was stirred for 3 days at 25°. Evaporation of this solution *in vacuo* yielded a crystalline residue of 11-amino-N,Ndimethylundecanoamide hydrobromide (m.p. 110–112°, yield 5.6 g.). The salt on addition to N sodium hydroxide (20 ml.) gave the base, m.p. 38–40°, yield 4.2 g. (80%).

1.nal. Calcd for $C_{13}H_{28}N_2O$: C, 68.36; H, 12.36; N, 12.27. Found: C, 68.84; H, 12.21; N, 12.46.

11-Guanidino-N,N-dimethylundecanoamide.—A solution of 11-amino-N,N-dimethylundecanoamide (3.6 g., 0.02 mole) and S-methylisothiuronium iodide (3.44 g., 0.02 mole) in ethanol (20 mL) was heated under reflux for 3 hr. The solution was evaporated and the residue was crystallized from ether giving the product as the hydriodide, m.p. 100-102°, yield 2.95 g. $(47\sqrt[6]{c})$. A portion of the product was treated with aqueous pieric acid to give 11-guanidino-N,N-dimethylundecanoamide pierate, m.p. 142–144⁺.

Aual. Caled. for C₂-H₂₈N₇O₈: C, 48.10; H, 6.66; N, 19.63. Found: C, 48.32; H, 6.65; N, 19.49.

N,N'-Disubstituted-N''-aminoguanidines.—A solution of N,-N'-di(4-chlorobenzyl)-S-methylisothiuronium iodide (10.0 g., 0.02 mole) and 85% hydrazine hydrate (1.23 g., 0.02 mole) in butanol (20 ml.) was stirred at 100–105° for 1 hr. The solution was cooled and diluted with ether (100 ml.) to yield N,N'-di(4chlorobenzyl)-N''-aminoguanidine hydriodide, m.p. 169–170°, yield 9.0 g. (94\%). Recrystallization from ethanol-ether raised the m.p. to 170–170.5°.

The other N,N'-disubstituted-N''-aminoguanidines listed in Table VI were prepared by the same procedure.

N-Substituted-N'-aminoguanidines.—A solution of dodecylamine (18.5 g., 0.1 mole) and S-methylisothiosemicarbazide hydriodide (23.3 g., 0.10 mole) in ethanol (100 ml.) was heated under reflux for 1 hr. The solution was cooled and diluted with ether, giving a gummy pink precipitate (12 g.). The crude product was extracted with hot ethanol (100 ml.) giving a small quantity (0.18 g.) of insoluble 3,6-diamino-1,2,4,5-tetrazine.

⁽⁶⁾ F. J. Buckle, F. L. M. Pattison, and B. C. Saunders, J. Chem. Soc., 1471 (1949).

	.M. pyogenes ^b var.	.u. pyogenes ^c var.	Sarcina	Strept.	$E.\ coli$	А.	s.	Pseudo- monas	Proteus	Proteus
R″	aureus (S)	aureus (R)	lutea	faecalis	No. 198	aerogenes	pullorum	aeruginosa	mirabilis	vulgaris
Н	2560	2560	2560	1280	320	160	320	160	160	80
Н	80	80	40	20	40	20	80	20	20	20
2,4-Dichlorobenzyl	zyl 320	320	640	320	160	80	80	40	40	40
4-Chlorobenzyl	320	320	320	160	80	20	20	40	20	40
3,4-Dichlorobenzyl	zyl 640	640	640	320	160	40	40	80	80	$\frac{0}{8}$
4-Chlorobenzyl	160	80	80	40	40	20	20	40	40	40
n-Propyl	10	20	10	10	10	20	20	40	20	20 20
$n ext{-Butyl}$	80	40	80	40	40	20	20	20	20	20
n-Hexyl	20	20	20	20	20	80	80	320	160	160
n-Heptyl	640	640	320	320	640	40	80	40	40	40
n-Octyl	1280	1280	1280	640	640	80	320	80	80	80
n-Nonyl	10240	2560	40960	40960	1280	640	1280	80	160	80
n-Decyl	2560	2560	5120	2560	320	320	2560	160	80	80
$n ext{-Undecyl}$	1280	1280	5120	2560	1280	320	5120	40	80	20
$n ext{-} Dodecyl$	640	1280	2560	2560	320	160	160	20	80	20
n-Nonyl	640	640	1280	640	160	80	320	80	80	40
$n ext{-}\mathrm{Decyl}$	1280	640	1280	1280	320	640	320	80	160	80
n-Undecyl	640	640	2560	640	320	160	320	20	40	40
$n ext{-Dodecyl}$	1280	1280	2560	2560	160	80	320	10	40	40
n-Hexadecyl	320	320	640	1280	10	10			10	10
n-Heptyl	40	40	80	40	10	10	160	10	10	10
$n ext{-Octyl}$	80	80	160	80	10	10	160	20	10	10
n-Nonyl	160	160	640	320	20	20		20	20	20
$n ext{-Decyl}$	320	320	640	640	80	80		40	40	20
n-Undecyl	1280	640	1280	1280	160	160		80	80	40
$n ext{-}\mathrm{Dodecyl}$	640	640	2560	1280	160	160		80	40	40
3,4-Dichlorobenzoyl	zoyl 640	1280	1280	640	160	20	10	10	40	40
3,4-Dichlorobenzoyl 3,4-Dichlorobenzoyl	zoyl 20	10	80	10	10	10	10	10	10	10

BACTERIOSTATIC ACTIVITIES (M.I.C., 1/X × 10⁻³)^a of Mono- and Disubstituted Guandines, RNHC(==NH)NHC'·HCI

TABLE VIII

September, 1963

BACTERIOSTATS. VI

593

·HCI
')NHR('
NR')
RNHC (
UANIDINES, R
) aaru
RISUBS
⁻³) OF T
$\times 10^{-10}$
$^{''} 1/X$
(M.I.c.,
SHUTUES
BACTERIOSTATIC AG
IX:
TABLE

			M. pyogenes	M.						Pseudo-		
ţ			Var.	var.	Sarcina	Strept.	E. coli	A. aero-	N. pull-	monas	P roteus	Proteus
R 2.4 Dicklorobonard	3.4 Diablerchonard	Mathul	aureus (5)" 640	aureus (II)	lutea A 10	Jaecalis 160	No. 198 900	90068 110	unio unio	aeruginosa	mirabilis	rulgaris
9.4 Dicklow bond	9.4 Dioblorohonovia	Ethyl	010	070	056	160	020	06	04	00	00	0
9,4 1X-11 10100000001	9.4 D:-14 - 1 - 1 - 1		001	070	076	100	00	07	9	07	60 10	3 ;
3,4-Dichlorobenzyl	5,4-Dichlorobenzyl	2-H yaroxyetnyi	001	100	040	160	40	0	40	10	02	10
3,4-Dichlorobenzyl	3,4-1)1chlorobenzyl	n-Propy!	640	320	1280	320	320	ź	160	40	80	20
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	3-Hydroxypropyl	160	160	320	ŝ	$^{+0}$	20	20	20	10	20
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	$n ext{-Butyl}$	640	640	2560	019	320	160	160	0f	40	40
3,4-Dichlorobenzyt	3,4-Dichlorobenzyl	n-Octyl	640	640	1280	1280	\hat{z}	Î	40	20	50	20
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	n-Hexadecyl	9 <u>%</u>	0 f	160	40	0 <u>x</u>	97 7	10	10	10	10
3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	β -(Dimethylaminoethyl)	320	6.40	2560	640	320	92 22	0F	08	OF	40
3,4-Dichlorobenzyl	3,4-Dichlorobenzył	Benzyl	5120	2560	5120	640	640	160	160	160	8	98
In presence of 10% serum	_	•	160	9%	160	160	160	30	20	20	40	10
3.4-Dichlorobenzyl	3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	2560	5120	20480	20480	640	160	160	5	160	160
In presence of 10 ^{6%} serum			80	9 <u>%</u>	0%	80	20	20	20	2	10	9
3.4-Dichlorobenzvl	3.4-Dichlorobenzyl	2.4.5-Trimethylbenzyl	640	320	2560	640	160	9	90	06	9 9	01
3.4-Dichlorobenzyl	3.4-Dichlorobenzyl	4-Isopropylbenzyl	640	640	1280	2560	320	9	98	01	9	01
3.4-Dichlorobenzyl	3.4-Dichlorobenzyl	3.4-Dimethoxyphenethyl	320	160	320	160	160	e of	40	Q.	u C	9
3 4-Dichlorohenzvl	3 4-Dichlorohenzyl	w-Nanhthvlmethvl	ç	2560	2560 2560	300	320	99	e u	e e	91	UG.
~	Sortim	* Eventere Createriant - th	160	160	160	070	010	9	2 9	ŝ	2 1	21
9.4 Dishlanchand	9.4 Diableschonzel	1 Total and the second s		9	001	9		2 9	2 9	2 3	2 9	0 9
5,4-1 JICHOFODEHZY1 6,4 15:44 - 1 1	9,4 Dienorobenzyi	z= ⊥e⊌rany gropy ranomenty. tv=.e		01 0	01	01	01.	01	01		3	01
3,4-LJICNIOrODENZYI	5,4-1/Jenlorobenzy1	ruriury!	1250	010		2560	100	320			0 2	01
3,4-J)tchlorobenzyt	Benzyl		640	640	2560	32()	320	160	160	Ī	Î	,
3,4-Dichlorophenethyl	3,4-Dichlorophenethyl	ive 3,4-Dichlorophenethyl	640	640	>5120	>5120	160	Ŷ	0F		92 2	92 X
3,4-Dichlorobenzyl	lpha-Naphthylmethyl	lpha-Naphthylmethyl	640	640	2560	1280	320	-10	01	20	0 1	50
4-Methylbenzyl	4-Methylbenzyl		640	1280	1280	320	ŝ	0 <u>7</u>	1 ()	40	50	07 07
3,4-Dimethylbenzyl	3,4-Dimethylbenzyl	3,4-Dimethylbenzyl	640	640	1280	2560	160	07 07	01	07 7	10	91
3,4-Dimethylbenzyl	3,4-Dimethylbenzyl		01	9 <u>7</u>	9z	07	20	01	<10	10	01	01
^a M.i.e., (S), and (R)	" M.i.c., (S), and (R) mean the same as in Table VIII											
Т. Т	Table N: Bacteriostatic Achiveres (M.i.c., ² 1	te Activitues (M.i.c.,° $1/N imes 1$	(I-0, n Jo (^{z-} ()	1 OF a.@-DIGUANDIO)ALKANES, RNHC(= NR')NH(CH.),NHC)ALKANES,]	{NHC(~ N	R')NH(CH	.),NHC	NR')NH	NR/)NHR-2HCl		
и	R	К,				See column he	headings in Table IN abc	ble IN abov		•		
2 3,4-Dich	3,4-Dichlorobenzyl	Н	1280	1280	2560		320	160	160	160	0x	()?
In pre	In presence of 10% serum		320	160	640	40	160	-1()	-10 10	9	07 07	20
	3,4-Diehlorobenzyl	3,4-Dichlorobenzył	160	320	640	160	80	80	0†	() †	10	10
	3,4-Dichlorobenzyl	Η	1280	1280	2560	640	640	80	0+	()†	0 <u>%</u>	ÛZ.
6 3,4-Dich	3,4-Dichlorobenzyl	H	1280	1280	2560	1280	320	80	0†	92	ÛX.	9 <u>7</u>
In pro	In presence of 10% serum		160	160	640	320	160	()†	50	20	97	()†
	3,4-Dichlorobenzyl	3,4-Dichlorobenzyl	640	640	640	2560	160	<u>9</u> 2	()†	()†	92 2	07
6 4-Chlorobenzyl	benzyl	Н	1280	640	2560	160	160	<u>0</u> %		-10 -	0F	() [
		Н	160	80	320	20	20	10	0 1 -	10	10	10
10 3,4-Dich	3,4-Dichlorobenzyl	Н	2560	2560	20480	10240	019	320	1280	8	160	Ê.
In pre	In presence of 10^{c_c} serum		640	640	1280	320	160	z	9 <u>2</u>	2	0F	07
	3,4-Dichlorobenzyl		1280	1280	1280	2560	640	320	160	160	160	.
12 3,4-Dich	3,4-Dichlorobenzyl	H	040	640	1280	2560	640	160	160	92 2	R	() [
Ż	N-(4-Chlorophenyl)guanyl	N-(4-Chlorophenyl)guanyl ⁵	5120	2560	5120	5120	320	320	320	320	160	160
In pre	In presence of 10 ^c (serum		1000	0001	5120	160	640	92 2	160	01	<u>0</u> 7	0f
(d) h (2) : 11 .	and (P) mean the came as in Table VIII	a VIII – 11thátana "					1	; ,		;		

Vol. 6

595

TABLE XI

Bacteriostatic Activities (M.I.C., a 1/X \times 10⁻⁸) of Aminoguanidines, RNHC(=NR')NHNH₂·HCl

R	R'	M. pyogenes var. aureus (S) ^a	M. pyogenes var. aureus (R) ^a	Sarcina lutea	Strept. faecalis	<i>E. coli</i> No. 198	A. aero- genes	S. pul- lorum	Pseudo- monas aeru- ginosa	Proteus mira- bilis	Proteus vul- garis
n-Undecyl	н	160	160	320	320	40	40	160	40	40	20
n-Dodecyl	\mathbf{H}	640	640	1280	640	160	80		40	40	40
n-Tetradecyl	H	1280	1280	>5120	>5120	320	160	160	40	80	40
n-Octadecyl	н	160	160	5120	2560	20	10	40	10	20	10
4-Chlorobenzyl	H	20	40	20	40	10	10	80	10	20	40
3,4-Dichlorobenzyl	н	160	160	40	20	20	10	320	10	10	10
a M = (S) on	d (D) -	noon the con	an an in Tab	lo WITT							

^a M.i.c., (S), and (R) mean the same as in Table VIII.

TABLE XII

Compound	Candida albicans	$M. \ gypseum$	Tr. granulosum
N-Nonyl-N'-3,4-dichlorobenzylguanidine	128	1024	1024
N-Dodecyl-N'-3,4-dichlorobenzylguanidine	256	256	128
N,N',N''-Tri(3,4-dichlorobenzyl)guanidine	320	320	640
N, N'-Di(3, 4-dichlorobenzyl)-N''-(4-isopropylbenzyl)guanidine	640	640	640
1, 10-Decamethylenebis $(3, 4$ -dichlorobenzylguanidine)	256	256	128
1, 11-Undecamethylenebis $(3, 4$ -dichlorobenzylguanidine)	1280	400	640
1,12-Dodecamethylenebis ($3,4$ -dichlorobenzylguanidine)	256	256	128

This substance, which was isolated as a microcrystalline red solid, was sublimed for analysis at 180° (0.25 mm.).

Anal. Calcd. for $C_2H_4N_6$: C, 21.43; H, 3.59; N, 74.98. Found: C, 21.62; H, 3.61; N, 74.42.

The isolation of 3,6-diamino-1,2,4,5-tetrazine from this type of reaction has been previously described.^{7,8}

On cooling, the ethanolic solution deposited crystals of the hemihydriodide salt of guanazine (3,4,5-triamino-1,2,4-triazole), m.p. 192-193°, yield 2.71 g.

Anal. Calcd. for $C_4H_{13}IN_{12}$: C, 13.49; H, 3.68; I, 35.63; N, 47.20. Found: C, 13.62; H, 3.76; I, 35.85; N, 47.19. The ethanolic filtrate was evaporated to dryness and the

The ethanolic filtrate was evaporated to dryness and the residue was crystallized three times from water, giving N-dodecyl-N'-aminoguanidine hydriodide, m.p. $88-90^{\circ}$, yield 4.71 g. (13%).

The other monosubstituted aminoguanidines listed in Table VI and the α, ω -di(aminoguanidino)alkanes described in Table VII were prepared in the same manner.

Guanazine.—A solution of the hemihydroiodide salt of guanazine (1.20 g.) in ethanol (50 ml.) was passed through a column of Amberlite IRA 400 in the hydroxyl form (50 ml.), and the col-

(7) F. L. Scott and J. Reilly, Chem. Ind. (London), 908 (1952).

(8) C. H. Lin, E. Lieber, and J. P. Horwitz, J. Am. Chem. Soc., 76, 427 (1954).

umn was washed with ethanol (50 ml.). Evaporation of the eluate yielded guanazine, m.p. 254-257° dec. (lit.⁹ m.p. 257°).

The conversion of S-methylisothiosemicarbazide to guanazine was demonstrated as follows: S-methylisothiosemicarbazide hydriodide (2.33 g., 0.01 mole) in water (50 ml.) was passed through a column of Amberlite IRA 400 in the hydroxyl form, and the column was washed with water (150 ml.). The eluate was concentrated to 10 ml., and the solution was heated on the steam bath for 1 hr. Evaporation of the solution and recrystallization of the pink residue from ethanol (10 ml.) gave guanazine, m.p. 253-255°, yield 0.16 g. (28%).

The product was characterized by its picrate, m.p. 284° (lit.⁹ m.p. 276°) and its benzaldehyde condensation product, m.p. 199-201° (lit.⁹ m.p. 196°).

An attempted preparation of the triacetyl derivative, m.p. 240°, described by Pellizarri and Repetto,⁹ gave a product, m.p. 223-225°, which appears to arise from the dehydration of the triacetyl derivative.

Anal. Caled. for $C_8H_{10}N_6O_2$: C, 43.23; H, 4.54; N, 37.82. Found: C, 43.13; H, 4.62; N, 37.97.

(9) G. Pellizarri and A. Repetto, Gazz. Chim. Ital., [2] 37, 317 (1907).