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Abstract—Two glucosyltransferases were isolated from plant cell cultures of Catharanthus roseus and Nicotiana tabacum. The
enzyme from C. roseus enantioselectively glucosylated (±)-secondary alcohols to give the glucosides of (R)-alcohols, while the glu-
cosylation with that from N. tabacum gave preferentially the glucosides of (S)-alcohols.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Glycosylation using biocatalysts is very attractive in the
practical preparation of alkyl glycosides, because one-
step enzymatic glycosylation is more advantageous than
chemical glycosylation, which requires tedious steps
such as protection and deprotection of sugar hydroxyl
groups. The enantioselectivities of enzymatic glycosyla-
tion have been studied in the transglycosylation and re-
verse hydrolysis with glycosidases.1,2 However, little
attention has been paid to the enantioselective glycosy-
lation by glycosyltransferases. Recently, enantioselective
glucosylation of a (±)-secondary alcohol with plant cell
cultures has been reported; the glucosylation with Ca-
tharanthus roseus occurred enantioselectively to give
the glucoside of the (R)-alcohol, while the glucosylation
with Nicotiana tabacum preferentially gave the glucoside
of the (S)-alcohol.3 Over the course of developing a new
enzymatic asymmetric synthesis method, we investigated
the enantioselective glucosylation with plant glucosyl-
transferases from C. roseus and N. tabacum.
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2. Results and discussion

Two glucosyltransferases named GTF-I and II were
isolated from the corresponding plant cell cultures of
C. roseus and N. tabacum, respectively, by three steps
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of column chromatographies.4–7 First, (±)-secondary
alcohols 1–5 (10mg each) were administered to 10mL
of 50mM HEPES buffer (pH7.0) containing ca. 50lg
of isolated GTF-I from C. roseus and 40mg of UDP-
glucose and incubated at 35 �C for 24 or 36h. The yields
of the product glucosides were determined by HPLC
analyses.8 Extraction from the reaction mixture with 1-
butanol followed by purification using column chroma-
tography on silica gel with CHCl3–MeOH (95:5, v/v)
gave the products. The J values in the 1H NMR signal
for the anomeric protons of the resulting glucosides
showed that the sugar moiety of the products was of
b-orientation. The absolute configurations of the agly-
cone moieties of the products were confirmed by direct
comparison of the 1H NMR spectra with the authentic
glucosides synthesized from enantiomerically pure
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Table 1. Enantioselective glucosylation of (±)-secondary alcohols with GTF-I from C. roseus

Substrates Products Reaction time (h) Conversion (%) De (%)a Eb Configurationc

1 6a 24 25 78 11 R

2 7a 24 22 84 15 R

3 8a 36 28 87 20 R

4 9a 36 17 98 >100 R

5 10a 24 39 >99 >100 R

a % De(s) were determined on the basis of the intensities of the 1-methyl proton signals in the 1H NMR of glucosides 6 and 7 and the anomeric proton

signals in the 1H NMR of glucosides 8–10.
b Calculated from eesubstrate and eeproduct using standard equation.15

c Preferred configuration at the aglycone moieties of the products.

Figure 1. Pairs of anomeric proton signals in 1H NMR of the products

10 obtained by the glucosylation of 5 with (a) GTF-I from C. roseus

and (b) GTF-II from N. tabacum.
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(R)- and (S)-alcohols by chemical glucosylation.9,10 The
diastereomeric compositions of the products were deter-
mined based on the intensities of the 1-methyl or
Table 2. Enantioselective glucosylation of (±)-secondary alcohols with GTF

Substrates Products Reaction time (h) Conve

1 6b 24

2 7b 24

3 8b 36

4 9b 36

5 10b 24

a% De(s) were determined on the basis of the intensities of the 1-methyl proto

signals in the 1H NMR of glucosides 8–10.
b Calculated from eesubstrate and eeproduct using standard equation.15

c Preferred configuration at the aglycone moieties of the products.
anomeric proton signals in the 1H NMR spectra.11–13

The enantioselectivity was greatly improved upon when
using the isolated GTF-I, whereas glucosylation with the
microsomal crude enzyme resulted in lower de(s) of 57–
65%, suggesting that the enantioselectivity of the glu-
cosylation with the microsomal enzyme might be af-
fected by impurities such as glucosidases or other
glucosyltransferases. It was found that 1–4 could be glu-
cosylated to give the corresponding glucosides of (R)-al-
cohols by GTF-I (Table 1). Although the glucosylation
of 1 showed relatively low enantioselectivity (78% de), it
was improved to 84% de when 2, which has a long alkyl
chain, was used as the substrate. In the case of 4, the glu-
cosylation resulted in a high diastereomeric excess
of 98%. A considerably challenging diol-substrate for
enantioselective glucosylation, 5, was also glucosylated
to the mono-glucoside with an (R)-configuration in its
aglycone part by GTF-I, allowing us to achieve the high-
est de of >99% (Fig. 1a).14 These results demonstrate
that glucosylation with the glucosyltransferase from C.
roseus occurred enantioselectively to give the glucosides
of (R)-alcohols and that the substrates with hydroxyl
group(s) attached to the cyclohexane ring could be glu-
cosylated with excellent enantioselectivity.

Substrates 1–5 were next subjected to glucosylation with
GTF-II from N. tabacum and then glucosylated to the
corresponding glucosides having an (S)-configuration
at their aglycone moieties (Table 2). It is noteworthy
that GTF-II glucosylated 3–5 to (S)-alkyl glucosides
8b–10b with very high enantioselectivity [de(s) of
>99% and 100%] (Fig. 1b), suggesting that enantioselec-
tive glucosylation with GTF-II is useful, as a new enzy-
matic enantiomer discriminating reaction, for the
practical preparation of alkyl glucosides in diastereo-
merically pure form. The results obtained herein reveal
that the glucosylation with the glucosyltransferase from
-II from N. tabacum

rsion (%) De (%)a Eb Configurationc

24 90 25 S

20 93 35 S

26 >99 >100 S

21 100 >100 S

33 >99 >100 S

n signals in the 1H NMR of glucosides 6 and 7 and the anomeric proton
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N. tabacum affords the glucosides of the (S)-alcohols
with excellent enantioselectivity.
3. Conclusion

The enantioselective glucosylation with two glucosyl-
transferases from C. roseus and N. tabacum has been
accomplished with high enantioselectivity. It should be
emphasized that the enantioselectivities in the glucosyla-
tion of the (±)-secondary alcohols were opposite be-
tween these enzymes and that each diastereomer of
alkyl glucosides can be synthesized by selective use of
these glucosyltransferases.
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