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Abstract A process to access heteroaromatic primary amines from the
corresponding heteroaromatic ketones has been developed. A broad
range of previously reported methods to convert ketones to primary
amines was examined on heterocyclic ketones without success, includ-
ing Leuckart–Wallach conditions, borane reductions, and transition-
metal-catalyzed hydrogenations. Unique among the catalysts exam-
ined, Raney cobalt produced the desired primary heterocyclic amine.
Raney cobalt hydrogenation of structurally varied heterocyclic ketoxim-
es was demonstrated to form primary amines in good selectivity under
mild conditions, and the products are easily isolated in high yield. Addi-
tionally, this is the first report of a systematic evaluation of the capabili-
ties of Raney cobalt as an oxime hydrogenation catalyst.
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The conversion of ketones to the corresponding primary
amine is a common and useful transformation in organic
synthesis. This transformation is typically achieved by re-
ductive amination via reduction of an imine or enamine de-
rived from the corresponding ketone.1 Alternately, the re-
duction of oximes and nitriles can lead to the same prod-
ucts, typically requiring stoichiometric reductants such as
Mg, Na, Zn, Fe plus a hydride source or borane reagents.
These procedures can be expensive, pose environmental
concerns and involve complicated workup procedures.2 Sol-
id-supported metals like Pd, Ni or Rh can be used as hydro-
genation catalysts, avoiding expensive stoichiometric re-
agents and complex isolation protocols.3 However, oxime
reductions using these systems can be incompatible with
heteroaromatic functionalities due to complexation of the
metal catalyst by the heteroatom-containing substrates and
halogen-containing substrates due to dehalogenation.

As part of a program to develop an improved synthesis
towards an advanced intermediate of a kinase inhibitor, we
sought to transform a heteroaromatic ketone into the corre-
sponding primary amine (Scheme 1). Conventional direct
amination methods were explored with little success.
Leuckart–Wallach conditions led to significant decomposi-

tion and only produced trace amounts of the desired
amine.4 Other reductive amination conditions investigated
produced the primary amine in poor to modest yields (40–
60%) with the remainder of the mass balance forming the
secondary amine (formed from two equivalents of the par-
ent ketone) or alcohol.5

Scheme 1  Synthesis of an amine from a ketone containing a coordi-
nating heterocycle and associated reaction side products

Encouraged by reports from Shan where oxime ethers
were readily reduced in the presence of stoichiometric bo-
rane reagents, we pursued amine formation through oxime
reduction.6 A model chelating heteroaromatic ketone 1 was
converted into a ketoxime 2 to examine the feasibility of
this approach (Scheme 2).

Scheme 2  Model oxime synthesis for reduction studies

A variety of borane reagents failed to reduce 2 to the de-
sired amine 3. Instead, the starting oxime was recovered
unchanged; prolonged reaction times led to complex degra-
dation. Zinc- and magnesium-mediated reductions gave
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poor conversions to the desired amine even after extended
reaction times and forcing conditions.2a,e We then turned
our attention to hydrogenation of the oxime moiety.7 After
screening a variety of heterogeneous catalysts (Table 1), we
found that palladium and platinum gave no desired amine.
Pd- and Pt-catalyzed the reduction of the C–N double bond
yielding the hydroxy amine derived from 2. Ruthenium and
rhodium gave only low conversion (<5%), presumably due
to chelation-induced deactivation of the metal catalyst by
the bipyridyl functionality of the substrate. Raney nickel
showed consumption of the oxime 2, but produced a com-
plex mixture of products with little to no desired amine ob-
served.

However, Raney cobalt 2724 reduced oxime 2 to prima-
ry amine 3 in >95% yield and excellent purity, suppressing
the secondary amine formation to <1% (Table 1, entry 6).
The amine product could easily be isolated from this reac-
tion by filtering off the heterogeneous catalyst then adding
HCl to precipitate the product as a salt. This reaction was
subsequently demonstrated on >10 gram scale.

A few isolated reports of oxime reduction by Raney co-
balt were present in the literature.8 However, to the best of
the authors’ knowledge, this report represents the first sys-
tematic study of a high-yielding oxime reduction by this
underutilized heterogeneous catalyst.

The scope of the Raney cobalt 2724 catalyst was then
examined using the process developed for the model sub-
strate (Table 2). Sterically encumbered oximes were well
tolerated (Table 2, entries 2–6). Substrates expected to
strongly coordinate cobalt did not interfere with the reac-
tion (Table 2, entries 1 and 7), and aromatic halide-contain-
ing oximes could be reduced without significant dehaloge-

nation (Table 2, entries 10 and 11). Competitive secondary
amine formation was an issue for less sterically congested
substrates (Table 2, entries 2, 8, 12, and 13 and Scheme 3).
In particular, aldoximes preferentially formed dimeric sec-
ondary amines and yielded very little primary amine prod-
uct (Table 2, entries 12 and 13). The formation of secondary
amines during oxime and nitrile formation has been previ-
ously observed and reported. Specifically, Müller has ob-
served that the choice of catalyst can influence the selectiv-
ity of amine formation.8b

Table 2  Raney Cobalt Reduction of Pyridyl Oximes

Table 1  Examination of Heterogeneous Catalysts in the Reduction of 
Oxime 2

Entry Catalyst Yield

1 5% Ru/C <5%, recovered oxime

2 5% Rh/C <5%, recovered oxime

3 5% Pt/C hydroxy amine

4 5% Pd/C hydroxy amine

5 Raney Nia decomposition

6 Raney Co 2724a,b >95%
a Raney catalysts are stored and charged as a slurry in H2O. The slurry was 
charged at 100 wt% relative to oxime.
b Purchased from W. R. Grace and Co.
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Table 2 (continued)
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4

2d 3d

86%

5

2e 3e

98%

6

2f 3f

95%

7

2g 3g

90%

8

2h 3h

25%a

9

2i 3i

85%

10

2j 3j

80%

11

2k 3k

88%

12

2l 3l

<10%a

13

2m 3m

40%a

a A 100% conversion of starting material was observed. Mass balance was conversion to the corresponding dimeric secondary amine (Scheme 3).
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Scheme 3  Raney cobalt reduction of aldoximes

Direct reduction of nitriles with this catalyst system was
also examined. Subjecting nitriles to the reaction condi-
tions developed herein leads to the formation of dimeric
amines as the major reaction products (Scheme 4). This
presumably occurs via similar mechanism and intermedi-
ates as the previously reported results from the reduction
of aldoximes.

Scheme 4  Raney cobalt reduction of aromatic nitriles

In summary, we have developed a convenient procedure
to access heterocyclic primary amines via hydrogenation of
the corresponding oxime using Raney cobalt 2724 as the
catalyst.9 This is the first such study of amine synthesis
from oximes utilizing this catalyst. The reaction conditions
are mild and can tolerate the presence of reductively labile
halogen functionality and strongly coordinating heterocy-
cles. Furthermore, the products are readily separated from
the catalyst by simple filtration and can be purified by chro-
matography or salt formation.
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