SYNTHESIS OF (Z)-STILBENDIOL DIBENZOATE BY SENSITIZED PHOTOOXYGENATION OF 2,3,5,6-TETRAPHENYL-p-DIOXIN¹

by Luigi Lopez

CNR Centro di Studio sulle Metodologie Innovative di Sintesi Organiche

Dipartimento di Chimica, Università di Bari, Via Amendola, 173, 70126 Bari, Italy

Summary: Sensitized photooxygenation of 2,3,5,6-tetraphenyl-p-dioxin with singlet and triplet excitable sensitizers yields (Z)-stilbendiol dibenzoate together with benzil. Experimental proofs show that unconnected mechanisms could operate accounting for the 1,2 -diketone and the endiol diester formation.

Two recent reports^{2,3} on the singlet oxygenation of 2,3,5,6-tetraphenyl-p-dioxin $\underline{1}^4$ show two different pathways of fragmentation via the intermediates bisdioxetane 2 and monodioxetane 4 leading respectively to benzoic anhydride 3 and benzil 5 eq. 1,2.

The unusual cleavage of $\underline{4}$, with total retention of the dioxetanyl carbon-carbon bond,⁵ induced us to study the sensitized photooxygenation of $\underline{1}$ with singlet and triplet exicited sensitizers with the purposes to isolate the C-C cleavage product from $\underline{4}$ i.e. the (Z)-stilbendioldibenzoate 6 and attempt to define the different mechanisms affording 5 and 6 eq. 3.

4383

Typical experimental conditions are as follows: oxygen-saturated dry acetonitrile/dichloromethane solutions⁸ of $\underline{1}$ (10^{-2} M) in the presence of sensitizers ($6x10^{-4}$ M) are irradiated at 10°C with a 700W high pressure mercury lamp through a CuSO₄ filter solution. The products $\underline{5}$, $\underline{6}$, isolated by column chromatography on silica gel, have been identified by their spectral properties and by comparison with authentic commercial and/or synthesized samples⁹ (Table 1).

Table 1	PHOTOSENSITIZED OXIDATION OF 2,3,5,6-TETRAPHENYL-p-DIOXIN					
Run	Conditions ^a	Time of Irr.	Sensitizer	Conversion	Products	(% yields) ^b
		(h)		(% mol)	<u>5</u> °	<u>6</u>
1		0.5	DCA	100	27	70
2	5x10 ⁻³ M (BQ)	0.7	н	"	30	65
3	5x10 ⁻³ M (DABCO)	3	"		7	90
4	1x10 ⁻² M (DABCO)	3	*1	50	-	45
5	5x10 ⁻³ m (KI)	1	"	100	7	90
6	5x10 ⁻² (TPE) ^d	2	"	"	65	30
7 ^e		2	11	2	traces	
8		1.5	Bz^{f}	100	75	20
9	5x10 ⁻³ M (DABCO)	2		"	12	85
10		1.5	мв ^g	"	65	30
11	5x10 ⁻³ M (DABCO)	2	U.	"	12	85
12 ^h		2	none	not quoted	not quoted	i

^aOxygen was bubbled into a 50 mL Pyres test tube, except as noted. ^bDetermined by GC with biphenyl (BP) as internal standard. ^csee ref. 8,9. ^dTetraphenyl ethylene (TPE). ^eNitrogen atmosphere. ^fBenzil (Bz). ^gMethylene blue (MB). ^hSeveral dioxins show the same autoxidation ref 15.

The key step in the 9,10-dicyanoanthracene (DCA) [$E^{red} = -0.98$ V vs SCE; $\Delta E_{o-o} = 2.94eV$]-sensitized reaction (run 1) might involve fluorescence quenching of the excited singlet sensitizer by $1 [E^{ox'} = 0.87$ V vs SCE] leading to the radical ion pair (DCA⁻ 1⁺). The subsequent reduction of molecolar oxygen to superoxide anion 0^{-7}_{2} and its coupling with 1⁺ would afford 4, ultimately leading to carbonyl products.¹¹ However, the series of experiments (runs 2-7), carried out with (DCA) as photosensitizer, clarly reveal that several unconnected mechanisms could silmultaneously operate in this system. In fact, the modest effect exhibited by p-benzoquinone (BQ) [$E^{red} = -0.67$ V vs SCE], as superoxide anion quencher, ¹² seems to leave out the esclusive involvement of 0^{-7}_{2} as oxygen active species. On the other hand, the simple retardation observed in the reactions carried out in the presence of 1,4-diazobicyclo[2,2,2]octane (DABCO)

 $[E^{\text{ox}} = 0.64 \text{ V vs SCE}]$ and potassium iodide (KI) $[E^{\text{ox}} = 0.37 \text{ V vs SCE}]$, singlet oxygen quenchers,¹³ could be due to an easier electron-transfer reaction between (DABCO) and/or (\overline{I}) and the singlet excited sensitizer (¹DCA*), that would inhibit the formation of the radical cation 1^{\dagger} favouring the synthesis of 6 through a singlet oxygenation of 1.

Singlet oxygen, in the (DCA)-sensitized photooxygenations of substrates with low oxidation potentials and in the same time reactive towards 10 , has been previously suggested by Foote and co-workers to account for the similar results observed in the (DCA) and Rose Bengal(RB)sensitized photooxygenation of 1,1-diphenyl-2-methoxyethylene.¹⁴ It might derive from species formed after interception of (${}^{1}\text{DCA}^{*}$) by the substrate, being unlikely that it derives from direct intersystem crossing of (${}^{1}\text{DCA}^{*}$) to (${}^{3}\text{DCA}^{*}$). Our findings are furthermore complicated by the well ascertained autooxidation of $\underline{1}^{15}$, during the irradiation of its oxygenated solutions (run 12) with formation of benzil, which action, as triplet exicitable sensitizer ($E_T = 53$ Kcal/mol), has been well observed in the photooxygenation of $\underline{1}$ (8,9) [See also the similar results obtained in the methylene blue sensitization: (runs 10,11)]. Triplet excited benzil could add triplet molecular oxygen affording an acylperoxyl radical species, or transfer its energy to 0_2 leading to singlet oxygen.¹⁶ Both species appear efficient, through different mechanisms, in the oxidation of $\underline{1}$.^{17,2}

Although our findings do not lead to an inexorable mechanistic conclusion, however they clearly show that the cleavage of <u>4</u> must lead to <u>6</u>, through the usual C-C cleavage, ¹⁸ demonstrating at the same time that <u>5</u> might arise, mainly, from the intermediate radical cation 1⁺, which formation could be reduced by (DABCO) and (I⁻) or enhanced in the indirect tetraphenyl ethylene (TPE)-sensitized photooxygenation (run 6). ¹⁴ Preliminary observations on the evolution of the radical cation 1⁺, chemically generated by electron-transfer between <u>1</u> and tris-p-bromophenyl-ammoniumyl tetrafluoroborate $(BrC_{6}H_4)_3N^+BF_4$, leading essentially to <u>5</u>, ¹⁹ provide support for our idea about the different mechanisms affording <u>5</u> and <u>6</u>. Studies on sensitized photooxygenations of several dioxin with different sensitizers, such as tetrachloro-p-benzoguinone (CA).

Acknowledgements. We are indebted to the Progetto Finalizzato Chimica Fine e Secondaria for fi nancial support. We also thank Prof. A. P. Schaap for suggestions and Prof. W. Adam for the private preliminary communication of his results.

References and Footnotes

- L. Lopez, "International Symposium on Activation of Dioxygen Species and Homogenous Cataly tic Oxidations" Galzignano (Pd) 102 (1984)
- 2) W. Adam, C.C Cheng, O. Cueto, I. Erden, and K. Zinner, J.Am.Chem.Soc. 101, 4735 (1979)
- 3) M.V. George, Ch. V. Kumar, and I.C. Scaiano, <u>J.Phys.Chem.</u> 83, 2452 (1979)

- 4) D.R. Berger, and R.K. Summerbell, J.Org.Chem. 33, 1881 (1959)
- 5) A series of hetero-substituted 1,2-dioxetanes (0-0), (S-S), (S-O), (MeN-MeN) have been prepared by Schaap and co-workers see ref 6. The only dioxetanes that yields a mixture of pro ducts deriving from the C-C and C-hetero bond cleavage is the (S-S) 1,2-dioxetane. This result is in agreement with previous reports see refs 7.
- 6) R. Handley, A.J. Stern, and A.P. Schaap, Submitted to Tetrahedron Lett.
- 7) (a) W. Adam, L. Arias, and D. Scheutzow, <u>Tetrahedron Lett.</u> 2385 (1982); (b) G.G. Geller,
 C.S Foote, and D.B. Pechman, <u>ibid</u> 673 (1983); (c) W. Ando, K. Watanabe, and T. Migita, <u>ibid</u>
 4127 (1975) and references therein.
- 8) The photooxygenation of <u>1</u> in dry acetonitrile, owing to its low solubility, is slower and it affords a complex mixture of <u>5</u>, (Z) and (E) stilbendiol dibenzoate together with benzoic acid and <u>3</u>. The isomerization of <u>6</u> has been confirmed by (DCA) and/or tetrachloro-p-benzoquinone (CA)-sensitised irradiation of an its solution in nitrogen atmosphere.
- 9) Yields were determined on the isolated products and by GC with biphenyl as internal standard. As two moles of 5 can result from 1 yields are expressed as (mol5/2xmol 1)x100. The isola ted 5 shows the same mp. and spectral data of a pure commercial "Aldrich" sample. 6 mp 158-159°C (lit 159°C ref 10a), shows the following spectral data: ir (KBr pellet); 1725 cm⁻¹, ms 70eV (m/e) 229 (1), 105 (100), 77 (42); ¹Hnmr (CDCl₃ TMS) aromatic protons. The (E) isomer shows similar spectral data but a higher mp. 188°C (lit 189°C ref 10b) and a higher retention time by GC.
- 10) (a) A. Staudinger, and A. Binkert, <u>Helv.Chim.Acta</u>, 5,703 (1922); (b) A. Guirardo, F. Barba, C. Manzanera, and M.D. Velasco, <u>J.Org.Chem.</u>, 47, 142 (1982)
- 11) J. Eriksen, and C.S. Foote, J.Am.Chem.Soc., 102, 6083, (1980)
- 12) L.E. Manring, M.K. Kramer, and C.S. Foote, Tetrahedron Lett., 2523 (1984)
- (a) C. Ouannes, and T. Wilson, <u>J.Am.Chem.Soc.</u>, 90, 6527 (1968); (b) I. Rosenthal, and A. Frimer, Photochem. and Photobiol 23, 209 (1976) and references therein.
- 14) D.S. Steichen, and C.S. Foote, J.Am.Chem.Soc., 103, 1885 (1981)
- 15) W. Adam, H. Platsch, and E. Schimdt, private communication, Chem.Ber in press.
- 16) Y. Sawaki, C.S. Foote, J.Org. Chem., 48, 4934 (1983)
- 17) L. Lopez, V. Calò, and M. Fiorentino, J.Chem.Soc. Perkin Trans I 457 (1985)
- 18) W. H. Richardson, F.C. Montgomery, M.B. Yelvington, and H.E. O. Neal, <u>J.Am.Chem.Soc.</u>, 96, 7525 (1974)
- 19) (a) F. Ciminale, and L. Lopez, <u>Tetrahedron Lett.</u>, 789 (1985); (b) F. Ciminale, and L. Lopez unpublished results.
- 20) (a) L. Lopez, unpublished results. (b) L. Lopez, V. Calò, and R. Aurora, <u>J. Photochem.</u> in press.

(Received in UK 16 May 1985)