January 1983 Communications 69

Synthesis of Arenephosphonates by Copper(I) Iodide-Promoted Arylation of Phosphite Anions

Atsuhiro Osuka*, Nobuko Ohmasa, Yoshiki Yoshida, Hitomi Suzuki*

Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790, Japan

Considerable attention has been focused on arenephosphonates as precursors of phosphorus analogs of heterocyclic compounds such as phosphindoles^{1a} and iodinanes^{1b}. The Arbuzov reaction is one of the most versatile pathways for the formation of carbon-phosphorus bonds². However, aryl halides are very unreactive under thermally-initiated conditions. Useful methods for the synthesis of arenephosphonates involve either (a) photochemical activation³, (b) nickel(II) catalysis⁴, (c) photostimulated S_{RN}1 conditions⁵, (d) free radical phos-

0039-7881/83/0132-0069-03 \$ 03.00

© 1983 Georg Thieme Verlag · Stuttgart · New York

phonation conditions⁶, or (e) strong base-induced rearrangement of aryl phosphate⁷. These methods have certain disadvantages such as the necessity to use a large excess of phosphite (a, c), the necessity to activate the substrate (a, c), inapplicability to substrates with steric hindrance (b) or with a free amino group (a, b, c, d, e), and low regioselectivity (d).

We report a convenient synthesis of arenephosphonates 3 via copper(I) iodide promoted arylation of phosphite anions 2 with aryl halides 1 in hexamethylphosphoric triamide (HMPT).

The reaction proceeds smoothly and affords satisfactory yields (Table). The arenephosphonates are appreciably soluble in water, which causes some losses of 3.

In contrast to the nickel(II)-catalyzed Arbuzov reaction, this reaction is particularly useful for the preparation of hindered arenephosphonates (3c, 3g, 3h, and 3i). The reaction is compatible with a free amino group, although functional group

compatibility has not yet been studied thoroughly. The reaction with aryl chlorides requires a slightly higher temperature (170-180 °C) and results in poorer yields (20-30%).

The structures of all new products were established by analytical data and ¹H-N.M.R. and I.R. spectra. All melting points and boiling points are uncorrected.

Diphenyl 2,3,5,6-Tetramethylbenzenephosphonate (3c); Typical Procedure:

Sodium hydride (0.096 g, 4 mmol) is added to a stirred solution of diphenyl phosphite (2a; 0.94 g, 4 mmol) in HMPT (5 ml) at 70-80 °C under a nitrogen atmosphere. When the hydrogen evolution has ceased, copper(I) iodide (0.76 g, 4 mmol) is added. The solution gradually turns black and iododurene (0.52 g, 2 mmol) is added. The mixture is heated at 150-160 °C with stirring for 1 h. After cooling, the mixture is diluted with water (150 ml) and the product is extracted with ether (2 × 70 ml). The extract is washed with water (100 ml) and dried with sodium sulfate. The solvent is removed in vacuo and a residue is chromatographed on a short column of silica gel using ether/hexane (20/80) as eluent, giving 3c. The product is recrystallized from hexane; yield: 549 mg (75%); m.p. 131.5-132.5 °C.

C₂₂H₂₃O₃P calc. C 72.12 H 6.33 (366.4) found 72.07 6.31 I.R. (KBr): ν = 1595, 1485, 1270, 1200, 945, 930 cm⁻¹.

M.S.: m/e = 366 (M⁺, 100).

Table. Arenephosphonates 3a-j prepared

Produ No.	uct R	Ar	X	Yield ^a [%]	m.p. [°C] or b.p. [°C]/ torr ^b	Molecular formula ^c or Lit. data	I.R. (KBr) ν [cm ⁻¹]	1 H-N.M.R. (CDCl ₃) δ [ppm]
3a	C ₆ H ₅	C ₆ H ₅	J	81	75–75.5°	C ₁₈ H ₁₅ O ₃ P (310.3)	3070, 1760, 1600, 1500, 1270, 1220, 1195, 1145, 950, 940, 780, 755, 700	7.1 (m, 10 H); 7.6-8.1 (m, 5 H)
3b	C ₆ H ₅	4-H ₃ C—C ₆ H ₄	J	77	225-227°/2.5	$C_{19}H_{17}O_4P$ (340.3)	2920, 1590, 1490, 1270, 1215, 1190, 1130, 930, 760, 685	2.30 (s, 3 H); 6.9-7.3 (m, 12 H); 7.72 (dd, 2 H, $J=8$ Hz, 12 Hz)
3c	C ₆ H ₅	2,3,5,6-tetra- H ₃ C—C ₆ H	J	75	131.5-132.5°	C ₂₂ H ₂₃ O ₃ P (366.4)	2940, 1595, 1485, 1270, 1200, 945, 930, 775, 770, 695	2.30 (s, 6H); 2.70 (d, $J=1$ Hz, 6H); 7.1 (m, 11 H)
3d	C ₆ H ₅	4-H ₂ N—C ₆ H ₄	Br	66	130-132°	$C_{18}H_{16}NO_3P$ (325.3)	3420, 3350, 3160, 3070, 1590, 1490, 1190, 945, 685	7.1 (m, 14 H)
3e	C ₆ H ₅	4-H ₃ CO—C ₆ H ₄	Br	70	233-235°/2.5	$C_{18}H_{17}O_4P$ (328.3)	3070, 2940, 1600, 1490, 1260, 1220, 1200, 1135, 1030, 940, 775, 690	3.55 (s, 3 H); 7.1 (m, 10 H); 6.78 (dd, 2 H, J=4 Hz, 8 Hz); 7.68 (dd, 2 H, J=8 Hz, 13 Hz)
3f	C ₂ H ₅	4-H ₃ C—C ₆ H ₄	J	62 ^d	157-162°/20	118-119°/ 0.05 ^{4a}	2980, 1610, 1450, 1395, 1250, 1170, 1135, 1060, 1030, 970, 800, 655	1.24 (t, 6 H, J =7 Hz); 2.36 (s, 3 H); 4.0 (m, 4 H); 7.09 (dd, 2 H, J =5 Hz, 8 Hz); 7.55 (dd, 2 H, J =5 Hz, 8 Hz)
3g	C ₂ H ₅	2,4,6-tri- H ₃ C—C ₆ H ₂	J	67 ^d	156~161°/18	111112°/ 0.05 ^{4a}	2970, 1605, 1460, 1390, 1230, 1085, 1020, 960	1.24 (t, J=7 Hz, 6 H); 2.20 (s, 3 H); 2.49 (d, 6 H, J=1 Hz); 6.72 (d, 2 H, J=5 Hz); 4.0 (m, 4 H)
3h	C ₂ H ₅	2,3,5,6-tetra- H ₃ CC ₆ H	J	65 ^d	181-186°/19	$C_{14}H_{23}O_3P$ (270.3)	2980, 2930, 1465, 1435, 1255, 1215, 1170, 1060, 1030, 965, 855, 800	1.24 (t, 6 H, J=7 Hz); 2.15 (s, 6 H); 2.40 (d, 6 H, J=1 Hz); 4.0 (m, 4 H); 6.91 (s, 1 H)
3i	C ₂ H ₅	2,3,4,5,6-penta- H ₃ C—C ₆	J	73 ^d	193-203°/17	$C_{15}H_{25}O_3P$ (284.3)	2970, 1555, 1455, 1390, 1245, 1220, 1160, 1095, 1020, 960, 770	1.24 (t, 6 H, J=7 Hz); 2.15 (s, 9 H); 2.46 (d, 6 H, J=1 Hz); 4.0 (m, 4 H)
3ј	C ₂ H ₅	4-H ₃ COC ₆ H ₄	Br	54 ^d	140-145°/18	168-169°/ 1.5 ^{4a}	2970, 1595, 1570, 1505, 1445, 1390, 1370, 1295, 1240, 1160, 1130, 1115, 970, 810, 660	1.25 (s, 6 H); 3.75 (s, 3 H); 4.0 (m, 4 H); 6.85 (dd, 2 H J=4 Hz, 8 Hz); 7.55 (dd 2 H, J=8 Hz, 13 Hz)

[&]quot; Yield of isolated product.

^b Kugelrohr distillation.

^c Satisfactory microanalyses obtained: C ± 0.26 , H ± 0.10 , N ± 0.09 .

d Purity > 98% by G.L.C.

January 1983 Communications 71

Diphenyl 2-Aminobenzenephosphonate (3d):

A solution of sodium diphenyl phosphite (1.02 g, 4 mmol) in HMPT (5 ml) is reacted with o-bromoaniline (0.34 g, 2 mmol) in a similar manner as described for 3c. The crude product is chromatographed over silica gel with dichloromethane and recrystallized from tetrachloromethane, yield 427 mg (66%); m.p. $130-132\,^{\circ}\text{C}$.

C₁₈H₁₆NO₃P calc. C 66.46 H 4.96 N 4.31 (325.3) found 66.34 4.86 4.22

I.R. (KBr): v = 3420, 3350, 1590, 1490, 1190, 945, 685 cm⁻¹.

M.S.: m/e = 325 (M⁺, 100), 231 (24), 214 (21), 168 (37), 94 (51).

Received: June 28, 1982 (Revised form: August 23, 1982)

0039-7881/83/0132-0071-03 \$ 03.00

© 1983 Georg Thieme Verlag · Stuttgart · New York

¹ (a) T. M. Balthazor, J. Org. Chem. 45, 2519 (1980).

⁽b) T. M. Balthazor, J. A. Miles, B. R. Stults, J. Org. Chem. 43, 4538 (1978).

² A. K. Bhattacharya, G. Thyagarajam, Chem. Rev. 81, 415 (1981).

³ R. Obrycki, C. E. Griffin, J. Org. Chem. 33, 632 (1968).

⁴ (a) P. Tavs, Chem. Ber. 103, 2428 (1970).

⁽b) T. M. Balthazor, R. C. Grabiak, J. Org. Chem. 45, 5425 (1980).

⁵ J. F. Bunnett, X. Creary, J. Org. Chem. 39, 3613 (1974).

⁶ (a) E. K. Fields, R. J. Rolih, Chem. Ind. (London) 1960, 999.

⁽b) E. F. Jason, E. K. Fields, J. Org. Chem. 27, 1402 (1962).

⁷ L. S. Melvin, Tetrahedron Lett. 22, 3375 (1981).