

0040-4020(95)00993-0

Lithiomethyl Ethyl Ether from Chloromethyl Ethyl Ether via a DTBB-Catalysed Lithiation

Albert Guijarro, Balbino Mancheño, Javier Ortiz and Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain

Abstract: The reaction of equimolecular amounts of chloromethyl ethyl ether (1) and a carbonyl compound [BuⁿCHO, Bu¹CHO, PhCHO, Pri₂CO, Bu¹₂CO, (CH₂)₄CO, 2-cyclohexenone, PhCOMe] with an excess of lithium powder (1:7 molar ratio) and a catalytic amount of DTBB (5 mol %) in THF at 0°C (Method A) leads, after hydrolysis, to the corresponding hydroxyethers 2. The reaction can be also carried out in a two-step process: tandem lithiation at -90°C and reaction with the electrophile [BuⁿCHO, (CH₂)₄CO, PhCOMe, PhMe₂SiCl, CO₂, PhCN, PhCOMMe₂, CyNCO, PhN=CHPh] at -90 to -60°C (Method B).

INTRODUCTION

Among functionalised organolithium compounds¹ of the type I², the coresponding α -substituted derivatives (I, n = 1), also called 'carbenoids', are interesting intermediates in synthetic organic chemistry because in the reaction with electrophilic reagents they are able to introduce a functional group at the α -position with respect to the electrophilic fragment. The preparation of these type of d¹-reagents³ has been achieved at low temperature by three different procedures depending on the starting material: (a) tin-lithium transmetallation from α -alkoxystannanes II with *n*-butyllithium⁴; (b) sulphur-lithium exchange from phenylthioketals of the type III by reductive cleavage with a lithium arene⁵; (c) deprotonation of some ethers (t-butyl^{6a} or benzyl^{6b} derivatives) or esters6c,d and related compounds6e.8 IV with strong bases (usually s-butyllithium and a co-reagent such as tetramethylethylenediamine or potassium t-butoxide). However, to the best of our knowledge, a direct⁷ route. which implies a chlorine-lithium exchange from chloromethyl ethers V, has not been used yet for the preparation of intermediates of the type I with X = OR and n = 1. As a general consideration, non-stabilised α -lithioethers are unstable species, even at low temperature, due to their tendency to undergo α -elimination ^{8a} or Wittig rearrangement⁸ processes. On the other hand, we discovered recently⁹ that the use of an arene catalyst [naphthalene or 4,4'-di-tert-butylbiphenyl (DTBB)]¹⁰ in lithiation reactions¹¹ allows not only the new routes for simple organolithium compounds starting from non-halogenated materials¹², but also the preparation of very reactive functionalised organolithium intermediates¹³ or polylithium synthons¹⁴ under very mild reaction conditions starting from commercially available chlorinated materials. In the present paper we describe the

preparation of an α -lithioether of the type I with X = OEt and n = 1 from the corresponding α -chloroether of the type V by a DTBB-catalysed lithiation, and their reaction with different electrophiles either in a two-step or in a Barbier-type process¹⁵.

RESULTS AND DISCUSSION

The reaction of a mixture of equimolecular amounts of commercially available chloromethyl ethyl ether (1) and a carbonyl compound [BunCHO, ButCHO, PhCHO, Pri₂CO, But₂CO, (CH₂)₄CO, 2-cyclohexenone, PhCOMe] with an excess of lithium powder (1:7 molar ratio) and a catalytic amount of DTBB (5 mol %) in THF at 0°C (slow addition: *ca.* 45 min) gave, after hydrolysis with water, the corresponding ethoxy alcohols **2a-h** (Scheme 1, Method A and Table 1, entries 1, 3-7, 9 and 10). Some remarks about this reaction are: (a) when naphthalene was used as catalyst instead of DTBB the yields are, in general lower (see, for instance, Table 1, entry 10 and footnote f); (b) the reaction works nicely with different carbonyl compounds, even with very hindered ketones, such as diisopropyl or di-*tert*-butyl ketone (Table 1, entries 5 and 6, respectively); (c) in some cases the yields are better by adding the reagents 1 and 2 at once onto the activated lithium suspension (not slowly; see above).

Scheme 1. Reagents and conditions: i, $E^+ = Bu^nCHO$, Bu^tCHO , PhCHO, $Pr_{2}^{i}CO$, $Bu_{2}^{i}CO$, $(CH_2)_4CO$, 2-cyclohexenone, PhCOMe, Li powder, DTBB cat. (5 mol %), THF, 0°C; ii, H₂O; iii, Li powder, DTBB cat. (5 mol %), THF, -90°C; iv, $E^+ = Bu^nCHO$, $(CH_2)_4CO$, PhCOMe, PhMe₂SiCl, CO₂, PhCN, PhCOMe₂, CyNCO, PhN=CHPh, -90 or -90 to -60°C (see text).

1645

Alternatively, the transformation $1\rightarrow 2$ can be carried out in a two-step process, the corresponding intermediate of the type 3 being generated before the addition of the electrophilic reagent (Scheme 1, Method B). The two more important differences compared to the reaction performed under Barbier-type reaction conditions (Method A) are: (a) the reaction temperature has to be kept around -90°C in order to avoid decomposition of ethoxymethyllithium (3) and (b) not only carbonyl compounds [Bu^DCHO, (CH₂)₄CO, PhCOMe; Scheme 1 and Table 1, entries 2, 8 and 11] can be used as electrophiles, but also other type of reagents [PhMe₂SiCl, CO₂, PhCN, PhCONMe₂, CyNCO, PhN=CHPh; Scheme 1 and Table 1, entries 12-17]. In all cases the hydrolysis temperature was between -90 and -80°C except in the case of the reaction with carbonyl derivatives (Table 1, entries 2, 8, 11 and 17] or carbon dioxide (Table 1, entry 13) in which the best results were obtained allowing the temperature to rise to -60 or 0°C, respectively.

Entry	Method	Electrophile E+	Product 2 ^a			
			No.	Е	Yield (%)b	R _f °
1	А	BunCHO	2a	BunCHOH	87	0.25
2	В	BunCHO	2a	BunCHOH	82	0.25
3	Α	Bu ⁴ CHO	2 b	ButCHOH	81	0.31
4	Α	PhCHO	2 c	PhCHOH	84d	0.18
5	Α	Pr ⁱ 2CO	2 d	Pri ₂ COH	75d	0.63
6	Α	Bu ¹ ₂ CO	2e	Bu ¹ 2COH	70d	0.75
7	А	(CH ₂) ₄ CO	2 f	(CH ₂) ₄ COH	94	0.29
8	В	(CH ₂) ₄ CO	2 f	(CH ₂) ₄ COH	90	0.29
9	Α	-e	2g	(CH ₂) ₄ CH=CHC(OH)	98	0.20
10	Α	PhCOMe	2 h	PhC(OH)Me	94 (57)f	0.33
11	В	PhCOMe	2 h	PhC(OH)Me	91	0.33
12	В	PhMe ₂ SiCl	2i	PhMe ₂ Si	86	0.708
13	В	CO ₂	2j	CO ₂ H	88	0.12g
14	В	PhCN	2k	PhCO	75	0.44s
15	В	PhCONMe ₂	2 k	PhCO	80	0. 44 8
16	в	CyNCO ^b	21	CyNHCOh	81	0.27s
17	В	PhCH=NPh	2m	PhCH(NHPh)	85	0.53g

Table 1. Preparation of Compounds 2

^a All compounds 2 were \geq 95% pure (GLC and 300 MHz ¹H NMR). ^b Isolated yield of pure compounds 2 after flash chromatography (silica gel, hexane/ethyl acetate) based on the starting chloroether 1. ^c Hexane/ethyl acetate: 9/1. ^d Isolated yield corresponding to the reaction carried out by adding the reactants at once (not slowly; see text) to the activated lithium suspension. ^e 2-Cyclohexenone was used as electrophile. ^f Naphthalene was used instead of DTBB as the arene catalyst. ^g Hexane/ethyl acetate: 7/3. ^h Cy = cyclohexyl.

From the results described in this paper we conclude that this methodology (DTBB-catalysed lithiation of chloromethyl ethyl ether followed by *in situ* reaction with electrophiles) represents a new and simple procedure to prepare lithiomethyl ethers, which are adequate intermediates for the synthesis of functionalised ethers.

EXPERIMENTAL PART

General.- For general information see reference 13.

Preparation of Compound 2. General Method A. To a blue suspension of lithium powder (100 mg, 14 mmol; 1:7 molar ratio) and DTBB (26 mg, 0.1 mmol; 5 mol %) in THF (5 ml) at 0°C, a mixture of the starting chloromethyl ether (1, 2 mmol) [CAUTION: chloromethyl ethers are harmful chemicals and should be handled with special precautions] and the corresponding carbonyl compound (2 mmol) in THF (5 ml) was added during *ca.* 45 min. Then, the resulting mixture was hydrolysed with water (10 ml) and extracted with diethyl ether (2x10 ml) and ethyl acetate (2x10 ml). The organic layer was dried over Na₂SO₄ and evaporated (15 Torr) to give a residue, which was purified by column chromatography (silica gel, hexane/ethyl acetate) yielding the pure title compounds 2.

General. Method B. To a blue suspension of lithium powder (100 mg, 14 mmol; 1:7 molar ratio) and DTBB (26 mg, 0.1 mmol; 5 mol%) in THF (5 ml) at -90 °C was added a solution of the corresponding starting chloromethyl ether (1, 2 mmol) [CAUTION: see above] in THF (0.5 ml; 5 min). Once the blue colour is recovered (5-10 min) the corresponding electrophile (2 mmol) in THF (1 ml) was added at the same temperature and stirring was continued for 4 additional h allowing the temperature to rise to $-60^{\circ}C^{16}$. The resulting mixture was then hydrolysed with water (10 ml) and extracted with diethyl ether (2x10 ml) and ethyl acetate (2x10 ml). The organic layer was dried over Na_2SO_4 and evaporated (15 Torr) to give a residue, wich was purified by column chromatography (silica gel, hexane/ethyl acetate) yielding the pure title compounds 2. When benzonitrile, N,N-dimethylbenzamide or cyclohexyl isocyanate was used as electofiles, after the lithiation step dry pentane (15 ml) was added via cannula at -90 °C. Then the corresponding electrophile (2 mmol) in pentane (1 ml) was added to the resulting mixture at the same temperature and the reaction mixture was stirred for a period of ca. $2h^{17a}$. Then the resulting mixture was hydrolysed 17h and worked up as above. In the case of using carbon dioxide as electrophile a balloon containing CO_2 was conected to the reaction flask maintaining vigorous stirring and the temperature was allowed to raise to 0° C for ca. 5h. The resulting mixture was hydrolysed with water (10 ml) and extracted with hexane (10 ml). The aqueous layer was acidified with conc. H₂SO₄ and extracted with ethyl acetate (5x10 ml). After drying the organic layer with Na₂SO₄ it was evaporated (60 Torr) and the resulting residue purified by flash chromatography (silica gel, pentane/ether) yielding the pure acid 2j. Yields, R_f and specific rotations for compounds 2 are included in Table 1. Analytical and spectroscopic data for compounds 2 follow.

1-Ethoxy-2-hexanol (**2a**): v (film) 3420 (OH) and 1115 cm⁻¹ (C-O); $\delta_{\rm H}$ 0.90 (3H, t, J=6.6, CH₃CH₂CH₂), 1.21 (3H, t, J=7.0, CH₃CH₂O), 1.24-1.48 (6H, m, CH₂CH₂CH₂), 2.54 (1H, s, OH) 3.25 (1H, dd, J=9.4, 8.0, OCHHCO), 3.40-3.65 (3H, m, CH₂OCHHCO) and 3.76 (1H, m, CH₂CHOCH₂); δ_{C} 13.9 (CH₃CH₂CH₂), 15.05 (CH₃CH₂O), 22.65 (CH₃CH₂CH₂), 27.65 (CH₃CH₂CH₂), 32.8 (CH₃CH₂CH₂CH₂), 66.55 (CH₃CH₂O), 70.25 (CH₂COCH₂) and 74.9 (OCH₂CO); *m/z* 146 (M+, 0.1%), 87 (28), 86 (20), 69 (100), 61 (31), 59 (46), 57 (13), 45 (13), 43 (15) and 41 (23).

1-Ethoxy-3,3-dimethyl-2-butanol (**2b**): v (film) 3460 (OH) 1110 and 1090 cm⁻¹ (C-O); $\delta_{\rm H}$ 0.92 [9H, s, (CH₃)₃C], 1.21 (3H, t, *J*=7.0, CH₃CH₂O), 2.56 (1H, s, OH) 3.28 (1H, t, *J*=9.2, OCH*H*CO) and 3.42-3.61 (4H, m, OCH*H*CO, CH₃CH₂, OCH₂CHOH); $\delta_{\rm C}$ 15.1 (CH₃CH₂), 25.9 [3C, (CH₃)₃C], 33.2 [(CH₃)₃C], 66.5 (CH₃CH₂O), 71.45 (OCH₂CO) and 77.2 (OCH₂CHOH); *m*/z 131 (M+-CH₃, 0.3%), 89 (45), 88 (12), 87 (100), 69 (48), 61 (90), 59 (35), 57 (44), 45 (25), 43 (21) and 41 (31).

2-Ethoxy-1-phenylethanol (2c): v (film) 3400 (OH), 1600 (ArC=C), 1110, 1060 (C-O), 755 and 700 cm⁻¹ (ArC-H); $\delta_{\rm H}$ 1.24 (3H, t, J=7.0, CH₃CH₂O), 2.87 (1H, d, J=2.0, OH), 3.43 (1H, dd, J=9.7, 9.1, OCH*H*CO), 3.51-3.65 (3H, 2m, OCH*H*CO, CH₃CH₂O), 4.88 (1H, ddd, J=9.1, 2.4, 2.0, PhCHO), 7.25-7.41 (5H, m, ArH); $\delta_{\rm C}$ 15.05 (CH₃CH₂), 66.65 (CH₃CH₂O), 72.65 (ArCO), 76.1 (OCH₂CO), 126.05 (2C, ArCH), 127.7 (ArCH), 128.25 (2C, ArCH) and 140.3 (ArC); *m*/z 167 (M⁺+1, 1%), 166 (M⁺, 7%), 107 (100), 79 (33) and 77 (15).

2,4-Dimethyl-3-ethoxymethyl-3-pentanol (2d): v (film) 3460 (OH) and 1110 cm⁻¹ (C-O); $\delta_{\rm H}$ 0.91 (6H, d, J=6.9, 2xCH₃CHCH₃), 0.95 (6H, d, J=6.9, 2xCH₃CHCH₃), 1.19 (3H, t, J=7.0, CH₃CH₂), 1.95 (2H, septet, J=6.9, 2xCH₃CHCH₃), 2.22 (1H, s. OH), 3.35 (2H, s. OCH₂CO) and 3.47 (2H, q. J=7, CH₃CH₂O): $\delta_{\rm C}$ 15.1 (CH₃CH₂O), 17.15 (2C, 2xCH₃CHCH₃), 17.3 (2C, 2xCH₃CHCH₃), 32.95 (2C, 2xCH₃CHCH₃), 66.6 (CH₃CH₂O, 71.25 (OCH₂CO) and 75.5 (OCH₂CO); *m*/z 131 (M+-CH₃CHCH₃, 84%), 115 (74), 113 (23), 87 (29), 85 (32), 73 (19), 71 (100), 59 (40), 55 (21), 45 (14), 43 (53) and 41 (24) (Found: M+-CH₃CH₂CH₃, 131.1074. C₇H₁₅O₂ requires M, 131.1072).

3-Ethoxymethyl-2,2,4,4-tetramethyl-3-pentanol (2e): v (film) 3520 (OH) and 1110 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.04 [18H, s, 2x(CH₃)₃C], 1.20 (3H, t, J=7.0, CH₃CH₂), 3.01 (1H, s, OH), 3.42 (2H, s, OCH₂CO) and 3.49 (2H, q, J=7, CH₃CH₂O); $\delta_{\rm C}$ 15.2 (CH₃CH₂O), 28.55 [6C, 2x(CH₃)₃C], 40.95 [2C, 2x(CH₃)₃C], 66.25 (CH₃CH₂O), 70.35 (OCH₂CO) and 77.4 (OCH₂CO); *m/z* 145 [M+-(CH₃)₃C, 46%], 143 (15), 101 (16), 99 (87), 87 (70), 85 (29), 59 (30), 57 (100), 43 (47) and 41 (36) (Found: M+-(CH₃)₃C, 145.1231. C₈H₁₇O₂ requires M, 145.1228).

1-Ethoxymethyl-1-cyclopentanol (**2f**)¹⁸: v (film) 3400 (OH) and 1110 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.21 (3H, t, J=7.0, CH₃CH₂), 1.50-1.90 (8H, m, 4xringCH₂), 2.37 (1H, s, OH), 3.37 (2H, s, OCH₂CO) and 3.55 (2H, q, J=7.0, CH₃CH₂O); $\delta_{\rm C}$ 15.1 (CH₃CH₂O), 24.2 (2C, 2xring CH₂), 37.25 (2C, 2xring CH₂), 66.9 (CH₃CH₂O), 77.45 (OCH₂CO) and 81.4 (OCH₂CO); *m*/z 144 (M+, 1%) 85 (100), 84 (27), 67 (41), 57 (11), 55 (10), 43

1-Ethoxymethyl-2-cyclohexen-1-ol (**2g**): ν (film) 3425 (OH), 1645 (C=C) and 1110 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.21 (3H, t, *J*=7.0, *CH*₃CH₂), 1.55-1.83 (4H, m, COCH₂CH₂CH₂), 1.90-2.15 (2H, m, OCH₂CH₂CH₂), 2.56 (1H, s, OH), 3.29 (1H, d, *J*=9.1, OCH*H*CO), 3.36 (1H, d, *J*=9.1, OC*H*HCO), 3.55 (2H, q, *J*=7.0, CH₃CH₂O), 5.64 (1H, m, *H*C=CHCH₂) and 5.88 (1H, m, HC=CHCH₂); $\delta_{\rm C}$ 15.0 (*C*H₃CH₂O), 18.85 (ring CH₂), 25.3 (ring CH₂), 32.9 (ring CH₂), 66.95 (CH₃CH₂O), 69.25 (OCH₂CO), 77.25 (OCH₂CO), 129.45 and 131.15 (C=C); *m/z* 138 (M+-H₂O, 0.2%) and 97 (100) (Found: M+-H₂O, 138.1047. C₉H₁₄O requires M, 138.1045).

1-Ethoxy-2-phenyl-2-propanol (**2h**)¹⁹: ν (film) 3420 (OH), 1595 (ArC=C), 1105 (C-O), 760 and 695 cm⁻¹ (ArC-H); $\delta_{\rm H}$ 1.17 (3H, t, *J*=7.0, *CH*₃CH₂O), 1.52 (3H, s, CH₃CO), 2.95 (1H, s, OH), 3.50 (1H, d, *J*=9.3, OCHHCO), 3.48-3.56 (2H, m, CH₃CH₂O), 3.57 (1H, d, *J*=9.3, OCHHCO), 7.21-7.27 (1H, m, ArH), 7.30-7.37 (2H, m, ArH) and 7.44-7.49 (2H, m, ArH); $\delta_{\rm C}$ 14.95 (CH₃CH₂), 26.7 (CH₃CO), 66.95 (CH₃CH₂O), 73.7 (PhCO), 78.4 (OCH₂CO), 124.95 (2C, ArCH), 126.8 (ArCH), 128.05 (2C, ArCH) and 144.55 (ArC); *m/z* 180 (M+, 3%), 122 (10), 121 (100), 77 (10) and 43 (58).

Dimethyl(ethoxymethyl)phenylsilane (**2i**): v (film) 1248 (SiCH₃), 1115, 1095 (C-O), 840, 814 (SiCH₃), 728 and 698 cm⁻¹ (ArC-H); $\delta_{\rm H}$ 0.32 [6H, s, (CH₃)₂Si], 1.16 (3H, t, *J*=7.0, CH₃CH₂), 3.31 (2H, s, OCH₂Si), 3.46 (2H, q, *J*=7.0, CH₃CH₂O), 7.31-7.38 (3H, m, ArH) and 7.52-7.58 (2H, m, ArH); $\delta_{\rm C}$ 4.35 [2C, (CH₃)₂Si], 15.0 (CH₃CH₂O), 63.5 (OCH₂Si), 70.5 (CH₃CH₂O), 127.75 (ArC), 129.1 (2C, ArCH), 133.8 (2C, ArCH) and 137.85 (ArCH); *m*/z 179 (M+-CH₃, 2%), 165 (36), 136 (25), 135 (100), 107 (10), 105 (15), 103 (24), 91 (13), 45 (12) and 43 (42) (Found: M+-CH₃CH₂, 165.0727. C₉H₁₃OSi requires M, 165.0736).

2-Ethoxyacetic acid (2j)²⁰: v (film) 3450 (OH), 1732, 1738 (C=O) and 1124 cm⁻¹ (C-O); $\delta_{\rm H}$ 1.26 (3H, t, J=7.0, CH₃CH₂), 3.63 (2H, q, J=7.0, CH₃CH₂O), 4.13 (2H, s, OCH₂CO) and 8.11 (1H, br s, OH); $\delta_{\rm C}$ 14.8 (CH₃CH₂O), 67.3 (CH₃CH₂O), 67.4 (OCH₂CO) and 175.0 (C=O).

Ethoxymethylphenylketone (**2k**)²¹: v (film) 1701 (C=O), 1598 (ArC=C), 1141 (C-O), 756 and 691 cm⁻¹ (ArC-H); $\delta_{\rm H}$ 1.29 (3H, t, J=7.0, CH₃CH₂), 3.65 (2H, q, J=7.0, CH₃CH₂O), 4.75 (2H, s, COCH₂CO), 7.43-7.51 (2H, m, ArH), 7.53-7.62 (1H, m, ArH) and 7.91-7.98 (2H, m, ArH); $\delta_{\rm C}$ 15.0 (CH₃CH₂O), 67.15 (CH₃CH₂O), 73.5 (COCH₂CO), 127.8 (2C, ArCH), 128.6 (2C, ArCH), 133.4 (ArCH), 134.9 (ArC) and 196.45 (C=O); *m*/z 121 (M+-CH₃CH₂OH, 74%), 106 (17), 105 (100), 91 (17), 78 (14), 77 (87), 65 (11), 59 (17), 51 (60), 50 (25) and 41 (10).

N-Cyclohexyl-2-ethoxyacetamide (**21**)²²: ν (film) 3413, 3306 (NH), 1667 (C=O), 1530 (N-H, C-N), and 1119 cm⁻¹ (C-O); δ_H 1.10-1.28 (3H, m, ring CH₂), 1.24 (3H, t, J=7.0, CH₃CH₂), 1.30-1.49 (2H, m, ring CH₂), 1.57-1.78 (3H, m, ring CH₂), 1.85-1.97 (2H, m, ring CH₂), 3.56 (2H, q, J=7.0, CH₃CH₂O), 3.74-3.90 (1H,

m, NCH) 3.90 (2H, s, COCH₂CO) and 6.45 (1H, br s, NH); δ_{C} 14.95 (CH₃CH₂O), 24.75 (2C, ring CH₂), 25.4 (ring CH₂), 33.0 (2C, ring CH₂), 47.4 (NCH), 66.95 (CH₃CH₂O), 69.85 (COCH₂CO) and 168.7 (C=O); *m*/z 186 (M++1, 1%), 142 (16), 141 (93), 104 (54), 84 (15), 83 (100), 82 (30), 81 (15), 70 (14), 68 (29), 67 (48), 61 (11), 60 (94), 59 (96), 58 (17), 56 (36), 55 (95), 54 (30), 53 (13), 44 (18), 43 (60), 42 (37) and 41 (94) (Found: M+, 185.1426. C₁₀H₁₉NO₂ requires M, 185.1416).

N,1-Diphenyl-2-ethoxyethylamine (**2m**): v (film) 3397 (NH), 1602, 1504 (ArC=C), 1110 (C-N), 750, 701 and 693 (ArC-H); $\delta_{\rm H}$ 1.19 (3H, t, *J*=7.0, CH₃CH₂O), 3.40-3.61 (2H, m, CH₃CH₂O), 3.50 (1H, dd, *J*=10.1, 8.8, NCHCHHO), 3.65 (1H, dd, *J*=10.1, 4.3, NCHCHHO), 4.48 (1H, dd, *J*=8.8, 4.3, NCHCH₂O), 4.60 (1H, s, NH), 6.47-6.55 (2H, m, 2xH_o of ArN), 6.61-6.68 (1H, m, H_p of ArN), 7.01-7.10 (2H, m, 2xH_m of ArN), 7.15-7.35 (3H, 2m, 2xH_m and H_p of ArC) and 7.37-7.43 (2H, m, 2xH_o of ArC): $\delta_{\rm C}$ 15.05 (CH₃CH₂O), 58.1 (NCHCH₂), 66.25 (CH₃CH₂O), 74.9 (NCHCH₂), 113.95 (2C, 2xC_o of ArN), 117.6 (C_p of ArN), 126.7 (2C, ArC), 127.3 (ArC), 128.55 (2C, ArC), 128.9 (ArC), 140.8 (C_i of ArN); *m*/z 242 (M++1, 1%), 241 (M+, 6%), 183 (20), 182 (100), 104 (26), 77 (50) and 51 (16) (Found: M+-CH₂OCH₂CH₃, 182.0972. C₁₃H₁₂N requires M, 182.0970).

ACKNOWLEDGEMENTS

This work was supported by DGICYT (nos. PB91-0751 and PB94-1514) from the Ministerio de Educación y Ciencia (MEC) of Spain. A. G. thanks the MEC for a grant.

REFERENCES AND NOTES

- 1. For a review, see: Saavedra, J. E. In *Umpoled Synthons*, Hase, T. A. Ed.; John Wiley & Sons: New York, 1987; pp. 101-143.
- 2. For a review, see: Nájera, C.; Yus, M. Trends in Organic Chemistry 1991, 2, 155-181.
- 3. Seebach, D. Angew. Chem. Int. Ed. Engl. 1979, 18, 239-258.
- See, for instance: (a) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481-1487. (b) Still, W. C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927-1928. (c) Still, W. C.; Streekumar, C. J. Am. Chem. Soc. 1980, 102, 1201-1202. (d) Corey, E. J.; Eckrich, T. M. Tetrahedron Lett. 1983, 24, 3163-3164. (e) Hutchison, D. K.; Fuchs, P. L. J. Am. Chem. Soc. 1987, 109, 4930-4939. (f) Broka, C. A.; Lee, W. J.; Shen, T. J. Org. Chem. 1988, 53, 1336-1338. (g) Johnson, C. R.; Medich, J. R. J. Org. Chem. 1988, 53, 4131-4133. (h) Linderman, R. J.; Mckenzie, J. R. J. Organomet. Chem. 1989, 361, 31-42. (i) Chan, P. C.-M.; Chong, J. M. Tetrahedron Lett. 1990, 31, 1985-1988. (j) Lohse, P.; Lower, H.; Acklin, P.; Stemfeld, F.; Pfaltz, A. Tetrahedron Lett. 1991, 32, 615-618. (k) Soderquist, J. A.; Lopez, C. Tetrahedron Lett. 1991, 32, 6305-6306. (l) Tomooka, K.; Igarashi, T.; Watanabe, M.; Nakai, T. Tetrahedron Lett. 1992, 33, 5795-5798.
- 5. For a review, see: (a) Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152-161. For recent

reports, see also: (b) Kruse, B.; Brückner, R. *Tetrahedron Lett.* **1990**, *31*, 4425-4428. (c) Rychnovsky, S. D.; Skalizky, D. J. J. Org. Chem. **1992**, *57*, 4336-4339.

- (a) Corey, E. J.; Eckrich, T. M. Tetrahedron Lett. 1983, 24, 3165-3168. (b) Yeh, M. K. J. Chem. Soc., Perkin Trans. 1 1981, 1652-1653. (c) Beak, P.; McKinnie, B. G. J. Am. Chem. Soc. 1977, 99, 5213. (d) Beak, P.; Carter, L. G. J. Org. Chem. 1981, 46, 2363-2373. (e) Paetow, M.; Ahrens, H.; Hoppe, D. Tetrahedron Lett. 1992, 33, 5323-5326. (f) Ahrens, H.; Paetow, M.; Hoppe, D. Tetrahedron Lett. 1992, 33, 5327-5330. (g) Schwerdtfeger, J.; Hoppe, D. Angew. Chem. Int. Ed. Engl. 1992, 31, 1505-1507.
- 7. An alternative route consists in the transformation of a chloromethyl ether into the corresponding trichlorostannyl derivative followed by low temperature tin/lithium transmetallation with *n*-butyllithium (ref 4d).
- (a) Schöllkopf, U.; Kúppers, H. Tetrahedron Lett. 1964, 1503-1506. (b) Schöllkopf, U. Angew. Chem. Int. Ed. Engl. 1970, 9, 763-773.
- 9. Yus, M.; Ramón, D.J. J. Chem. Soc., Chem. Commun. 1991, 398-400.
- For a comparative study on the use of both arenes, see: Freeman, P. K.: Hutchinson, L. L. J. Org. Chem. 1980, 45, 1924-1930.
- For the use of a DTBB-catalysed lithiation of a simple alkyl chloride, see: Choi, H.; Pinkerton, A. A.: Fry, J. L. J. Chem. Soc., Chem. Commun. 1987, 225-226.
- For the last paper on this topic from our laboratory, see: Alonso, E.; Guijarro, D.; Yus, M. Tetrahedron 1995, 51, 2699-2708. See also the accompanying paper in this issue, pp. 1797-1810.
- For the last paper on this topic from our laboratory, see: Huerta, F.F.: Gómez, C.; Guijarro, A.; Yus, M. Tetrahedron 1995, 51, 3375-3388. See also the accompanying paper in this issue, pp. 1797-1810.
- For the last paper on this topic from our laboratory, see: Guijarro, A.: Yus, M. *Tetrahedron* 1995, 51, 231-234. See also the accompanying paper in this issue, pp. 1797-1810.
- 15. For preliminary communication, see: Guijarro, A.; Yus, M. Tetrahedron Lett. 1993, 34, 3487-3490.
- 16. When PhMe₂SiCl was used as electrophile, it was necessary to keep the temperature between -90 and -80°C for 30 min before the hydrolysis in order to obtain the best results.
- 17. (a) For benzonitrile the temperature was allowed to rise to -60°C for 3 h. (b) In the case of benzonitrile acidification with acetic acid is necessary prior the extraction in order to avoid undesirable by-products.
- 18. De Botton, M. C. R. Acad. Sci., Ser. 1971, 272, 118-121.
- 19. Normant, M.; Crisan, C. Bull. Soc. Chim. Fr. 1959, 459-462.
- 20. Aldrich Catalogue Handbook of Fine Chemicals; Aldrich-Chemie GmbH & Co. KG: Steinheim, 1994.
- Cohen, V. I.; Gibson, R. E.; Fan, L. M.; De la Cruz, R.; Gitler, M. S.; Hariman, E.; Reba, R. C. J. Med. Chem. 1991, 34, 2989-2993.
- Pau, A.; Boatto, G.; Cerri, R.; Palomba, M.; Nicolai, M.; Sparatore, F.; Varoni, M. V. Farmaco 1993, 48, 1291-1299; Chem. Abstr. 1994, 120, 207908u.

(Received in UK 6 October 1995; revised 7 November 1995; accepted 9 November 1995)