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Chlorides and Alkyllithiums Using a Polystyrene-Cross-Linking 

Bisphosphine Ligand 

Yuki Yamazaki, Nozomi Arima, Tomohiro Iwai,* and Masaya Sawamura* 

 

Abstract: A polystyrene-cross-linking bisphosphine ligand PS-

DPPBz was used for Ni-catalyzed cross-coupling with 

organolithiums. A bench-stable precatalyst [NiCl2(PS-DPPBz)] 

enabled efficient coupling reactions between aryl chlorides and 

alkyllithiums. The heterogeneous Ni system showed good 

reusability. 

The development of an efficient, green and simple synthetic 

process for transition metal-catalyzed cross-coupling reactions is 

important not only for industrial applications but also for 

fundamental chemistry.[1] Since the pioneering work of Murahashi 

and co-workers[2] and the later improvement by Feringa et al.,[3] 

organolithiums have been recognized as inexpensive and easily 

accessible cross-coupling partners (Murahashi coupling), which 

display attractive features of atom and step efficiency compared 

to other organometallic reagents.[4] While Pd was originally 

employed as a catalytic metal,[2,3,5–7] the use of more earth-

abundant Ni has recently emerged as an intense area for pursuing 

environmentally benign organic synthesis.[8,9] However, due to the 

intrinsic high reactivity of organolithiums, prior dilution and/or slow 

addition protocols are required for efficient catalysis, as described 

by Hornillos and Feringa.[8d] Moreover, only a few catalyst 

systems allow efficient reaction of alkyllithiums having -hydrogen 

atoms.[8d,e] 

Recently, we developed a polystyrene-fourfold-cross-linking 

bisphosphine ligand PS-DPPBz (structure shown in Table 1).[10] 

This ligand allowed spatial isolation of the bisphosphine unit in the 

polystyrene matrix, resulting in formation of a highly active 

mononuclear monochelated metal-bisphosphine species. We 

demonstrated its utility in the Ni-catalyzed amination of aryl 

chlorides and C–H/C–O cross-coupling between 1,3-azoles and 

aryl pivalates. Herein, we report heterogeneous Ni catalysis for 

the cross-coupling of aryl chlorides and alkyllithiums with PS-

DPPBz. This cross-coupling reaction required neither prior 

dilution nor slow addition of the alkyllithium. Excellent catalyst 

reusability was a favorable feature of this heterogeneous system. 

 

Table 1. Ligand effects in the Ni-catalyzed cross-coupling reaction 

between 1a and 2a[a] 

 

Entry Ligand 
Time 

[h] 

Conv. 

1a [%][b] 

Yield 

3a [%][c] 4a [%][b] 

1 PS-DPPBz 6 98 93 5 

2 PS-DPPBz 0.5 19 14 1 

3 DPPBz 6 21 13 7 

4 4-iPr-DPPBz 6 70 65 5 

5 SciOPP 6 29 24 3 

6 DETPE 6 0 0 0 

7 PCy3 (3 mol%) 6 25 0 8 

8 IPr (3 mol%) 6 35 11 15 

9 none 6 0 0 0 

10[d] [NiCl2(PS-DPPBz)] 6 >99 97 3 

11[d] [NiCl2(PS-DPPBz)] 0.5 >99 96 3 

12[d] 
[NiCl2(PS-DPPBz)] 

+ DPPBz (2 mol%) 
5 10 10 0 

13[d] 
[NiCl2(PS-DPPBz)] 

+ 4-iPr-DPPBz (2 mol%) 
5 66 63 3 

[a] Conditions: 1a (0.25 mmol), 2a (1.55 M in hexane, 0.375 mmol), 

[Ni(cod)2] (1 mol%), ligand (1.5 mol%), hexane (0.5 M based on 1a), 

25 °C. [b] Determined by GC spectroscopy. [c] Determined by 1H NMR 

spectroscopy. [d] [NiCl2(PS-DPPBz)] (1 mol% Ni) was used as 

catalyst. 

 
 

Initially, we investigated ligand effects for the Ni-catalyzed 

cross-coupling of aryl chlorides, which are readily accessible and 

cheaper than the corresponding bromides and iodides, with 

alkyllithiums.[11] Specifically, with 1 mol% of a Ni catalyst prepared 

in situ from [Ni(cod)2] and PS-DPPBz (Ni/L 1:1.5), the reaction 
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between 2-chloronaphthalene (1a, 0.25 mmol) and n-butyllithium 

(2a, 1.55 M in hexane, 1.5 eq) proceeded smoothly without prior 

dilution or slow addition of the alkyllithium at 25 °C in hexane (0.5 

M based on 1a) over 6 h, giving 2-butylnaphthalene (3a) in 93% 

NMR yield (Table 1, entry 1), along with a small amount of a 

protodehalogenated product (4a, 5%). In contrast, DPPBz, which 

is the parent soluble ligand of PS-DPPBz, induced much lower 

activity (13%, entry 3). A DPPBz derivative, 4-iPr-DPPBz,[12] 

which has iPr groups at the para positions of the four P-Ph groups 

as a model for the polystyrene chain, gave a moderate yield (65%, 

entry 4), while the yield was reduced with SciOPP, the 3,5-di-tBu-

substituted derivative of DPPBz (24%, entry 5).[13] These results 

indicated the polymer effect is crucial, and that para-substituents 

on the P-Ph groups of DPPBz-type ligands are effective for 

increasing the catalytic activity. Other soluble ligands such as 

DETPE, PCy3 and IPr, which had been employed as effective 

ligands for Ni-catalyzed cross-coupling with organolithiums,[8] 

were also much less effective than PS-DPPBz (entries 6–8). No 

reaction occurred in the absence of an added ligand (entry 9). 

Next, we examined the use of a bench-stable Ni(II) salt as a 

Ni source instead of the air-sensitive Ni(0) complex [Ni(cod)2]. A 

polymer-bound Ni(II) precatalyst [NiCl2(PS-DPPBz)] (Ni: 0.12 

mmol/g),[14] which was prepared from NiCl2·6H2O and PS-DPPBz 

in MeOH/THF (Scheme 1), showed much higher activity than the 

[Ni(cod)2]/PS-DPPBz system (93% vs. 97% for 6 h, Table 1, 

entries 1 and 10; 14% vs. 96% for 0.5 h; entries 2 and 11). Notably, 

complete substrate consumption was observed within 0.5 h (entry 

11). Addition of a soluble DPPBz derivative, DPPBz or 4-iPr-

DPPBz (2 mol%), to the [NiCl2(PS-DPPBz)] system led to a 

decrease in the yield (entries 12 and 13), offering support for the 

importance of the controlled bisphosphine monochelation to the 

Ni center.[15] 

 

 
Scheme 1. Synthesis of [NiCl2(PS-DPPBz)]. 

 

We next examined other aryl electrophiles in the reactions 

with 2a and the [NiCl2(PS-DPPBz)] catalyst system (in hexane at 

25 °C, Scheme 2). The coupling reaction of 2-bromonaphthalene 

occurred smoothly to give 3a in 85% yield. 1-Fluoronaphthalene 

also participated in the reaction, affording 1-butylnaphthalene 

(3b) in 61% yield, while the corresponding iodide was not suitable 

due to rapid Li/I exchange (2%). Although aryl triflates were 

applicable substrates in the Pd-catalyzed cross-coupling with 

organolithiums,[3e] 2-naphthyl trifluoromethanesulfonate did not 

provide 3a but formed 2-naphthol (~20% conv. by GC analysis) 

instead. The corresponding methyl ether was also inactive.[16] 

 

 

Scheme 2. Screening of aryl electrophiles. 

 

The scope of aryl chlorides in the catalysis with the [NiCl2(PS-

DPPBz)] system was investigated using 2a as a representative 

organolithium reagent (Scheme 3). The reaction of 1-

chloronaphthalene with 2a occurred at 25 °C, giving 3b in high 

yield. The more -extended 2-chloroanthracene was a suitable 

substrate (3c). A commercially available 1-bromopyrene gave 3d 

in good yield. 

Compared to polyaromatic aryl chlorides, monocyclic 

substrates showed lower reactivities. Specifically, the reaction of 

4-chlorobiphenyl gave 3e in moderate yield. The reaction of 4-t-

butylchlorobenzene with 2 mol% Ni loading at 40 °C for 24 h 

afforded 3f in only 8% NMR yield. Introduction of a CF3 group 

instead of the tBu group increased the yield to 55% (3g). This 

trend suggests that C–Cl oxidative addition of aryl chlorides to 

Ni(0) may be a rate-determining step.[17] 

A methoxy group, which is often employed as a directing 

group in ortho-lithiation,[18] attached on the naphthalene ring was 

tolerated (3h). Silyl ether (3i), acetal (3j) and amine (3k) groups 

remained untouched. A hydroxy-tethered aryl chloride (3l) was a 

suitable substrate for the C–Cl cross-coupling reaction with 3 

equiv of 2a. With 2 mol% Ni catalyst at 40 °C for 24 h, 2-

chlorobenzofuran was converted to the corresponding coupling 

product 3m in an acceptable yield. 

 

 

 

Scheme 3. Scope of aryl chlorides. Conditions: 1 (0.25 mmol), 2a 
(1.55 M in hexane, 0.375 mmol), [NiCl2(PS-DPPBz)] (1 mol%), 

hexane (0.5 M based on 1) at 25 °C for 5 h. Yields of isolated 
products are shown. In some cases, small amounts of 
protodehalogenated byproducts of 1 were formed.  
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The applicability of commercially available alkyllithiums is 

summarized in Table 2. n-Hexyllithium reacted with 1a, giving 3n 

in 96% yield (entry 1). The reaction with methyllithium proceeded 

smoothly at 40 °C to afford 3o in 83% yield (entry 2). 

(Trimethylsilyl)methyllithium also participated in the coupling 

reaction (3p, entry 3).[19] The reaction of s-Butyllithium gave the 

corresponding coupling product (3q) in high yield (86%), while 2- 

n-butylnaphthalene (3a) was also produced in 11%, suggesting 

isomerization of a putative alkyl-Ni(II) intermediate through -

hydride elimination (entry 4). t-Butyllithium underwent less 

efficient coupling reaction. In addition to the formation of the 

desired product 3r (22%), an isomerized product (2-

isobutylnaphthalene, 6%) and a homocoupling product (2,2'-

binaphthalene, 26% based on 1a) were observed by 1H NMR and 

GC-MS analysis of the crude product.[20] 

 

Table 2. Scope of organolithiums[a] 

 

entry R State of RLi Conditions Products (3) 
Yield 
[%][b] 

1 nHex 
2.3 M in 
hexane 

25 °C, 5 h 
 

96 

2 Me 
1.11 M in 

Et2O 
40 °C, 24 h 

 
83 

3[c] Me3SiCH2 
1.0 M in 
pentane 

25 °C, 24 h 
 

87 

4 s-Bu 
1.05 M in 

cyclohexane-
hexane 

25 °C, 5 h 

 

86[d] 

5 t-Bu 
1.52 M in 
pentane 

25 °C, 5 h 

 

22[e,f] 

[a] Conditions: 1a (0.25 mmol), 2 (0.375 mmol), [NiCl2(PS-DPPBz)] (1 

mol%), hexane (0.5 M based on 1a), 25 °C, 6 h. [b] Isolated yields. [c] 

2 equiv of Me3SiCH2Li. [d] The isolated product contains 11% of 3a. 

[e] Determined by 1H NMR spectroscopy. [f] 2-Isobutylnaphthalene 

(6%, an isomerization product) and 2,2'-binaphthalene (26%, a 

homocoupling product, based on 1a) were also detected in the crude 

product. 

 

The heterogeneous [Ni-(PS-DPPBz)] catalyst was examined 

for reusability. After the reaction between 1a and 2a with 

[NiCl2(PS-DPPBz)] (1 mol% Ni in hexane, 25 °C, 0.5 h), the 

polymer-bound Ni catalyst was separated in a glove box and 

reused at least six times with high yields retained (>95%, Scheme 

4). 

 

 

Scheme 4. Reuse of the [Ni-(PS-DPPBz)] catalyst system. 

 

A catalyst turnover number (TON) as high as 1880 was 

achieved in a larger scale reaction with 20 mmol of 1a and 2.6 M 

2a in hexane without an additional solvent at 40 °C over 24 h (0.05 

mol% Ni, 94% yield of 3a, NMR) (Scheme 5). To our knowledge, 

this is the highest TON achieved to date for cross-coupling of 

organolithiums using Ni catalysts. 

 

 
Scheme 5. The reaction of 1a and 2a with low catalyst loading 

(S/C = 2000). 

 

In summary, a polystyrene-cross-linking bisphosphine PS-

DPPBz enabled the efficient Ni-catalyzed cross-coupling of aryl 

chlorides with alkyllithiums. The bench-stable polymer-bound 

Ni(II) precatalyst [NiCl2(PS-DPPBz)] showed improved 

performance over previously reported Ni systems. The utility of 

the heterogeneous Ni catalyst was demonstrated in catalyst reuse 

and on a larger scale reaction. Further applications of the 

polystyrene-cross-linking bisphosphine as a ligand are currently 

being investigated in our laboratory. 

Experimental Section 

General Procedure for Ni-catalyzed Cross-Coupling between 

Aryl Chlorides and Alkyllithiums (Table, 1, entry 11). 

In a nitrogen-filled glove box, [NiCl2(PS-DPPBz)] (0.12 mmol/g, 

20.8 mg, 0.0025 mmol, 1.0 mol%), 2-chloronaphthalene (1a, 40.6 

mg, 0.25 mmol) and hexane (0.255 mL) were successively placed 

in a 10-mL glass tube containing a magnetic stirring bar. The tube 

was sealed with a screw cap and removed from the glove box. 

nBuLi (2a, 1.55 M in hexane, 0.245 mL, 0.375 mmol, 1.5 eq) was 

added by a syringe at once. The reaction mixture was stirred at 

25 °C for 0.5 h. After quenching with MeOH, the mixture was 

filtered with a silica gel pad (eluting with Et2O). The solvent was 

removed under reduced pressure. Internal standard (p-

dimethoxybenzene) was added to the residue. The yield of the 

coupling product 3a was determined by 1H NMR (96%). The crude 

material was then purified by silica gel chromatography with 

hexane for isolation (44.9 mg, 96% yield, contaminated with a 

trace amount of naphthalene (4a)). 
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precatalyst [NiCl2(PS-DPPBz)] 

enabled efficient coupling 

reactions between aryl 

chlorides and alkyllithiums. The 

heterogeneous Ni system 

showed good reusability. 
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