

Tetrahedron, Vol. 52, No. 8, pp. 2937-2944, 1996 Copyright © 1996 Published by Elsevier Science Ltd Printed in Great Britain. All rights reserved 0040-4020/96 \$15.00 + 0.00

0040-4020(95)01118-8

Synthesis of Mono- and Dialkylsubstituted 1,10-Phenanthrolines

Peter Belser, Stefan Bernhard* and Urs Guerig

Institute of Inorganic Chemistry, University of Fribourg, Pérolles, CH-1700 Fribourg, Switzerland

Abstract : Starting from o-anisidine, alkylated 8-hydroxyquinolines 2 and 8aminoquinolines 3 were obtained. From the latter, dialkylsubstituted 1,10phenanthrolines 5 have been prepared in good yields. Reaction of unsubstituted 8aminoquinoline under the same conditions, yielded monoalkylated 1,10phenanthrolines 4.

INTRODUCTION

Substituted 1,10-phenanthrolines are known as important complexing agents in the analysis of transition metal ions, such as iron(II) and copper(I).¹ In recent years substituted 1,10-phenanthrolines have also been used in homogenous catalysis.² A large number of studies on supramolecular assemblies involving 1,10-phenanthroline derivatives, have been made over the last decade. For instance Sauvage prepared the "molecular knot", Chandler studied crown-ether substituted derivatives, while others have used 1,10-phen-anthroline functions in enzyme mimics.³ Additionally substituted Fe/Ru/Os-phenanthroline complexes have been investigated as potential electron and energy transfer species.⁴ An excellent review over the uses and properties of 1,10-phenanthrolines and derivatives has been written by Sammes and Yahioglu.⁵

Case and co-workers prepared disubstituted 1,10-phenanthrolines by a three-step synthesis.⁶ Condensation of an α,β -unsaturated ketone or aldehyde with o-nitroaniline and reduction of the resulting 8nitroquinoline gave a monosubstituted 8-aminoquinoline. Condensation of the latter with a second α,β -unsaturated ketone or aldehyde yielded the disubstituted 1,10-phenanthroline, using arsenic acid as the oxidizing agent for the condensations. However, the overall yields for the procedure were generally very low (Scheme 1).

RESULTS AND DISCUSSION

Recently O'Murchu showed an easy way to condense 3-substituted quinolines from anilines and 2-substituted acroleins with sodium iodide as catalyst.⁷ Unfortunately attempts to prepare substituted 8-nitroquinolines under the same conditions proved unsuccessful. Consequently p-anisidine was used to synthesize substituted 8-hydroxyquinolines **2** (Scheme 2).

To examine the generality of this procedure, a series of 2-, 3- and 4-substituted 8-hydroxyquinolines 2 were prepared with unsaturated carbonyl compounds 1 in good yields. The 8-hydroxyquinolines 2 were then transformed to the desired 8-aminoquinolines 3 by the Bucherer reaction⁸ in excellent yields.

The synthesis of substituted 1,10-phenanthrolines under the condensation conditions described above were subsequently attempted. 2-, 3- and 4-monomethyl-substituted 1,10-phenanthrolines 4 (Scheme 3) can be prepared from commercially available 8-aminoquinoline and crotonic aldehyde 1a, methacrolein 1b or methylvinylketone 1c respectively.

Similarly a series of disubstituted 1,10-phenanthrolines can be synthesized using the appropriate substituted 8-aminoquinolines and by varying the carbonyl functionalized reagent 1. Both, symmetrically and unsymmetrically substituted 1,10-phenanthrolines were prepared in yields of up to 70% (Scheme 4). With 8-aminoquinolines **3d** and **3e**, poor solubility was overcome using additional solvent (H₂SO₄ 70%). However, working under more dilute conditions decreases the yields dramatically.

EXPERIMENTAL

¹H NMR (300 MHz) and ¹³C NMR (75.4 MHz) spectra were recorded in CDCl₃ on a Varian Gemini 300, using solvent as the internal standard. Chemical shifts are reported in ppm on the δ scale. Mass spectral data were obtained with a VG Instruments 7070E mass spectrometer. The melting points were measured on a Büchi 520 and are uncorrected. All reagents and solvents were obtained from either Fluka Chemie AG or Aldrich and unless otherwise stated used as supplied. 2-tert-Butylacrolein **1d** was prepared by the method of Fujii.⁹

8-Hydroxyquinolines 2a-e, General Procedure :

The unsaturated carbonyl compound 1 (40 mmol) was added over 5 h to a stirred solution of o-anisidine (2.96 g, 24 mmol) and NaI (0.035 g, 0.23 mmol) in H₂SO₄ 70% (8.7 ml, 100 mmol) at 110°C. After 1 h at 110 °C the dark brown reaction mixture was cooled to r. t. , poured into 1 M Na₂CO₃ (150 ml) and extracted with CH₂Cl₂ (**2a-2c**, 3 x 100 ml) or diethyl ether (**2d+2e**, 3 x 100 ml). The combined organic layers were extracted with 12 M HCl (5x40 ml), the acidic solution was neutralized (3 M NaOH and 1 M Na₂CO₃) and extracted with CH₂Cl₂. Removal of the solvent in vacuo afforded a brown oil. HBr 62% (50 ml) was added and the resulting mixture refluxed for 30 h, cooled and neutralized (3 M NaOH and 1 M Na₂CO₃). The yellow suspension was extracted with CH₂Cl₂ (3 x 100 ml) and the combined organic layers dried, treated with charcoal and filtered through silica gel. The silica gel was rinsed with additional CH₂Cl₂ until no product was detectable in the eluent by TLC. Removal of the solvent in vacuo affords the quinolinols in good yields (Table 1) as yellow solids.

Com- pound	Sub- strate 1	Yield (%)	mp / (°C) (Lit)	¹ H NMR (CDCl ₃ / TMS) δ, J (Hz)	¹³ C NMR (CDCl ₃ / TMS) δ	MS (70 eV) m/z (%)	
2a	la	95	73-75	2.71 (s, 3H), 7.13 (d, J = 7.3, 1H), 7.22-	156.8, 151.6, 137.5, 136.1,	159 (M ⁺ ,100),	
	(72-73) ¹⁰			7.30 (m, 2H), 7.32-7.41 (m, 1H), 8.00	126.6, 126.5, 122.6, 117.5,	131 (73)	
				(d, J = 8.5, H)	109.8, 24.8		
2b	1b	88	111-114	2.51 (s, 3H), 7.10 (d, J = 7.5, 1H), 7.22-	152.2, 149.7, 136.6, 134.8,	159 (M+,100),	
			(112-113)[]	7.25 (m, 1H) 7.38-7.43 (m, 1H), 7.90 (d,	131.2, 128.4, 127.7, 117.2,	131 (82)	
				J = 1.0, 1H), 8.61 (d, J = 2.0, 1H)	109.2, 18.7		
2c	lc	86	135-137	2.68 (s, 3H), 7.12-7.28 (m, 2H), 7.43-	152.5, 147.3, 144.9, 138.0,	159 (M+,100),	
			(138-140) ¹²	7.45 (m, 2H), 8.61 (d, J = 4.4, 1H)	128.4, 127.2, 122.4, 114.0,	131 (77)	
					109.6, 18.7		
2d	1d	67	74-75	1.44 (s, 9H), 7.10 (d, J = 7.5, 1H), 7.28	151.9, 147.3, 144.2, 136.1,	201 (M ⁺ , 70),	
				(d, J = 8.3, 1H) 7.39-7.44 (m, 1H), 8.03	131.1, 128.1, 127.7, 117.7,	186 (100), 158	
				(d, J = 2.3, 1H), 8.88 (d, J = 2.3, 1H)	109.3, 33.8, 30.9	(32) ^a	
2e	1e	91	73-77	0.95 (t, J = 7.3, 3H), 1.33-1.46 (m, 2H),	152.2, 149.5, 136.8, 136.2,	201 (M ⁺ , 100),	
				1.64-1.73 (m, 2H), 2.79 (t, J = 8.0, 2H),	134.3, 128.5, 127.7, 117.4,	158 (80), 130	
				7.10 (d, J = 7.5, 1H), 7.25 (d, J = 8.1,	109.3, 33.2, 32.9, 22.2, (59) ^b		
				1H) 7.38-7.43 (m, 1H), 7.89 (d, J = 2.0,	13.8		
				1H), 8.62 (d, J = 2.0, 1H)			
a b	HRMS (for 2d for 2e	: C ₁₃ H : C ₁₃ H	H15NO calcd : 201.1154 H H15NO calcd : 201.1154 H	found : 201.1162 found : 201.1161		

Table 1. Yields and Sp	pectroscopic Data of t	ne Prepared 8-Hy	droxyquinolines	2 (Scheme 2)
------------------------	------------------------	------------------	-----------------	---------------------

8-Aminoquinolines 3a-e, General Procedure :

2 (10 mmol (2a-2c) or 5 mmol (2d+2e)), ammonium sulfite monohydrate (NH₄)₂SO₃·H₂O (6.7 g, 20 mmol) and ammonia solution 32% (9 ml) were added to a teflon coated autoclave (23 ml capacity, Parr Instrument Company). The mixture was heated at 170°C for 2 days (2a-2c) or 7 days (2d+2e). After cooling the autoclave was rinsed with water and CH₂Cl₂. The CH₂Cl₂ was separated and the aqueous layer washed twice with CH₂Cl₂ (50 ml). The combined organic layers were dried (MgSO₄) and the solvent removed in vacuo. Yields and analytical data are given in Table 2.

Com- pound	Sub- strate 2	Yield (%)	mp / (°C) (Lit)	¹ H NMR (CDCl ₃ / TMS) δ, J (Hz)	¹³ C NMR (CDCl ₃ / TMS) δ	MS (70 eV) <i>m/z</i> (%)
3a	2a	95	51-52	2.71 (s, 3H), 5.0 (bs, 2H), 6.89 (d, J =	156.0, 143.4, 137.8, 136.0,	158 (M+,100),
			(56) ¹³	7.4, 1H), 7.11 (d, $J = 8.2$, 1H), 7.19-	126.9, 126.3, 122.1, 115.8,	131 (22)
				7.30 (m, 1H), 7.92 (d, J = 8.3, 1H)	110.1, 25.2	
3b	2b	97	58-60	2.47 (s, 3H), 4.9 (bs, 2H), 6.84 (d, J =	149.2, 143.8, 136.7, 134.7,	158 (M+,100),
			(70-71) ¹⁴	7.5, 1H), 7.05 (d, J = 8.1, 1H) 7.25-7.31	130.6, 128.6, 127.4, 115.4,	130 (29)
				(m, 1H), 7.81 (d, J = 1.0, 1H), 8.59 (d, J	109.2, 18.6	
				= 2.0, 1H)		
3c	2c	96	80-81	2.62 (s, 3H), 5.0 (bs, 2H), 6.90 (d, J =	146.9, 144.4, 144.2, 138.0,	158 (M+,100),
			(84) ¹⁵	7.1, 1H), 7.17 (d, J = 4.4, 1H), 7.24-7.36	128.8, 127.0, 122.1, 112.0,	131 (23)
				(m, 2H), 8.60 (d, J = 4.4, 1H)	109.9, 18.9	
3d	2d	90	50-53	1.43 (s, 9H), 6.86 (d, J = 7.5, 1H), 7.11	146.9, 143.6, 143.4, 136.5,	200 (M ⁺ , 70),
				(d, J = 8.1, 1H) 7.24-7.33 (m, 1H), 7.96	130.8, 128.4, 127.3, 115.9,	185 (100), 157
				(d, J = 2.4, 1H), 8.86 (d, J = 2.4, 1H)	109.4, 33.7, 30.9	(28) ^a
3e	2e	93	oil	0.94 (t, J = 7.3, 3H), 1.32-1.45 (m, 2H),	148.8, 143.7, 136.7, 135.5,	200 (M ⁺ , 84),
				1.63-1.73 (m, 2H), 2.76 (t, J = 8.0, 2H),	134.3, 128.7, 127.4, 115.5,	157 (100), 130
				5.0 (bs, 2H), 6.85 (d, J = 7.4, 1H), 7.08	109.3, 33.2, 32.8, 22.2,	(28)
				(d, J = 8.2, 1H) 7.26-7.32 (m, 1H), 7.81	13.8	
				(d, J = 2.1, 1H), 8.60 (d, J = 2.1, 1H)		
a b	HRMS HRMS	fo r 3d fo r 3e	: C ₁₃ I : C ₁₃ I	116N2 calcd : 200.1313 f 16N2 calcd : 200.1313 f	ound : 200.1313 ound : 200.1324	

 Table 2. Yields and Spectroscopic Data of the Prepared 8-Aminoquinolines 3 (Scheme 2)

Mono- and Dialkylsubstituted 1,10-Phenanthrolines 4a-c, 5a-g, General Procedure :

The unsaturated carbonyl compound 1 (40 mmol) was added over 5 h to a stirred solution of the 8aminoquinoline 3 (24 mmol) and NaI (0.035 g, 0.23 mmol) in H₂SO₄ 70% (8.7 ml, 100 mmol) at 110°C (In the case of 3d and 3e further H₂SO₄ 70% was added until the mixture dissolved). After 1 h at 110°C the dark brown reaction mixture was cooled to r. t. , poured into 1 M Na₂CO₃ (100 ml) and extracted with CH₂Cl₂ (3 x 100 ml). The combined organic layers were extracted with 12 M HCl (5x50 ml), the acidic solution was neutralized (3 M NaOH and 1 M Na₂CO₃) and extracted with CH₂Cl₂. Removal of the solvent in vacuo afforded the appropriate 1,10-phenanthroline. The products were purified by filtration through silica gel using CH₂Cl₂ or THF as solvent. Schemata 3 and 4 indicate the yields obtained, Tables 3 and 4 give the analytical data for the respective compounds.

Com- pound	Sub- strate 1	mp / (°C) (Lit)	¹ H NMR (CDCl ₃ / TMS) δ, J (Hz)	¹³ C NMR (CDCl ₃ / TMS) δ	MS (70 eV) m/z (%)
4a	1a	53	2.91 (s, 3H), 7.46 (d, J = 8.2 , 1H), 7.57	159.5, 150.1, 145.8, 145.5,	194 (M+,100), 166
		(51-52)16	(dd, J = 8.1, 4.4, 1H), 7.66 (d, J = 8.8),	136.1, 136.0, 128.7, 126.6,	(14)
			1H), 7.72 (d, J = 8.8 , 1H), 8.07 (d, J =	126.4, 125.3, 123.6, 122.6,	
			8.2, 1H), 8.18 (dd, J = 9.1, 1.8, 1H),	25.7	
			9.17 (dd, J = 4.4, 1.8, 1 H)		
4b	1b	158-159	2.57 (s, 3H), 7.57 (dd, J = 8.1, 4.4, 1H),	151.7, 150.1, 146.1, 144.0,	194 (M+,100), 167
		(151-152) ¹⁴	7.69 (d, $J = 8.8$, 1H), 7.74 (d, $J = 8.8$,	135.9, 135.2, 132.8, 128.4,	(19)
			1H), 7.99 (d, J = 2.2 , 1H), 8.20 (dd, J =	128.1, 126.4, 126.2, 122.6,	
			8.1, 1.8, 1H), 9.01 (d, J = 2.2, 1H), 9.15	18.6	
			(dd, J = 4.3, 1.8, 1H)		
4c	1c	146-150	2.73 (s, 3H), 7.47 (dd, J = 4.4, 0.8, 1H),	150.2, 149.7, 146.3, 145.7,	194 (M+,100), 167
		(144-145) ¹⁷	7.58 (dd, $J = 8.1, 4.3, 1H$), 7.76 (d, $J =$	144.4, 135.7, 128.1, 126.0,	(13)
			9.1 , 1H), 7.95 (d, J = 9.1 , 1H), 8.20	125.4, 124.1, 122.8, 122.4,	
			(dd, J = 8.1, 1.8, 1H), 9.01 (d, J = 4.5),	19.0	
			1H), 9.15 (dd, $J = 4.3, 1.7, 1H$)		

Table 5. Specific Data of the ricpared Methyl ⁻¹ , to-phenanthronnes 4 (Scheme	Table 3.	Spectrosco	pic Data of the	Prepared Methyl	-1,10-phenanthrolines	4 (Scheme 3)
--	----------	------------	-----------------	-----------------	-----------------------	--------------

Com- pound	Sub- strate 1	Sub- strate 3	mp / (°C) (Lit)	¹ H NMR (CDCl ₃ / TMS) δ, J (Hz)	¹³ C NMR (CDCl ₃ /TMS) δ	MS (70 eV) m/z (%)
5a	1a	3c	145-147	2.73 (s, 3H), 2.91 (s, 3H), 7.39 (d, J =	159.3, 149.6, 145.7, 145.4,	208 (M+,100) ^a
				3.8 , 1H), 7.45 (d, J = 8.2, 1H), 7.72	144.1, 135.9, 128.2,	
				(d, J = 9.0, 1H), 7.89 (d, J = 9.0, 1H),	126.1,125.8, 123.7, 123.4,	
				8.07 (d, J = 8.2, 1H), 9.01 (d, J = 4.5, J)	121.2, 25.7, 19.0	
				IH)		
5b	la	3b	122-124	2.55 (s, 3H), 2.91 (s, 3H), 7.43 (d, J =	159.3, 151.6, 145.6, 143.8,	208 (M+,100) ^b
				8.2 , 1H), 7.61 (d, J = 8.8, 1H), 7.67	136.0, 135.2, 132.3,	
				(d, J = 8.8 , 1H), 7.95 (d, J = 1.9 , 1H),	128.5,126.3, 126.1, 125.1,	
				8.05 (d, J = 8.2 , 1H), 9.01 (d, J = 1.9 ,	123.2, 25.7, 18.6	
				I H)		
5c	1b	3b	194-196	2.57 (s, 3H), 7.68 (s, 1H), 7.96 (d, J =	151.5, 144.2, 135.1, 132.3,	208 (M+,100)
			(209-212) ¹⁴	1.8, 1H), 8.99 (d, J = 1.7, 1H)	127.9, 126.2, 18.6	
5d	1c	3b	129-134	2.56 (s, 3H), 2.74 (s, 3H), 7.39 (d, J =	151.6, 149.5, 145.8, 144.3,	208 (M+, 100)
			(137-138) ¹⁴	4.5 , 1H), 7.70 (d, J = 9.1, 1H), 7.93	144.1, 134.8, 132.4, 127.8,	
				(d, J = 9.1 , 1H), 7.96 (d, J = 1.1 , 1H),	127.5, 125.6, 123.6, 122.3,	
				8.98-9.00 (m, 2H)	18.9, 18.5	
5e	1d	3d	44-47	1.47 (s, 9H), 7.72 (s, 1H), 8.08 (d, J =	149.2, 145.1, 143.8, 131.2,	292 (M+, 32),
				2.5, 1H), 9.21 (d, J = 2.4, 1H)	127.7, 126.5, 33.8, 31.0	277 (M+-CH3,
						100), 262 (20) ^c
5f	le	3e	112-115	0.95 (t, J = 7.4, 3H), 1.35-1.49 (m,	151.3, 144.4, 137.1, 134.4,	292 (M+, 30),
				2H), 1.68-1.78 (m, 2H), 2.86 (t, J =	128.0, 126.2, 33.2, 32.7,	249 (M+-
				7.6, 2H), 7.72 (s, 1H), 7.99 (d, J = 2.0,	22.2, 13.8	C3H7, 100),
				1H), $9.02 (d, J = 2.0, 1H)$		206 (M+-2
						C3H7, ,25) ^d
5g	1b	3d	75-80	1.48 (s, 9H), 2.57 (s, 3H), 7.68 (d, J =	151.6, 149.2, 145.0, 144.1,	250 (M+, 31),
				8.8 , 1H), 7.73 (d, J = 8.8, 1H), 7.98	144.0, 135.0, 132.2, 131.2,	235 (M+-CH3,
				(d, J = 1.2, 1H), 8.11 (d, J = 1.4, 1H),	128.0, 127.6, 126.6, 126.0,	100), 205 (M+-
				9.00 (d, J = 1.2), 9.24 (d, J = 1.4)	33.8, 31.0, 18.6	3 CH3, 45) ^e

 Table 4. Spectroscopic Data of the Prepared Dialkyl-1,10-phenanthrolines 5 (Scheme 4)

a	HRMS for 5a	:	$C_{14}H_{12}N_{2}$	calcd. :	208.1000	found :	208.1002	
b	HRMS for 5b	:	C14H12N2	calcd. :	208.1000	found :	208.1013	
с	HRMS for 5e	;	C ₂₀ H ₂₄ N ₂	calcd. :	292.1939	found :	292.1941	
d	HRMS for 5f	:	C ₂₀ H ₂₄ N ₂	calcd. :	292.1939	found :	292.1943	
e	HRMS for 5g	:	C ₁₇ H ₁₈ N ₂	calcd. :	250.1470	found :	250.1475	

ACKNOWLEDGEMENTS

This work was supported by the Swiss National Science Foundation and by the European Community Program, Action COST : D4. We thank F.Nydegger for HRMS-Measurements and Dr. N. Fletcher for help in the preparation of the manuscript.

REFERENCES

- Schilt, A.; Analytical Application of 1,10-Phenanthroline and Related Compounds, Pergamon, Oxford, 1969.
 Stephans, B.G. Anal. Chem. 1974, 46, 693-696.
- Gladiali, S.; Chelucci, G.; Soccolini, F.; Delogu, G.; Chessa, G. J. Organomet. Chem. 1989, 370, 285. Gladiali, S.; Chelucci, G.; Delogu, G.; Chessa, G.; Soccolini, F. J. Organomet. Chem. 1987, 327, C15. Wehman, P.; Kaasjager, V.E.; de Lange, W.; Hartl, F.; Kamer, P.C.J.; van Leeuwen, P.W.N.M.; Fraanje, J.; Goubitz, K. Organometallics 1995, 14, 3751-3761.
- Dietrich-Buchecker, C.; Sauvage, J.-P. Tetrahedron 1990, 46, 503-512. Dietrich-Buchecker, C.; Sauvage, J.-P.; Kintzinger, J.-P.; Maltèse, P.; Pascard, C.; Guilhem, J. New J. Chem. 1992, 16, 931-942.
 Chambron, J.-C.; Dietrich-Buchecker, C.; Nierengarten, J.F.; Sauvage, J.-P.; Solladié, N.; Albrecht-Gary, A.-M.; Meyer, M. New J. Chem. 1995, 19, 409-426.
 Chandler, C.J.; Deady, L.W.; Reiss, J.A. J. Heterocycl. Chem. 1986, 23, 1327-1330.
 Weijnen, J.G.H.; Koudijs, A.; Engbersen, J.F.J. J. Org. Chem. 1992, 57, 7258-7265.
 Lüning, U. Top. Curr. Chem. 1995, 175, 57-99.
- 4. Bernhard, St.; Belser, P. Synthesis 1996, in press. Schmittel, M.; Ammon, H.; Wöhrle, C. Chem. Ber. 1995, 128, 845-850.
- 5. Sammes, P.G.; Yahioglu, G. Chem. Soc. Rev. 1994, 23, 327-334.
- 6. Case, F.H.; Sasin, R. J. Org. Chem. 1955, 20, 1330-1336.
- O'Murchu, C. Synthesis 1989, 880-882. Hewitt, J.T.; Trustham, F.W. US Patent 2358162 (1944), Stafford Allen and Sons Ltd.; C.A. 1945, 39, 1421.
- 8. Hurdis, E.C. J. Org. Chem. 1958, 23, 891-893.
- 9. Fujii, T.; Hiraga, T.; Yoshifuji, S.; Ohba, M.; Yoshida, K. Chem. Pharm. Bull. 1978, 26, 3233-3236.
- 10. Phillips, J.P.; Emery, J.F.; Price, H.P. Anal. Chem. 1952, 24, 1033-1034.
- 11. Phillips, J.P. J. Am., Chem. Soc. 1952, 74, 552-553.
- 12. Phillips, J.P.; Elbinger, R.L.; Merritt, L.L. J. Am. Chem. Soc. 1949, 71, 3986-3988.
- 13. Madeja, K. J. prakt. Chem. 1962, 17, 97-103.
- 14. Case, F.H. J. Am. Chem. Soc. 1948, 70, 3994-3996.
- 15. Johnson, O.H.; Hamilton, C.S. J. Am. Chem. Soc. 1941, 63, 2864-2867.
- 16. Irving, H.; Cabell, M.J.; Mellor, D.H. J. Chem. Soc. 1953, 3417-3426.
- 17. Eifert, R.L.; Hamilton, C.S. J. Am. Chem. Soc. 1955, 77, 1818-1819.

(Received in Germany 12 October 1995; revised 12 December 1995; accepted 13 December 1995)