Enantioselective Total Synthesis of (-)-Blennolide A

Lutz F. Tietze,* Ling Ma, Johannes R. Reiner, Stefan Jackenkroll, and Sven Heidemann ${ }^{[a]}$

Abstract

Blennolide A can be synthesized through an enantioselective dominoWacker/carbonylation/methoxylation reaction of $\mathbf{7 a}$ with $96 \% e e$ and an enantioselective Wacker oxidation of $\mathbf{7 b}$ with $89 \% e e$. Further transformations led to the α, β-unsaturated ester (E)-17, which was subjected to a highly selective Michael addition, introducing a methyl group to give 18a. After a threefold oxidation and an intramolecular acylation, the tetrahydroxanthenone 4 was obtained, which could be transformed into (-)-blennolide A (ent-1) in a few steps.

Keywords: domino-reactions • Michael reaction - natural product palladium . Wacker oxidation xanthenone

Introduction

Blennolide A (1) is a fungal metabolite that was isolated in 2008 from the endophytic fungus Blennoria sp. of the succulent Carpobrotus edulis, which grows on the island La Gomera of the Canaries (see Figure 1). ${ }^{[1]}$ It contains a

Figure 1. Blennolide A (1), secalonic acid B (2), and (-)-diversonol (3).
highly functionalized tetrahydroxanthenone skeleton and possesses some interesting biological activities that include antibacterial, antifungal, and antialgal properties. Blennolide A's absolute configuration was determined by Krohn et al. ${ }^{[1]}$ using CD spectroscopy combined with time-dependent density functional theory (TDDFT) calculations. It is the seco-unit of secalonic acid B (2), which is a $2,2^{\prime}$-connection of two blennolide A molecules. The secalonic acids were isolated from different fungi, such as Claviceps purpur$e a,{ }^{[2]}$ and their structure was determined by Franck et al. ${ }^{[3]}$ Other dimeric compounds, such as the dicerandrols, ${ }^{[4]}$ that contain a hydroxymethyl or acetoxymethyl group at C-4a (numbering as in $\mathbf{1}$) as well as the phomoxanthones ${ }^{[5]}$ are connected through a $2,2^{\prime}$ - and a $4,4^{\prime}$-biaryl bond, respective-

[^0]ly. We have recently published syntheses of enantiopure 4-dehydroxydiversonol ${ }^{[6]}$ and (-)-diversonol ${ }^{[7]}$ (3) using an enantioselective domino-Wacker/carbonylation/methoxylation reaction. The domino process ${ }^{[8]}$ has also been used for the synthesis of chromans, dioxins, and oxazins. ${ }^{[9]}$

Here, we describe the first total synthesis of enantiopure (-)-blennolide A (ent-1). As key transformation in the synthesis, an enantioselective domino-Wacker/carbonylation/ methoxylation reaction in the presence of a chiral BOXAX ligand can be employed. Moreover, we have also used an enantioselective Wacker oxidation for the preparation of an intermediate in the synthesis of ent-1.

Results and Discussion

The retrosynthetic analysis of ent- $\mathbf{1}$ leads to the chroman 5, which can be transformed into ent-1 via $\mathbf{4}$ through a benzylic oxidation and an intramolecular acylation (Scheme 1). Chroman 5 should be accessible from $\mathbf{6}$ by dihydroxylation, selective oxidation of the primary hydroxyl group to give an aldehyde moiety, and a Wittig-Horner reaction followed by a Michael addition. The chroman 6, with one stereogenic

Scheme 1. Retrosynthetic analysis of (-)-blennolide A (ent-1).
center, could be formed by an enantioselective dominoWacker/carbonylation/methoxylation reaction of $\mathbf{7 a}$, which can be synthesized from resorcin (8). On the other hand, chroman 6 would also be accessible from the alkene 7b by using an enantioselective Wacker oxidation.

According to the retrosynthetic analysis, resorcin (8) was transformed into 2,6-dimethoxybenzaldehyde in 88% yield over two steps (Scheme 2). ${ }^{[10,11]}$ A Wittig reaction with the

Scheme 2. Synthesis of $\mathbf{7 a}$ and $\mathbf{7 b}$: a) $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone, reflux, $25 \mathrm{~h}, 96 \%$; b) $n \mathrm{BuLi}$, TMEDA, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow 45^{\circ} \mathrm{C}, 3 \mathrm{~h}, \mathrm{DMF}, \mathrm{RT}, 3 \mathrm{~h}$, 92%; c) 9, toluene, $120^{\circ} \mathrm{C}, 26.5 \mathrm{~h}, 96 \%$; d) $1.5 \mathrm{~mol} \% \mathrm{PtO}_{2}, \mathrm{H}_{2}$ (1 atm), EtOH, RT, $2.25 \mathrm{~h} ; 2$. IBX, MeCN, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$ (2 steps); e) $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}, n \mathrm{BuLi}$, THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 4 \mathrm{~h}, 91 \%$; f) NaSEt, DMF, $120^{\circ} \mathrm{C}$, $24 \mathrm{~h}, ~ 96 \%$; g) $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{CH}_{3} \mathrm{Br}, n \mathrm{BuLi}, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2.5 \mathrm{~h}, 91 \%$ ($E / Z=1: 1.7$); h) NaSEt, DMF, $120^{\circ} \mathrm{C}, 24 \mathrm{~h}, 95 \%$.
phosphorane $\mathbf{9}^{[12]}$ and a hydrogenation of the formed olefinic double bond were used to give ketone 10 a using platinum(IV) dioxide in ethanol and hydrogen. The corresponding alcohol was obtained as a side product by over-reduction and can easily be reoxidized using 2-iodoxybenzoic acid (IBX) to yield the ketone $\mathbf{1 0 a}$ in an overall yield of 95%. For the synthesis of $\mathbf{7 a}$, a precursor of the domino-Wacker/ Carbonylation/methoxylation process, a Wittig reaction of 10 a with methyltriphenylphosphonium bromide in the presence of $n \mathrm{BuLi}$ was performed to give the corresponding methylene compound, which was followed by a selective cleavage of one of the methyl ether moieties using sodium ethanethiolate in 87% yield over two steps. The high selectivity of the monodeprotection with a thiolate can be explained by the formation of a negatively charged phenolate as an intermediate, which is not suitable for a second nucleophilic substitution due to an electrostatic interaction. On the other hand, cleavage of the methyl ether moiety in the corresponding OTBS-protected compound $\mathbf{1 0 b}$, again using ethanethiolate, was not suitable, since the OTBS group is not stable under these reaction conditions, giving rise to a complex product mixture. In a similar sequence as described for $7 \mathbf{a}$, compound $\mathbf{7 b}$ was also prepared by using a Wittig reaction of $\mathbf{1 0 a}$ with ethyltriphenylphosphonium bromide in the presence of $n \mathrm{BuLi}$ to afford a 1:1.7 E / Z mixture of the corresponding alkylidene compound in 91% yield; by
using sodium ethanethiolate the desired $(E / Z)-7 \mathbf{b}$ was obtained in 95% yield by a selective cleavage of one of the methyl ether moieties.

Reaction of $7 \mathbf{a}$ in the presence of the (R, R)-Bn-BOXAX ligand ${ }^{[13]}$ ent-12 and catalytic amounts of palladium(II) trifluoracetate $\left[\operatorname{Pd}(\mathrm{OTFA})_{2}\right]$ under a carbon monoxide atmosphere in methanol gave 11 in 74% yield and $96 \% e e$ (Scheme 3). Reduction of ester $\mathbf{1 1}$ with LiAlH_{4} yielded the corresponding alcohol, which was then transformed into ent-6 through a selenoether formation using o-NO ${ }_{2}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SeCN}$ followed by oxidation and elimination. ${ }^{[14]}$ The vinyl chroman 6 can also be prepared by an enantioselective Wacker oxidation of $\mathbf{7 b}$ in the presence of the (S, S)-BnBOXAX ligand ${ }^{[13]} \mathbf{1 2}$ and catalytic amounts of palladium(II) trifluoracetate $\left[\mathrm{Pd}(\mathrm{OTFA})_{2}\right]$ in methanol, however, with lower enantioselectivity.

Using the E / Z mixture of $\mathbf{7 b}$ with a $1: 1.7$ ratio, as formed in the Wittig reaction of $\mathbf{1 0 a}$, the vinyl chroman $\mathbf{6}$ was obtained in 82% yield and $85 \% e e$. To investigate the influence of the configuration of the double bond in $\mathbf{7 b}$ on the enantioselectivity of the Wacker oxidation, we separated the two diastereomers by HPLC. The pure Z compound gave 6 with an $e e$ value of 89%, whereas the E compound furnished 6 with $72 \% e e$. It should be stressed that the separation of the E / Z mixture of $\mathbf{7 b}$ by HPLC is difficult and not suitable for larger amounts. In the two Wacker processes, p-benzoquinone was employed to oxidize the intermediately formed Pd^{0} to give $\mathrm{Pd}^{\mathrm{II}}$, which is needed for the Wacker oxidation. The use of oxygen and a copper salt was not suitable, since the starting material is not stable under these conditions.

For the introduction of the necessary hydroxyl group at C-4 (numbering as in $\mathbf{1}$), we used a Sharpless dihydroxylation ${ }^{[15]}$ of the vinyl chroman 6 using AD-mix- α and methanesulfonamide as additives (Scheme 4). Under these conditions, the diols syn/anti-13 were obtained as a 1:2.4 mixture of inseparable diastereomers in 95% yield. Neither a selective oxidation of the primary alcohol in the presence of the secondary alcohol moiety nor a selective protection of the secondary alcohol function were successful; we therefore performed a bis-silylation of the diol $\mathbf{1 3}$ with TBSOTf and 2,6-lutidine to give $\mathbf{1 4}$ in quantitative yield. This was followed by a selective removal of the primary TBS group with $\mathrm{HF} /$ pyridine, which afforded the alcohol 15 in 90% and the diol $\mathbf{1 3}$ in 5% yield. The primary alcohol moiety in $\mathbf{1 5}$ was

Scheme 3. Synthesis of 6 and ent-6: a) $5 \mathrm{~mol} \%\left[\operatorname{Pd}(\mathrm{OTFA})_{2}\right], 20 \mathrm{~mol} \%(R, R)$-Bn-BOXAX (ent-12), p-benzoquinone, $\mathrm{CO}(1 \mathrm{~atm}), \mathrm{MeOH}, \mathrm{RT}, 22 \mathrm{~h}, 74 \%, 96 \% e e$; b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1.25 \mathrm{~h}, 98 \%$; c) $1 . n \mathrm{Bu} \mathrm{B}_{3} \mathrm{P}$, $o-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SeCN}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h} ; 2 . m \mathrm{CPBA}, \mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 1 \mathrm{~h}, i \mathrm{Pr}_{2} \mathrm{NH},-40^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, $15.5 \mathrm{~h}, 95 \%$ (2 steps); d) $10 \mathrm{~mol} \%\left[\mathrm{Pd}(\mathrm{OTFA})_{2}\right], 10 \mathrm{~mol} \%(S, S)$-Bn-BOXAX (12), p-benzoquinone, MeOH, $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$, for $(E / Z)-\mathbf{7 b}(E / Z=1: 1.7): 82 \%, 85 \% e e$; for $(E)-7 \mathbf{b}: 81 \%, 72 \% e e$; for $(Z)-7 \mathbf{b}: 79 \%, 89 \% e e$.

- 13: $R^{1}=R^{2}=H$
$\begin{array}{ll}\text { 14: } R^{1}=R^{2}=T B S & \text { 16a: } S \\ \text { 16b: } S\end{array}$
\square 15: $R^{1}=T B S, R^{2}=H$
Scheme 4. Synthesis of $\mathbf{1 8} \mathbf{a}$: a) AD-mix- $\alpha, \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), RT, 4 d, 95%, (syn/anti=1:2.4); b) 2,6-lutidine, TBSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$, quant; c) $\mathrm{HF} \cdot$ pyridine, THF/pyridine, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then RT, 26 h , 90%, (9% 13); d) DMP, $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad \mathrm{RT}, \quad 2 \mathrm{~h}, \quad 94 \%$; $)$ $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1.5 \mathrm{~h}, E$ compound 82%, Z compound 18%; f) $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$, MeLi, TMSCl, THF, $-35^{\circ} \mathrm{C}, 1 \mathrm{~h}, 91 \%$.
oxidized with Dess-Martin periodinane (DMP) to yield the corresponding diastereomeric aldehydes 16a in 94% yield. At this stage, the diastereomers formed in the Sharpless dihydroxylation could be easily separated by standard column chromatography. For further transformations, we used 16b with the S configuration at C-4 (numbering as in $\mathbf{1}$), which showed an anti-orientation of the substituents at C -4a and C-4, as found in blennolide A (1). The next step followed a Wittig-Horner reaction by treating the anti-aldehyde $\mathbf{1 6 b}$ with $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ and sodium hydride to provide a E / Z mixture of the α, β-unsaturated ester $17(E / Z=$ 4.6:1) in quantitative yield, which could easily be separated by column chromatography. For the introduction of a methyl group in (E)-17 at C-3 (numbering as in $\mathbf{1}$), we employed a Michael addition using $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}, \mathrm{TMSCl}$, and methyl lithium. In this highly diastereoselective reaction, the only obtained product was $\mathbf{1 8}$ a, with the R configuration at $\mathrm{C}-3$ in 91% yield. The very active copper(I) bromide-dimethylsulfide complex ${ }^{[16]}$ allowed a complete transformation at $-35^{\circ} \mathrm{C}$ within one hour. Using $\mathrm{CuI}, \mathrm{MeLi} \cdot \mathrm{LiBr}$, and TMSCl, either in THF or $\mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{[17]}$ only an incomplete reaction was observed. Moreover, the obtained mixture of starting material and product was not separable due to similar polarities. Interestingly, $(Z) \mathbf{- 1 7}$ did not react under the described conditions. The high stereoselectivity in the introduction of the methyl group in (E)-17 can be explained by assuming a Felkin-Anh-type transition state ${ }^{[17 \mathrm{a}, 18]} \mathrm{TS}-(E)-17$, without any chelating effects (Scheme 5).
For the transformation of the benzyloxymethyl group at $\mathrm{C}-4 \mathrm{a}$ in 18 a (numbering as in $\mathbf{1}$) into the required $\mathrm{CO}_{2} \mathrm{Me}$ functionality, the benzyl ether was cleaved under hydrogenolytic conditions with Pd / C in an acetic acid/methanol mixture to give 18b in 99% yield (Scheme 5). At this stage, it was possible to improve the enantiopurity of the products obtained in the enantioselective domino-Wacker/carbonylation/methoxylation reaction and the enantioselective Wacker oxidation from $96 \% e e$ and $89 \% e e$, respectively, to $>99 \% e e$, as found for $\mathbf{1 8 b}$ after using HPLC on a chiral support (Daicel IA column). The following oxidation of the formed primary alcohol moiety in 18b with DMP yielded the corresponding aldehyde in 95% yield, which was treated with potassium hydroxide and iodine in methanol to form

Scheme 5. Synthesis of ent-1: a) $15 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1 atm), HOAc, $\mathrm{MeOH}, \mathrm{RT}, 26 \mathrm{~h}, 99 \%$; b) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 2 \mathrm{~h}, 95 \%$; c) $\mathrm{KOH}, \mathrm{I}_{2}$, $\mathrm{MeOH}, \mathrm{RT}, 4 \mathrm{~h}$, quant; d) $\mathrm{KMnO}_{4}, 15 \%$ aqueous MgSO_{4}, acetone, $60^{\circ} \mathrm{C}$, ultrasonic, $11.5 \mathrm{~h}, 71 \%$, ($88 \% \mathrm{brsm}$); e) $\mathrm{TiCl}_{4}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 78%; f) $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}, 1,4$-dioxane, $50^{\circ} \mathrm{C}, 6 \mathrm{~d}, 77 \%$ ($96 \% \mathrm{brsm}$); g) BBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, $4 \mathrm{~h}, 86 \% ; \mathrm{R}^{\mathrm{L}}=$ Chromanyl.
the ester $\mathbf{5}$ in quantitative yield. Oxidation of $\mathbf{5}$ at the benzylic position upon treatment with potassium permanganate in an ultrasonic bath gave the chromanone 19 in 71% yield ($86 \% \mathrm{brsm}$). For the intramolecular acylation, $\mathbf{1 9}$ was treated with TiCl_{4} and NEt_{3} in dichloromethane at $0^{\circ} \mathrm{C}$ to yield the tetrahydroxanthenone $\mathbf{4}$ in 78%, along with some material (about 5%) in which the methyl ether moiety had been cleaved. Desilylation of 4 with $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}$ provided 20 in 77% yield, which was treated with BBr_{3} to give the desired, almost enantiopure (-)-blennolide A (ent-1) by cleavage of the methyl ether moiety in 86% yield.

All spectroscopic data including ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and mass spectrometry are in complete agreement with the published information of the isolated (+)-blennolide A. We have prepared ent-1, which has a negative optical rotation. For ent-1 an $[\alpha]_{D}^{23}$ value of $-198.7\left(\mathrm{CHCl}_{3}\right)$ was measured, whereas the natural compound $\mathbf{1}$ shows an optical rotation of $[\alpha]_{D}^{20}=+181.8\left(\mathrm{CHCl}_{3}\right) \cdot{ }^{[19]}$

Conclusion

We have developed the first enantioselective total synthesis of (-)-blennolide A (ent-1). Key steps are an enantioselective Pd-catalyzed domino-Wacker/carbonylation/methoxylation reaction, an enantioselective Wacker oxidation, and a highly selective Michael reaction.

Experimental Section

Synthesis of 4, 6, 11, 13, (\boldsymbol{E})-17, 18a, 19, and ent-1: The syntheses of all other new compounds including spectroscopic data can be found in the Supporting Information.
Methyl (R)-2-[2-(benzyloxymethyl)-5-methoxychroman-2-yl]acetate (11): A solution of $\mathrm{Pd}(\mathrm{OTFA})_{2}(57.7 \mathrm{mg}, 174 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and (R, R)-BnBOXAX (ent-12) ($397 \mathrm{mg}, 694 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was stirred at RT for 15 min . After addition of a solution of phenol 7a $(1.04 \mathrm{~g}, 3.47 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(7 \mathrm{~mL})$ and p-benzoquinone
$(1.50 \mathrm{~g}, 13.9 \mathrm{mmol}, 4.00$ equiv), carbon monoxide was passed through the resulting mixture for 2 min before being stirred under a CO atmosphere (1 atm) at RT for a further 22 h . The solvent was evaporated in vacuo, and the residue was purified by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=12: 1$) to give a crude product, which was dissolved in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. After washing with an aq solution of NaOH $(1 \mathrm{~m}, 3 \times 30 \mathrm{~mL})$ and brine (30 mL), the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Chroman $\mathbf{1 1}$ was obtained as a yellow oil ($912 \mathrm{mg}, 2.56 \mathrm{mmol}, 74 \%, 96 \% e e$). Analytical HPLC (Daicel Chiralpak $^{\circledR}$ IA, n-hexane $/ i \mathrm{PrOH}=99.5: 0.5$, flow rate: $0.8 \mathrm{~mL} \mathrm{~min}^{-1}$, wavelength: $205 \mathrm{~nm}): t_{\mathrm{R}}=17.8(-)-(S) \mathbf{- 1 1}, 2.2 \% ; 20.1 \mathrm{~min},(+)-(R)-\mathbf{1 1}, 97.8 \% ; e e:$ $96 \% ; a=1.18 ; R_{\mathrm{f}}=0.47$ (petroleum ether/EtOAc $\left.=5: 1\right) ;[\alpha]_{\mathrm{D}}^{25}=+6.1(c=$ 0.49 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $3^{\prime}-\mathrm{H}_{2}$), 2.64 (br t, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}_{2}\right), 2.72\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right)$, $2.84\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.67$ (brs, 2 H , $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{OCH}_{3}\right), 4.54\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{Ph}\right)$, $4.62\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{b}} \mathrm{Ph}\right), 6.41\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.46$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 7.05\left(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 7.22-7.35 \mathrm{ppm}(\mathrm{m}$, $5 \mathrm{H}, 5 \times \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.1$ (C-4'), 26.2 (C-3'), $39.3(\mathrm{C}-2), 51.5\left(\mathrm{COOCH}_{3}\right), 55.4\left(5^{\prime}-\mathrm{OCH}_{3}\right), 72.7\left(\mathrm{CH}_{2} \mathrm{OBn}\right), 73.4$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 76.3$ (C-2'), 101.8 (C-6'), 110.8, 110.8 (C-8', C-4a'), 127.0 $\left(\mathrm{C}^{\prime} 7^{\prime}\right), 127.5,127.5\left(\mathrm{Ph}-\mathrm{C}_{o}, \mathrm{Ph}-\mathrm{C}_{p}\right), 128.2\left(\mathrm{Ph}-\mathrm{C}_{m}\right), 138.1$ (Ph-Ci), 153.5 $\left(\mathrm{C}-8 \mathrm{a}^{\prime}\right), 157.6\left(\mathrm{C}-5^{\prime}\right), 170.6 \mathrm{ppm}\left(\mathrm{COOCH}_{3}\right)$; IR (film): $\tilde{v}=2949,1737$, 1592, 1469, 1439, 1347, 1267, 1249, 1200, 1096, 1018, 902, 772, 738, $699 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\max }(\lg \varepsilon)=204.0 \quad(4.716), 271.5$ (3.117), 279.0 nm (3.126); MS (ESI): m / z (\%): 735.3 (40) [2M+Na] ${ }^{+}$, 379.2 (100) $[M+\mathrm{Na}]^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$ (356.41): 379.1521 [M+Na]+; found: 379.1518.
(S)-2-(Benzyloxymethyl)-5-methoxy-2-vinylchroman (6): A solution of $\mathrm{Pd}(\mathrm{OTFA})_{2}(121 \mathrm{mg}, 365 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and (S, S)-Bn-BOXAX (12) ($209 \mathrm{mg}, 365 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) in $\mathrm{MeOH}(3.6 \mathrm{~mL}$) was stirred at RT for 30 min . After addition of a solution of phenol $\mathbf{7 b}(E / Z=1: 1.7,1.14 \mathrm{~g}$, $3.65 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(5.4 \mathrm{~mL})$ and p-benzoquinone $(1.58 \mathrm{~g}$, $14.6 \mathrm{mmol}, 4.00$ equiv), the mixture was heated at $60^{\circ} \mathrm{C}$ for 24 h and then cooled to RT. Filtration over a pad of silica gel $(15 \times 6 \mathrm{~cm}$, washing with petroleum ether/EtOAc = 10:1, TLC monitoring), evaporation of the solvent in vacuo, and column chromatography on silica gel (petroleum ether/EtOAc $=30: 1$) provided vinylchroman 6 as a colorless oil (933 mg , $3.01 \mathrm{mmol}, 82 \%, 85 \% e e) .(Z)-\mathbf{7 b}$ and $(E)-7 \mathbf{b}$ were also transformed into 6 using the same procedure: for $(Z)-7 \mathbf{b}(79 \%, 89 \% e e)$; for (E)-7b ($81 \%, 72 \% e e$). Analytical HPLC (Daicel Chiralcel ${ }^{\oplus}$ OD, n-hexane/ $i \operatorname{PrOH}=99: 1$, flow rate: $0.8 \mathrm{~mL} \mathrm{~min}^{-1}$, wavelength: 205 nm): $t_{\mathrm{R}}=12.0$ $(-)-(S)-\mathbf{6}, 92.4 \% ; 17.0 \mathrm{~min}(+)-(R)-\mathbf{6}, 7.6 \% ; e e: 85 \% ; a=1.83 ; R_{\mathrm{f}}=0.35$ (petroleum ether/EtOAc $=20: 1$); $\quad[\alpha]_{\mathrm{D}}^{20}=-52.9 \quad\left(c=0.52, \quad \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.87-2.08\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}_{2}\right), 2.44$ (ddd, $J=$ $17.1,10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}$), 2.73 (ddd, $J=17.1,4.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}$), $3.53\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}} \mathrm{OBn}\right), 3.57\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}} \mathrm{OBn}\right)$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{OCH}_{3}\right), 4.59\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{Ph}\right), 4.63(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{b}} \mathrm{Ph}$), 5.17 (dd, $J=10.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{a}}$), 5.25 (dd, $\left.J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.85\left(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 6.40(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{H}), 7.23-7.38 \mathrm{ppm}(\mathrm{m}, 5 \mathrm{H}, 5 \times \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $16.4(\mathrm{C}-4), 26.6(\mathrm{C}-3), 55.5\left(5-\mathrm{OCH}_{3}\right), 73.7\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.6\left(\mathrm{CH}_{2} \mathrm{OBn}\right)$, 78.8 (C-2), 101.6 (C-6), 109.8 (C-8), 110.8 (C-4a), 116.2 (C-2'), 126.9 (C7), $127.5\left(\mathrm{Ph}-\mathrm{C}_{p}\right), 127.6\left(\mathrm{Ph}_{\mathrm{C}}^{o}\right.$), $128.3\left(\mathrm{Ph}-\mathrm{C}_{m}\right), 137.8\left(\mathrm{C}-1^{\prime}\right), 138.3$ (Ph-Ci), 154.4 (C-8a), $157.5 \mathrm{ppm}(\mathrm{C}-5)$; IR (film): $\tilde{v}=2934,2856,1592$, 1468, 1409, 1345, 1315, 1267, 1250, 1193, 1167, 1096, 1028, 929, 773, 738, $698 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\max }(\lg \varepsilon)=204.0$ (4.701), 271.5 (3.113), 279.0 nm (3.121); MS (ESI): $m / z(\%): 643.3$ (53) $[2 M+\mathrm{Na}]^{+}, 333.2$ (100) $[M+\mathrm{Na}]^{+}, 311.2(25)[M+\mathrm{H}]^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$ (310.39): 311.1642 $[M+\mathrm{H}]^{+}, 333.1461[M+\mathrm{Na}]^{+}$; found: 311.1641, 333.1460.

2-(R/S)-[1-(R)-2-(Benzyloxymethyl)-5-methoxychroman-2-yl]ethane-1,2diol (13): A suspension of AD-mix- $\alpha\left(57.6 \mathrm{~g}\right.$) in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1, 180 mL) was stirred at RT for 30 min before addition of a solution of vinylchroman $6(6.40 \mathrm{~g}, 20.6 \mathrm{mmol}, 1.00$ equiv) in n-hexane $(25 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}(1.96 \mathrm{~g}, 20.6 \mathrm{mmol}, 1.00$ equiv) at RT. Stirring was continued at RT for 4 d , then the reaction was quenched by addition of saturated aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (70 mL) at $0^{\circ} \mathrm{C}$ with stirring for another 60 min .

After addition of water (300 mL), the aqueous layer was extracted with EtOAc $(3 \times 230 \mathrm{~mL})$, combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solution was concentrated in vacuo. Column chromatography of the residue on silica gel (petroleum ether/EtOAc $=3: 2 \rightarrow 1: 1$) furnished a mixture of the diols syn/anti-13 as a colorless oil (syn/anti $=1: 2.4,6.70 \mathrm{~g}$, $19.5 \mathrm{mmol}, 95 \%$). $R_{\mathrm{f}}=0.37$ (petroleum ether/EtOAc $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, syn/anti $=1: 2.4$): $\delta=1.78-2.20\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime}-\mathrm{H}_{2 \text { syn }+ \text { anti }}\right)$, 2.38-2.80 $\left(\mathrm{m}, 6 \mathrm{H}, 4^{\prime}-\mathrm{H}_{2 \text { syn }+ \text { anti }}, 1-\mathrm{OH}_{\text {syn }+ \text { anti }}\right), 2.93-3.04\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{OH}_{\text {syn }+}\right.$ $\left.{ }_{\text {anti }}\right), 3.50-3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OBn}_{\text {syn }+a n t i}\right), 3.71-3.96\left(\mathrm{~m}, 12 \mathrm{H}, 1-\mathrm{H}_{\text {syn }+a n t i}\right.$, 2$\left.\mathrm{H}_{2 \text { syn }+ \text { anit }}, 5^{\prime}-\mathrm{OCH}_{3 s y n+a n t i}\right), 4.43-4.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}_{\text {syn }+ \text { anti }}\right), 6.41(\mathrm{~d}, J=$ $\left.8.1 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}_{\text {syn }+a n i t}\right), 6.46\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}_{\text {anti }}\right), 6.47(\mathrm{~d}, J=$ $\left.8.1 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}_{s y n}\right), 7.04\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {syn }+ \text { anti }}\right), 7.22-7.37 \mathrm{ppm}$ ($\mathrm{m}, 10 \mathrm{H}, 5 \times \mathrm{Ph}-\mathrm{H}_{\text {syn }+ \text { anti }}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, syn/anti $=1: 2.4$): $\delta=15.7,15.7\left(\mathrm{C}^{\prime} 4^{\prime}{ }_{\text {syn }}, \mathrm{C}-4^{\prime}{ }_{\text {antit }}\right), 23.1\left(\mathrm{C}-3^{\prime}{ }_{\text {syn }}\right), 23.5\left(\mathrm{C}-3^{\prime}{ }_{\text {antit }}\right), 55.5$ ($5^{\prime}-$ $\left.\mathrm{OCH}_{3 \text { syn }+ \text { anti }}\right), 62.0\left(\mathrm{C}-2_{\text {anti }}\right), 62.3\left(\mathrm{C}-2_{\text {syn }}\right), 69.0\left(\mathrm{C}-1_{\text {syn }}\right), 70.2\left(\mathrm{C}-1_{\text {antit }}\right), 73.9$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}_{\text {syn }}\right), 74.0\left(\mathrm{OCH}_{2} \mathrm{Ph}_{\text {antit }}\right), 74.2\left(\mathrm{CH}_{2} \mathrm{OBn}_{\text {syn }}\right), 75.4\left(\mathrm{CH}_{2} \mathrm{OBn}_{\text {anti }}\right)$, $77.6 \quad\left(\mathrm{C}_{2}{ }^{\prime}{ }_{\text {anti }}\right), \quad 78.2 \quad\left(\mathrm{C}-2^{\prime}{ }_{\text {syn }}\right), \quad 102.0 \quad\left(\mathrm{C}-6^{\prime}{ }_{\text {syn }+ \text { antit }}\right), \quad 109.7, \quad 109.7$ $\left(\mathrm{C}^{-8}{ }_{\text {syn }}^{\prime}, \mathrm{C}-8_{\text {antit }}^{\prime}\right), 110.3\left(\mathrm{C}-4 \mathrm{a}_{\text {syn }}^{\prime}\right), 110.4\left(\mathrm{C}^{\prime}-\mathrm{a}^{\prime}{ }_{\text {antit }}\right), 127.0,127.0\left(\mathrm{C}-7^{\prime}{ }_{\text {syn }}, \mathrm{C}-\right.$ $\left.7^{\prime}{ }_{\text {anti }}\right), 127.6,127.7,127.9,127.9,128.4\left(\mathrm{Ph}-\mathrm{C}_{o}\right.$ syn + anti, $\mathrm{Ph}-\mathrm{C}_{m}$ syn+anti, $\mathrm{Ph} \mathrm{C}_{p}$ $\left.{ }_{\text {syn }+ \text { antit }}\right), 137.1\left(\mathrm{Ph}^{2} \mathrm{C}_{\text {s syn }}\right), 137.2\left(\mathrm{Ph}-\mathrm{C}_{\mathrm{i} \text { antit }}\right), 153.2\left(\mathrm{C}-8 \mathrm{a}^{\prime}{ }_{\text {syn }}\right), 153.3\left(\mathrm{C}-8 \mathrm{a}^{\prime}{ }_{\text {anti }}\right)$, 157.5 (C-5 ${ }_{\text {syn }}$), $157.6 \mathrm{ppm}\left(\mathrm{C}^{\prime} 5^{\prime}{ }_{\text {anti }}\right)$; IR (film): $\tilde{v}=3406,2938$, 1592, 1469, 1347, 1251, 1191, 1095, 1028, 909, 771, 737, $699 \mathrm{~cm}^{-1}$; UV ($\left.\mathrm{CH}_{3} \mathrm{OH}\right)$: $\lambda_{\text {max }}$ $(\lg \varepsilon)=204.5$ (4.716), 271.0 (3.168), 279.0 nm (3.156); MS (ESI): $m / z(\%):$ $711.3(55)[2 M+\mathrm{Na}]^{+}, 367.1$ (100) $[M+\mathrm{Na}]^{+}$; HRMS (ESI): m/z calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}$ (344.40): $367.1521[M+\mathrm{Na}]^{+}$; found: 367.1517.
Methyl (3R,4R)-4-[(R)-2-(benzyloxymethyl)-5-methoxychroman-2-yl)-4-(tert-butyldimethylsilyloxy)-3-methylbutanoate (18a): MeLi (72.4 mL of a 1.6 m solution in $\mathrm{Et}_{2} \mathrm{O}, 116 \mathrm{mmol}, 12.0$ equiv) was added to a suspension of $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}\left(11.9 \mathrm{~g}, 57.9 \mathrm{mmol}, 6.00\right.$ equiv) in THF $(80 \mathrm{~mL})$ at $-35^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 40 min at $-35^{\circ} \mathrm{C}$. Then, TMSCl $(7.40 \mathrm{~mL}, 6.29 \mathrm{~g}, 57.9 \mathrm{mmol}, 6.00$ equiv) and a solution of ester $(E)-\mathbf{1 7}$ ($4.95 \mathrm{~g}, 9.65 \mathrm{mmol}, 1.00$ equiv) in THF (110 mL) were added and stirring was continued at $-35^{\circ} \mathrm{C}$ for 60 min . Afterwards, the reaction was quenched by careful addition of $\mathrm{NEt}_{3}(165 \mathrm{~mL})$ and water $(400 \mathrm{~mL})$. The aqueous layer was extracted with $t \mathrm{BuOMe}(2 \times 200 \mathrm{~mL})$, and the combined organic layers were washed with water (250 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Column chromatography on silica gel (petroleum ether/EtOAc $=20: 1 \rightarrow 15: 1$) provided ester 18a as a colorless oil $(4.62 \mathrm{~g}, 8.74 \mathrm{mmol}, 91 \%) . R_{\mathrm{f}}=0.51$ (petroleum ether $/ \mathrm{tBuOMe}=$ 7:1); $[\alpha]_{\mathrm{D}}^{23}=-15.1\left(c=0.93, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $-0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{a}}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.06\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 1.87-2.06\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{2}\right), 2.15(\mathrm{dd}, J=$ $\left.15.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.30-2.54\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.67(\mathrm{dd}, J=15.9$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}$), 2.72 (ddd, $\left.J=17.1,5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.52(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{OCH}_{3}\right), 3.94(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.40\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{\mathrm{a}} \mathrm{Ph}\right), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{\mathrm{b}} \mathrm{Ph}\right), 6.37\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.8^{\prime}-\mathrm{H}\right), 7.02\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 7.19-7.33 \mathrm{ppm}(\mathrm{m}, 5 \mathrm{H}, 5 \times \mathrm{Ph}-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.8\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{a}}\right),-3.7\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 15.9$ (C-4'), $18.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.9\left(\mathrm{C}-3^{\prime}\right), 21.0\left(3-\mathrm{CH}_{3}\right), 26.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.9$ (C-3), $36.5(\mathrm{C}-2), 51.3\left(\mathrm{COOCH}_{3}\right), 55.3\left(5^{\prime}-\mathrm{OCH}_{3}\right), 70.1\left(\mathrm{CH}_{2} \mathrm{OBn}\right), 73.6$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 80.0(\mathrm{C}-4), 81.2\left(\mathrm{C}-2^{\prime}\right), 101.3\left(\mathrm{C}-6^{\prime}\right), 110.2\left(\mathrm{C}-4 \mathrm{a}^{\prime}\right), 110.3$ (C-8'), 126.8 (C-7'), $127.4\left(\mathrm{Ph}-\mathrm{C}_{p}\right), 127.5\left(\mathrm{Ph}-\mathrm{C}_{o}\right), 128.2\left(\mathrm{Ph}-\mathrm{C}_{m}\right), 138.1$ (Ph-Ci), $153.9\left(\mathrm{C}-8 \mathrm{Aa}^{\prime}\right), 157.6\left(\mathrm{C}-5^{\prime}\right), 174.4 \mathrm{ppm}\left(\mathrm{COOCH}_{3}\right)$; IR (neat): $\tilde{v}=$ 2952, 2852, 1738, 1591, 1468, 1251, 1136, 1092, 1037, 1004, 832, 770, $738 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\max }(\lg \varepsilon)=204.0$ (4.732), 273.0 (3.115), 280.0 nm (3.103); MS (ESI): m/z (\%): 551.3 (100) [$M+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}$ (528.75): $551.2805[M+\mathrm{Na}]^{+}$; found: 551.2799.

Methyl (3R,4R,4aS)-4-(tert-butyldimethylsilyloxy)-1-hydroxy-8-methoxy-3-methyl-9-oxo-2,3,4,4a-tetrahydroxanthene-4a-carboxylate (4): A solution of $\mathrm{TiCl}_{4}\left(2.47 \mathrm{~mL}\right.$ of a 1.0 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.47 \mathrm{mmol}$, 2.60 equiv) was added slowly to a stirred solution of chromanone 19 $\left(456 \mathrm{mg}, 949 \mu \mathrm{~mol}, 1.00\right.$ equiv) and $\mathrm{NEt}_{3}(390 \mu \mathrm{~L}, 288 \mathrm{mg}, 2.85 \mathrm{mmol}$, 3.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and stirring was continued at $0^{\circ} \mathrm{C}$ for 60 min . Then, the reaction was quenched by addition of a saturated aq solution of $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. Water $(60 \mathrm{~mL})$ was added and the aqueous layer was extracted with EtOAc $(3 \times 60 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chro-
matography of the residue on silica gel (petroleum ether/EtOAc $=5: 1$) yielded the tetrahydroxanthenone $\mathbf{4}$ as a colorless foam (331 mg , $738 \mu \mathrm{~mol}, 78 \%$) and the corresponding tetrahydroxanthenone with a phenolic hydroxyl group as a pale-yellow solid ($22.0 \mathrm{mg}, 51.0 \mu \mathrm{~mol}, 5 \%$). $R_{\mathrm{f}}=0.18$ (petroleum ether/EtOAc $=5: 1$); $[\alpha]_{\mathrm{D}}^{24}=-141.4\left(c=0.95, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{a}}\right), 0.14$ (s, 3 H , $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{\mathrm{b}}\right), 0.81\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.03\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 1.90-$ $2.05\left(\mathrm{~m}_{\mathrm{c}} \mathrm{c}=\right.$ complex, $\left.1 \mathrm{H}, 3-\mathrm{H}\right), 2.29\left(\mathrm{dd}, J=18.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.41$ $\left(\mathrm{dd}, J=18.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}, 8-$ OCH_{3}), 4.12 (d, $\left.J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 6.53$ (dd, $\left.J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right)$, 6.57 (dd, $J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.32(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, $16.19 \mathrm{ppm}(\mathrm{brs}, 1 \mathrm{H}, 1-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.4,-3.5$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 18.3\left(3-\mathrm{CH}_{3}\right), 18.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.8(\mathrm{C}-3)$, $34.8(\mathrm{C}-2), 53.1\left(\mathrm{COOCH}_{3}\right), 56.2\left(8-\mathrm{OCH}_{3}\right), 73.0(\mathrm{C}-4), 84.6(\mathrm{C}-4 \mathrm{a}), 101.4$ (C-9a), 105.2 (C-5), 109.8 (C-8a), 110.2 (C-7), 135.4 (C-6), 159.0 (C-10a), $160.5(\mathrm{C}-8), 172.0\left(\mathrm{COOCH}_{3}\right), 180.2(\mathrm{C}-9), 185.4 \mathrm{ppm}(\mathrm{C}-1)$; IR (neat): $\tilde{v}=2953,2929,1737,1599,1472,1249,1101,1078,1068,1038,834,774$, $737,539 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\text {max }}(\lg \varepsilon)=204.0$ (4.235), 279.0 (3.545), 333.0 nm (4.095); MS (ESI): $m / z(\%): 1367.5$ (15) $[3 M+\mathrm{Na}]^{+}, 919.4$ (100) $[2 M+\mathrm{Na}]^{+}, 471.2(17)[M+\mathrm{Na}]^{+}, 449.2(7)[M+\mathrm{H}]^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Si}(448.58)$: $449.1996[M+\mathrm{H}]^{+}, 471.1815[M+\mathrm{Na}]^{+}$; found: 449.1990, 471.1810.
Methyl (3R,4R,4aS)-1,4,8-trihydroxy-3-methyl-9-oxo-2,3,4,4 a-tetrahy-droxanthene-4 a-carboxylate ($(-)$-blennolide $\mathbf{A)}$ (ent-1): A solution of BBr_{3} (0.76 mL of a 1.0 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.76 \mathrm{mmol}$, 15 equiv) was added slowly to a stirred solution of methyl ether $\mathbf{2 0}(17 \mathrm{mg}, 51 \mu \mathrm{~mol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and stirring was continued for 4 h at RT. Then, the reaction was quenched by addition of a saturated aq solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 10 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo and the residue purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=150: 1\right)$ to give (-)-blennolide A (ent-1) as a pale-yellow solid ($14 \mathrm{mg}, 44 \mu \mathrm{~mol}$, $86 \%) . \quad R_{\mathrm{f}}=0.43 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=200: 1\right) ; \quad[\alpha]_{\mathrm{D}}^{23}=-198.7 \quad(c=0.80$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right)$, $1.99-2.15\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 3-\mathrm{H}\right), 2.35\left(\mathrm{dd}, J=18.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 2.49$ (dd, $J=18.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}$), 2.54 (brs, $1 \mathrm{H}, 4-\mathrm{OH}$), 3.65 ($\mathrm{s}, 3 \mathrm{H}$, COOCH_{3}), 4.08 (s, $1 \mathrm{H}, 4-\mathrm{H}$), 6.47 (dd, $J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 6.53 (dd, $J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.31(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 11.33$ (brs, $1 \mathrm{H}, 8-$ OH), $13.97 \mathrm{ppm}(\mathrm{brs}, 1 \mathrm{H}, 1-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=17.4$ $\left(3-\mathrm{CH}_{3}\right), 28.5(\mathrm{C}-3), 32.5(\mathrm{C}-2), 53.3\left(\mathrm{COOCH}_{3}\right), 71.2(\mathrm{C}-4), 84.7(\mathrm{C}-4 \mathrm{a})$, 100.0 (C-9a), 107.1 (C-8a), 107.8 (C-5), 111.1 (C-7), 137.5 (C-6), 157.6 (C-10a), $162.0(\mathrm{C}-8), 171.1\left(\mathrm{COOCH}_{3}\right), 179.7(\mathrm{C}-1), 187.4 \mathrm{ppm}(\mathrm{C}-9)$; IR (neat): $\tilde{v}=3537,1740,1609,1583,1561,1459,1228,1029,829,766,714$, $531 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\max }(\lg \varepsilon)=205.0$ (4.184), 277.0 (3.587), 331.0 nm (4.174); MS (ESI): $m / z(\%): 663.2$ (100) $[2 M+\mathrm{Na}]^{+}, 343.1$ (40) $[M+\mathrm{Na}]^{+}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{7}$ (320.29): 321.0974 $[M+\mathrm{H}]^{+}, 343.0794[M+\mathrm{Na}]^{+}$; found: 321.0969, 343.0792.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG), the state of Lower Saxony, the VW-foundation and the Fonds of the Chemical Industry for generous support. J.R.R. thanks the Konrad Adenauer Stiftung and S.J. thanks the CaSuS Program for a Ph.D. scholarship.
[1] W. Zhang, K. Krohn, Z. Ullah, U. Flörke, G. Pescitelli, L. Di Bari, S. Antus, T. Kurtán, J. Rheinheimer, S. Draeger, B. Schulz, Chem. Eur. J. 2008, 14, 4913-4923.
[2] F. Kraft, Archiv der Pharmazie 1906, 244, 336-359.
[3] B. Franck, E. M. Gottschalk, U. Ohnsorge, F. Hueper, Chem. Ber. 1966, 99, 3842-3862.
[4] M. M. Wagenaar, J. Clardy, J. Nat. Prod. 2001, 64, 1006-1009.
[5] M. Isaka, A. Jaturapat, K. Rukseree, K. Danwisetkanjana, M. Tanticharoen, Y. Thebtaranonth, J. Nat. Prod. 2001, 64, 1015-1018.
[6] L. F. Tietze, D. A. Spiegl, F. Stecker, J. Major, C. Raith, C. Grosse, Chem. Eur. J. 2008, 14, 8956-8963.
[7] L. F. Tietze, S. Jackenkroll, C. Raith, D. A. Spiegl, J. R. Reiner, M. C. Ochoa Campos, Chem. Eur. J. 2013, 19, 4876-4882.
[8] For recent reviews on domino reactions, see: a) L. F. Tietze, M. A. Düfert, S. C. Schild in General Principles of Diastereoselective Reactions: Diastereoselective Domino Reactions in Comprehensive Chirality, Vol. 2 (Eds. E. M. Carreira, H. Yamamoto), Elsevier, Amsterdam, 2012, pp. $97-121$; b) L. F. Tietze, S. Stewart, M. A. Düfert in Domino Reactions in the Enantioselective Synthesis of Bioactive Natural Products in Modern Tools for the Synthesis of Complex Bioactive Molecules (Eds.: J. Cossy, S. Arseniyades), Wiley, Hoboken, 2012; c) Hélène Pellissier, Adv. Synth. Catal. 2012, 354, 237-294; d) S. Giboulot, F. Liron, G. Prestat, B. Wahl, M. Sauthier, Y. Castanet, A. Montreux, G. Poli, Chem. Commun. 2012, 48, 5889-5891; e) M. Platon, R. Amardeil, L. Djakovitch, J.-C. Hierso, Chem. Soc. Rev. 2012, 41, 3929-3968; f) L. F. Tietze, A. Düfert, Pure Appl. Chem. 2010, 82, 1375-1392; g) L. F. Tietze, A. Düfert in Domino Reactions Involving Catalytic Enantioselective Conjugate Additions in Catalytic Asymmetric Conjugate Reactions (Ed.: A. Cordova), Wiley-VCH, Weinheim, 2010, pp.321-350; h) C. Grondall, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167-178; i) L. F. Tietze, L. Levy in The Mizoroki-Heck Reaction in Domino Processes (Ed.: M. Oestreich), Wiley, Chichester, 2008, pp. 281-344; j) L. F. Tietze, G. Brasche, K. M. Gericke, Domino Reactions in Organic Synthesis; Wiley-VCH, Weinheim, 2006; k) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. 2006, 118, 7292-7344; Angew. Chem. Int. Ed. 2006, 45, 7134-7186; 1) L. F. Tietze, Chem. Rev. 1996, 96, 115-136; m) L. F. Tietze, U. Beifuss, Angew. Chem. 1993, 105, $137-$ 170; Angew. Chem. Int. Ed. Engl. 1993, 32, 131-163.
[9] a) L. F. Tietze, A. Heins, M. Soleiman-Beigi, C. Raith, Heterocycles 2009, 77, 1123-1146; b) L. F. Tietze, J. Zinngrebe, D. A. Spiegl, F. Stecker, Heterocycles 2007, 74, 473-489.
[10] R. N. Mirrington, G. I. Feutrill, Org. Synth. 1973, 53, 90-93.
[11] B. M. Trost, H. C. Shen, L. Dong, J.-P. Surivet, C. Sylvain, J. Am. Chem. Soc. 2004, 126, 11966-11983.
[12] D. M. Bradley, R. Mapitse, N. M. Thomson, C. J. Hayes, J. Org. Chem. 2002, 67, 7613-7617.
[13] a) H. Hocke, Y. Uozumi, Tetrahedron 2003, 59, 619-630; b) T. D. Nelson, A. I. Meyers, J. Org. Chem. 1994, 59, 2655-2658.
[14] P. Wipf, C. R. J. Stephenson, Org. Lett. 2005, 7, 1137-1140.
[15] a) K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeong, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu, X.-L. Zhang, J. Org. Chem. 1992, 57, 2768-2771; b) H. C. Kolb, M. S. Van Nieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, $2483-$ 2547.
[16] K. Yamamoto, H. Ogura, J. Jukuta, H. Inoue, K. Hamada, Y. Sugiyama, S. Yamada, J. Org. Chem. 1998, 63, 4449-4458.
[17] a) S. Hanessian, K. Sumi, Synthesis 1991, 1083-1089; b) S. Hanessian, N. Chahal, S. Giroux, J. Org. Chem. 2006, 71, 7403-7411; c) N. Asao, S. Lee, Y. Yamamoto, Tetrahedron Lett. 2003, 44, 4265-4266; d) J. Yang, G. B. Dudley, Tetrahedron Lett. 2007, 48, 7887-7889.
[18] a) Y. Chounan, Y. Ono, S. Nishii, H. Kitahara, S. Itob, Y. Yamamoto, Tetrahedron 2000, 56, 2821-2831; b) A. E. Dorigo, K. Morokuma, J. Am. Chem. Soc. 1989, 111, 6524-6536; c) Y. Yamamoto, S. Nishii, T. lbukab, J. Chem. Soc. Chem. Commun. 1987, 464-466.
[19] Blennolide B and C have already been synthesized by: a) E. M. C. Gérard, S. Bräse, Chem. Eur. J. 2008, 14, 8086-8089; b) K. C. Nicolaou, A. Li, Angew. Chem. 2008, 120, 6681-6684; Angew. Chem. Int. Ed. 2008, 47, 6579-6582; c) T. Qin, R. P. Johnson, J. A. Porco, Jr., J. Am. Chem. Soc. 2011, 133, 1714-1717.

Received: February 6, 2013
Published online: May 3, 2013

[^0]: [a] Prof. Dr. L. F. Tietze, Dr. L. Ma, J. R. Reiner, S. Jackenkroll,
 S. Heidemann

 Institute of Organic and Biomolecular Chemistry
 Georg-August-University Göttingen
 Tammannstrasse 2, 37077 Göttingen (Germany)
 Fax: (+49) 551-39-9476
 E-mail: Itietze@gwdg.de
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem. 201300479.

