Tetrahedron Letters, Vol. 33, No. 35, pp. 5099-5102, 1992 Printed in Great Britain

SYNTHESIS OF A SULFATED GLYCOPEPTIDE CORRESPONDING TO THE CARBOHYDRATE-PROTEIN LINKAGE REGION OF PROTEOGLYCANS: β -D-GlcA- $(1 \rightarrow 3)$ {(SO₃Na \rightarrow 4)}- β -D-Gal- $(1 \rightarrow 3)$ - β -D-Gal- $(1 \rightarrow 4)$ - β -D-Xyl- $(1 \rightarrow 3)$ -Ser¹

Fumitaka Goto^a, and Tomova Ogawa*a,b

a) RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 Japan b) Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113 Japan

Abstract: A sulfated glycotetraosyl scrin 4 was synthesized in a stereocontrolled manner by employing a key glycotetraosyl donor 7 and a serine derivative 6.

In 1988, sulfated glycohexaosyl serine 1 and 2 were isolated from the linkage region of chondroitin 4-sulfate proteoglycans of Swarm rat chondrosarcoma and characterized by high field 1 H-nmr². Presumed function² of the O-4 sulfate on Gal residue 3 as a sorting signal for the biosynthesis of chondroitin 4-sulfate might be analysed by providing synthetic substrates such as 4 for emzymic studies. In this paper we describe for the first time a stereocontrolled synthesis of sulfated glycotetraosyl serine 4. It is to be noted that in the relevant synthetic studies³ synthesis of glycotriosyl serine 3 has already been described.

$$\begin{array}{c} \mathsf{R} \rightarrow \mathsf{4}) \xrightarrow{\qquad} \\ \mathsf{SO}_3\mathsf{Na} \rightarrow \mathsf{4}) \xrightarrow{\qquad} \\ \mathsf{SO}_3\mathsf{Na} \rightarrow \mathsf{4}) \xrightarrow{\qquad} \\ \mathsf{\beta}\text{-D-Gal}(1 \rightarrow \mathsf{3}) - \mathsf{\beta}\text{-D-Gal-}(1 \rightarrow \mathsf{3}) - \mathsf{\beta}\text{-D-Gal-}(1$$

Based on a retrosynthetic analysis of target molecule 4 shown in scheme 1, we have designed a key glycotetraosyl donor 7 that corresponds to the glycan part 5 of 4 and that should be properly protected so that sulfate group may be introduced at $O-4^3$ after stereocontrolled coupling with a serine derivative 6. The key intermediate 7 may be further disconnected into two glycosyl donors 8 and 9, and a glycosyl acceptor 10. Since compounds 8 is readily prepared from corresponding triol thioglycoside⁴, we first describe the synthesis of compounds 9 and 10.

Conversion of compound 11 into 12^5 was efficiently carried out in 3 steps (1 Bu3SnSMe, SnCl4 in (CH₂Cl)₂⁶, 2 NaOMc in 5:4 McOH-THF, 3 Bu₂SnO in 1:1 toluene-THF reflux, then CH2=CHCH2Br (AllBr), Bu4NBr in THF, reflux7; 63% overall). Allyl ether 12 was further transformed into 9⁵ via 13⁵ in 2 steps (1 PhCH(OMe)₂, TsOH+H₂O in THF, 2 Ac₂O, DMAP in Py, 77% overall). Another Gal donor 16^5 that was designed for the synthesis of 10 was obtainable in a conventional manner from 11 via 14⁵ and 15⁵ in 11 steps (1 4-MeOPhOH, TMSOTf in CH₂Cl₂ 0°, 2 NaOMe in 3:1 McOH-THF, 3 Bu₂SnO in 1:1 THF-tolucne, then AllBr, Bu₄NBr in THF, 4 PhCH(OMe)₂, TsOH+H2O in THF, 5 Ac2O, DMAP in Py, 6 NaBH3CN, powdered molecular sieves 4A (MS4A), HCl in THF⁸, 7 BnBr; NaH, in DMF, 8 CAN in 4:1 McCN-H₂O⁹, 9 Ac₂O, DMAP in Py, 10 NH₂NH₂•AcOH in DMF¹⁰, 11 CCl₄, (Mc₂N)₃P in THF¹¹; 22% overall). In the eighth step, a substantial amount of acetyl migration from O-2 to O-1 was observed. A xylosyl derivative 20 with O-2 pivaloyl group was designed so that a key glycosyl donor 7 could be coupled in a β -D-stereoselective manner¹² with the serine derivative 6. Conversion of 17^{13} into 20^5 was carried out via 18^5 in 8 steps (1) BnOH, Bu4NBr¹⁴, Et₃N in (ClCH₂)₂, 60°, 2 NaOMe in MeOH, 3 Bu₂SnO in toluene reflux, then Bu₄NI; BnBr in THF; reflux, 4 AllBr, NaH in DMF, 5 TMSOTf¹⁵, MS4A in (CH₂Cl)₂, 6 NaOMe in MeOH, 7 ¹BuCOCl (PivCl), DMAP in Py, 8 [Ir(COD)(Ph2MeP)₂)PF6¹⁶, H₂ in THF, 2h, 25°, then I₂ and H₂O; 47% overall). In the third step the desired 18 was obtained along with the minor product 19^5 in a ratio of 3:1. Because of the difficulty in separating these regio-isomeric compounds at this stage, the mixture was submitted to the subsequent series of reactions and at the last step the desired compound 20 was separated from 21^5 which was concomitantly obtained in 16% overall yield from 17.

Silver triflate¹⁷-MS4A promoted glycosylation of 20 with 16 in 1:1 CH₂Cl₂-toluene at -50° gave 75% of 22⁵ together with 14% of the α -anomer. Conversion of 22 into the glycosyl acceptor 10⁵ was carried out via 23⁵ in 3 steps (1 LiOH, 30% H₂O₂ in THF¹⁸, 2 BnBr, KI, Ag₂O in DMF, 3 [Ir-(COD)(Ph₂MeP)₂]PF₆, H₂ in THF, then 1₂, H₂O 90% overall). CuBr₂-n-Bu₄NBr-AgOTf-MS4A¹⁹ promoted glycosylation of 10 with 9 in (CH₂Cl)₂ proceeded in a stereoselective manner to afford 86% of 24⁵, which was then converted into the glycotriosyl acceptor 25⁵ in 3 steps (1 30% H₂O₂. LiOH in THF, 2 BnBr, KI, Ag₂O in DMF, 3 [Ir(COD)(Ph₂MeP)₂]PF₆, H₂ in THF, then H₂O, NaHCO₃, I₂, 79% overall). Chain extension of 25 by GlcA donor 8⁵ was performed in the presence of CuBr₂n-Bu₄NBr-AgOTf-MS4A in CH₂Cl₂ to afford 80% of 26⁵ that was converted into a key glycotetraosyl donor 7⁵ via 27⁵ (α and β -anomer in a ratio of 1:1) in 7 steps (1 Camphor sulfonic acid (CSA) in 3:1 McOH-CH₂Cl₂, 2 AcCl in Py, -5°, 3 Lev₂O, DMAP in 4:1 Py-(CH₂Cl)₂, 4 10% Pd-C, H₂ in 2:1 MeOH-EtOAc, 5 Ac₂O, DMAP in Py, 6 piperidinc*AcOH in THF²⁰, 7 CCl₃CN, DBU in CH₂Cl₂²¹; 40% overall). Crucial coupling between 6 and 7 was achieved in a stereocontrolled manner in the presence of BF₃•OEt₂ in (CH₂Cl)₂ at -23° to give 75% of 28⁵. Lev group at O-4³ of 28 was chemoselectively removed by treatment with NH₂NH₂•AcOH²² in 1:5 toluene-EtOH at -5° to give 90% of 29⁵ which was then sulfated with Me₃N•SO₃ in DMF at 50° to give 97% of 30. Deprotection of 30 into the target glycotetraosyl serine 4 was carried out in 3 steps (*I* Pd, H₂ in 1:1 EtOAc-MeOH, 2 LiOH in 10:3 THF-H₂O, -5°, then purification by Sephadex LH-20 in 5:5:1 CHCl₃-MeOH-H₂O, 3 5:1 MeOH-Maq.NaOH, -5°, then purification by Sephadex G-10 in H₂O, 97% overall). The assigned structure for synthetic 4 was deduced from the unambiguous synthetic sequence and was confirmed by the ¹H-nmr data that was found to be in agreement with those for the relevant natural samples².

In summary, sulfated glycotetraosyl serine 4 was synthesized for the first time by employing a key glycotetraosyl donor 7.

Acknowledgements. A part of this work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and also by the Special Coordination Funds of the Science and Technology Agency of the Japanese Government. We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for NMR, Mr. Y. Esumi for FAB-MS, Ms. M. Yoshida and her staff for elemental analyses, and Ms. A. Takahashi for technical assistance.

References and Notes

- 1 Part 87 in the series "Synthetic Studies on Cell-Surface Glycans". For part 86, see T. Slaghek, Y. Nakahara, and T. Ogawa, Tetrahedron Lett., submitted.
- 2 K. Sugawara, I. Yamashina, P. De Waard, H. Van Halbeek, and J. F. G. Vliegenthart, J. Biol. Chem., 263, 10168 (1988).
- 3 B. Lindberg and B.-G. Silvander, Acta Chem. Scand., 19, 530 (1965); B. Erbing, B. Lindberg, and T. Norberg, Acta Chem. Scand. B, 32, 308 (1978); P. J. Garegg, B. Lindberg, and T. Norberg, *ibid.*, 33, 449 (1979); H. G. Garg, T. Hasenkamp, and H. Paulsen, Carbohydr. Res., 151, 225 (1986); G. Ekborg, M. Klinger, L, Rodén, J. W. Jensen, J. S. Schutzbach, D. H. Huang, N. R. Krishna, and G. M. Anantharamaiah, Glycoconjugate J., 4, 255 (1987); H. Paulsen and M. Brenken, Liebigs Ann. Chem., 649 (1988); G. Ekborg, T. Curenton, N. R. Krishna, and L. Rodén, J. Carbohydr. Chem., 9, 15 (1990); S. Rio, J.-M. Beau, and J.-C. Jacquinet, Carbohydr. Res., 219, 71 (1991).
- 4 T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31, 1597 (1990).
- 5 Physical data for new compounds are given below, values of $[\alpha]_D$ and $\delta_{H,C}$ were measured at 25°±3° for solutions in CHCl₃ and CDCl₃, respectively, unless noted otherwise. 4: R_F 0.28 in

5:2:2:2, Mc₂CO-AcOH-McOH-H₂O; $\delta_{\rm H}$ (D₂O) 4.781 (d, 3.1Hz, 4³), 4.765 (d, 7.9Hz, 1⁴), 4.685 (d, 7.9Hz, 1³), 4.524 (d, 7.9Hz, 1²), 4.447 (d, 7.6Hz, 1²), 4.173 (d, 3.4Hz, 4²), 4.050 (dd, 3.1 and 10.1Hz, β^{Ser}). 7: R_F 0.47 in 1:2 toluenc-EtOAc; $[\alpha]_D$ +27.2° (c 0.9); δ_H 8.630 (s, NH), 6.418 (d, 3.7Hz, 1¹), 3.693 (s, OMe), 2.204 (s, Lev), 1.128 (s, Piv). 8: A mixture of α and β anomers in a ratio of 5:3. R_F 0.28 in 5:1 hexane-EtOAc; δ_H 5.875 (d, 5.2Hz, 1α), 4.717 (d, 9.8Hz, 1β), 2.181 (s, SMe). 9: R_F 0.29 in 2:1 hexane-EtOAc; [α]_D +27.3° (c 0.3); mp 109-110° (Et₂O-hexane); δ_H 5.530 (s. PhCH), 5.433 (t. 9.8Hz. 2); 4.323 (d, 9.8Hz, 1), 2.242 (s, SMc), 2.109 (s, Ac). 10: $R_F 0.22$ in 7:3 hexane-EtOAc; $[\alpha]_D$ -40.2° (c 0.5); $\delta_{\rm H}$ 4.527 (d, 6.1Hz, 1¹), 4.404 (d, 7.6Hz, 1²), 1.142 (s, Piv). 12: R_F 0.11 in 1:1 toluene-EtOAc; $[\alpha]_D$ +11.0° (c 1.0, McOH); m.p. 99-100° (MeOH-Et₂O); δ_H (CD₃OD) 4.227 (d, 9.6Hz, 1), 2.190 (s, SMe). 13: R_F 0.65 in 10:1 CHCl₃-McOH; $[\alpha]_D$ +37.7° (c 0.4); mp 179-180° (hexane-EtOAc); δ_H 5.526 (s, PhCH), 4.305 (d, 9.5Hz, 1), 2.250 (s, SMc). 14: R_F 0.61 in 4:1 CHCl₃-McOH; mp 139-140° (Et₂O); δ_H (DMSOd₆) 4.685 (d, 7.8Hz, 1), 3.684 (s, OMe). 15: R_F 0.50 in 2:1 toluene-EtOAc; mp 89.5-90° (hexane); δ_{H} 5.377 (dd, 7.9 and 9.8Hz, 2), 4.820 (d, 7.9Hz, 1), 2.103 (s, Ac). 16: R_F 0.63 in 2:1 toluene-EtOAc; $[\alpha]_D$ +117.7° (c 0.3); δ_H 6.376 (d, 4.0Hz, 1), 5.349 (dd, 4.0 and 10.1Hz, 2), 2.120 (s, Ac). 18: RF 0.59 in 1:1 EtOAc-toluenc; $\delta_{\rm H}$ 5.475 (d, 3.3Hz, 1), 1.780 (s, CMe). 19: RF 0.59 in 1:1 EtOAc-toluene; $\delta_{\rm H}$ 5.475 (d, 3.3Hz, 1), 4.780 (s, CMc). 19: RF 0.59 in 1:1 EtOAc-toluene; $\delta_{\rm H}$ 5.604 (d, 4.9Hz, 1), 1.758 (s, C-Mc). 20: R_F 0.45 in 2:1 hexane-EiOAc; δ_H 4.826 (dd, 7.0 and 8.2Hz, 2), 4.498 (d, 7.0Hz, 1), 1.182 (s, Piv). 21: R_F 0.26 in 2:1 hexane-EtOAc; δ_H 5.079 (dd, 5.8 and 7.3Hz, 2), 4.553 (d, 5.8Hz, 1), 1.159 (s, Piv). 22: $R_F 0.38$ in 7:3 hexane-EtOAc; $[\alpha]_D$ -40.4° (c 0.3); mp 123.5-124° (Et₂O-hexane); $\delta_{\rm H}$ 4.445 (d, 7.3Hz, 1¹), 4.436 (d, 7.9Hz, 1²), 2.079 (s, Ac), 1.121 (s, Piv); α -isomer: $R_F 0.52$, $[\alpha]_D + 25.3^\circ$ (c 0.3); mp 134-135° (Et₂O-hexane); $\delta_H 5.230$ (d, 3.7Hz, 1²). 23: $R_F 0.27$ in 7:3 hexanc-EtOAc; $[\alpha]_D$ +2.7° (c 0.5); mp 74.5-75° (Et₂O-hexane); δ_H 4.512 (d, 6.4Hz, 1¹), 4.400 (d, 7.6Hz, 1^2), 1.135 (s, Piv). 24: R_F 0.48 in 1:1 hexanc-EtOAc; [α]_D -35.3° (c 0.3); δ _H 5.543 (s, PhCH), 4.901 (d, 7.9Hz, 1^3), 4.497 (d, 6.4Hz, 1^1), 4.395 (d, 7.6Hz, 1^2), 1.924 (s, Ac), 1.131 (s, Piv). 25: R_F 0.36 in 1:1 hexane-EtOAc; $[\alpha]_D$ -25.3° (c 0.5); δ_H 5.554 (s, PhCH), 4.862 (d, 7.6Hz, 1³), 4.530 (d, 6.1Hz, 1^{7}), 4.421 (d, 7.3Hz, 1^{2}), 1.148 (s, Piv), **26**: RF 0.43 in 2:1 toluene-EtOAc; [α]D -16.5° (c 0.7); δ_H 5.631 (s, PhCH), 5.381 (d, 7.0Hz, 1⁴), 4.855 (d, 7.5Hz, 1³), 4.490 (d, 6.1Hz, 1¹), 4.378 (d, 7.6Hz, 1²), 3.644 (s, OMc), 1.132 (s, Piv). 27: a 1:1 mixture of α - and β -anomer; R_F 0.26 in 1:1 toluene-EtOAc; $\delta_{\rm H}$ 6.230 (d, 3.7Hz, 1¹ α), 5.633 (d, 7.6Hz, 1¹ β), 4.382 and 4.375 (2s, 7.9Hz, 1²), 4.360 (d, 7.9Hz, 1³), 3.692 (s, OMc), 1.140 and 1.120 (2s, Piv). 28: R_F 0.40 in 1:1 tolucne-EtOAc; $\delta_{\rm H}$ 5.483 (d, 3.7Hz, 4³), 5.292 (d, 2.8Hz, 4^2), 4.905 (d, 7.7Hz, 1^4), 4.377 (d, 7.9Hz, 1^3), 4.334 (d, 7.0Hz, 1^1), 4.319 (d, 7.9Hz, 1²), 3.694 (s, OMe), 2.202 (s, Lev). 29: $R_F 0.66$ in 2:1 EtOAc-hexane; $\delta_H 5.317$ (d, 3.4Hz, 4²), 5.005 $(d, 7.0Hz, 1^4), 4.389 (d, 7.9Hz, 1^3), 4.335 (d, 7.3Hz, 1^1), 4.331 (d, 8.2Hz, 1^2), 4.133 (bs, 4^3), 3.661 (s, 4.131)$ OMe), 1.115 (s, Piv). 30: R_F 0.55 in 15:1 CHCl₃-MeOH; δ_H(CD₃OD) 5.307 (d, 3.4Hz, 4³), 5.206 (d, 7.6Hz, 1^4), 5.009 (d, 3.1Hz, 4^2), 4.514 and 4.530 (2d, 8.0Hz, 1^2 and 1^3), 4.486 (d, 7.0Hz, 1^1), 3.657 (s, OMc), 1.155 (s, Piv).

- 6 T. Ogawa and M. Matsui, Carbohydr. Res., 54, C17 (1977).
- 7 J. Alais, A. Maranduba, and A. Veyrieres, Tetrahedron Lett., 24, 2383 (1983); A. Maranduba and
- A. Veyrieres, Carbohydr. Res., 135, 330 (1985).
- 8 P. J. Garegg, H. Hultberg, and S. Wallin, Carbohydr. Res., 108, 97 (1982).
- 9 T. Fukuyama, A. A. Laird, and L. M. Hotchkiss, Tetrahedron Lett., 26, 6291 (1985).
- 10 G. Excoffier, D. Gagnaire, and J.-P. Utille, Carbohydr. Res., 39, 368 (1975).
- 11 I. M. Downie, H. Heaney, and G. Kemp, Angew. Chem. Int. Ed. Engl., 14, 370 (1975).
- 12 H. Kunz and A. Harrens, Liebigs Ann. Chem., 41 (1982); J. Vlahov and G. Snatzke, ibid., 570 (1983); R. R. Shmidt and P. Zimmermann, Angew Chem. Int. Ed. Engl., 25, 725 (1986); S. Sato, S. Nunomura, T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 29, 4097 (1988); S. Sato, Y. Ito, and T. Ogawa, ibid., 29, 5267 (1988).
- 13 B. Capon, P. M. Collins, A. A. Levy, and W. G. Overend, J. Chem. Soc., 3242 (1964).
- 14 R. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James, J. Am. Chem. Soc., 97, 4056 (1975).
- 15 T. Ogawa, K. Bcppu, and S. Nakabayashi, Carbohydr. Res., 93, C6 (1981).
- 16 L. M. Haines and E. Singleton, J. Chem. Soc., Dalton Trans., 1891 (1972); J. J. Oltvoort, C.A.A. van Boeckel, J. H. De Koning, and J. H. van Boom, Synthesis, 305 (1981).
- 17 S. Hancssian and J. Banoub, Carbohydr. Res., 53, C13 (1977).
- 18 E. J. Corey, S. Kim, S. Yoo, K. C. Nicolaou, L. S. Mclvin, Jr., P. J. Brunelle, J. R. Flack, E. J. Trybulski, R. Lett, and R. W. Sheldrake, J. Am. Chem. Soc., 100, 4620 (1978).
- 19 S. Sato, M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 155, C6 (1986).
- 20 T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31, 1597 (1990).
- 21 R. R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19, 731 (1980).
- 22 H. J. Koeners, J. Verhoeven, and J. H. van Boom, Rec. Trav. Chim. Pays-Bas., 100, 65 (1981).

(Received in Japan 16 May 1992)