Monatshefte für Chemie Chemical Monthly Printed in Austria

Protoberberines from *Reissert*-Compounds VIII [1]. Oxazoloisoquinolines, New and Efficient Educts for the Synthesis of 8-Oxoprotoberberines

Eberhard Reimann*, Fritz Grasberger^a, and Kurt Polborn

Department Pharmazie – Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, D-81377 München, Germany

Received October 31, 2002; accepted November 5, 2002 Published online May 6, 2003 © Springer-Verlag 2003

Summary. Certain benzylated oxazoloisoquinolinones readily available from *Reissert* compounds provided an efficient access to 8-oxoprotoberberines in three steps. A series of these new precursors as well as several oxoprotoberberines were prepared and the scope and limitation of this procedure were investigated.

Keywords. Oxazoloisoquinolinones; X-ray crystal structure; 13a-Carboxy-8-oxo-protoberberines; 8-Oxoprotoberberines.

Introduction

We previously reported the reduction of 1-benzylated *Reissert* compounds giving oxazoloisoquinolines as the main products, which in turn could be readily transformed to 8-oxoprotoberberines [1] (general formulae 4, 5, 14, and 15 in Schemes 2, 3, and 6).

As part of our continuing investigations in this area we have checked the uses of this pathway by synthesizing a series of new oxazoloisoquinolines **5** and several further 8-oxoprotoberberines **14** and **15**, which are known to possess biological activity [2]. In this paper we would like to present the results concerning these investigations.

^{*} Corresponding author. E-mail: ebrei@cup.uni-muenchen.de

^a Part of PhD thesis, LMU München, D

Results and Discussion

The required starting substances, *Reissert* compounds 1 and 2-(bromomethyl)benzoic acid esters 3 and 10 (Schemes 1 and 4), were synthesized according to standard procedures. Subsequent reaction of 1 and 3 as well as 1a and 10, according to an efficient general procedure, afforded the benzylated *Reissert* compounds 4 and 11 in good yields (52–90%; see Schemes 2 and 4).

The reduction of compounds 4 was performed by an approved method [1] leading to the desired oxazoloisoquinolines 5 summarized in Scheme 3. The yields were found to depend on the ester group of the benzyl moiety. Thus, the ethyl (or methyl) esters gave the best results; alkyl groups with larger steric demand caused decreasing yields. Therefore, all the following reductions were performed using the ethyl esters of the corresponding educts. In addition, it seemed that the substitution pattern in both the isoquinoline and benzyl fragments of 4 hardly influenced the reaction rate. Furthermore, according to Ref. [1] the by-products 6-9 could also be isolated (Scheme 3).

In this connection it should be noted, that the reduction of *Reissert* compounds **11**, lacking an *ortho* positioned carbalkoxy group, surprisingly did not take place in the same manner. Instead of the expected oxazoloisoquinolines the aldehydes **12** were preferably formed as the main products (Scheme 4). A possible explanation may be, that the formation of the intermediate *Reissert* salt, already containing the unsaturated target oxazoloisoquinoline skeleton [1] is favored by an intramolecular hydrogen bond between the ester and imino functions. However, this assumption is not in line with the result obtained on the reduction of the *o*-nitrobenzyl derivative **11d**. Although the NO₂-group is also capable to form a corresponding hydrogen

Scheme 1

		R	NC N		<i>'</i>			
		r²	л G ³	⊓ R⁵	- 5	– 6	5 7	
12	л Ц	л Ц			л Ц	л Ц	л Ц	п Мо
4 Ah	н	н	н	н	н	н	н	Ft
4c	н	н	н	н	н	н	н	i-Pr
4d	H	Н	H	H	H	H	H	t-Bu
4e	Н	Н	н	Н	н	н	Me	Me
4f	Н	Н	Н	Н	Н	Н	Me	Et
4g	Н	Н	Н	Н	Н	Н	OMe	Me
4ĥ	OMe	OMe	Н	Н	Н	Н	Н	Me
4i	OMe	OMe	Н	Н	Н	Н	Н	Et
4j	OBn	OMe	Н	Н	Н	Н	Н	Et
4k	O-CI	H2 -O	Н	Н	Н	Н	Н	Et
4	Н	Н	OMe	Н	Н	Н	Н	Et
4m	н	н	н	OMe	OMe	Н	н	Et
4n	Н	Н	Н	н	н	OMe	Н	Et
40	OMe	OMe	OMe	АН	н	н	Me	Et
4p	H	H		2 - 0	н	н	н	El
4q 4r	OMe	OMe	OMe	OMe				
чі Ле	OMe	OMe			п	п	іле П	
чэ 4t					н	Н	Н	Li Ft
4u	0-0	H ₂ -O	0.0-CH	-0	н	н	н	Ft
	0.01		0.011	2 -			••	

Scheme 2

bond with the imino group, no formation of the desired oxazoloisoquinoline occurred.

Treating the oxazoloisoquinolines **5** with ethanolic potassium hydroxide according to Ref. [1] caused the generation of the new 8-oxoberbine carboxylic acids **13** in exellent yields (Scheme 5). Their structures were fully characterized by spectroscopic data and additionally confirmed by X-ray diffraction analysis of compound **13b** showing the *trans* configuration of the quinolizidine skeleton (Fig. 1).

Finally, the carboxylic acids 13 were decarboxylated in an approved manner [1] affording the title compounds in good yields (84–94%). Thus, in the cases 13a, 13b, 13d, and 13f mixtures of the (\pm) -8-oxoprotoberberines 14a–d (among others (\pm) -gusanlung D (14c) [3], (\pm) -8-oxodihydropalmatine (14d) [2, 4]) and 5,6-dihydrodibenzoquinolizin-8-ones 15a–d, easily identified by their blue fluorescence at $\lambda = 365$ nm, were obtained. In the cases 13h and 13i the 8-oxodihydrodibenzoquinolizines (berberin-8-one, berlambine, (15e) [5, 6] and 8-oxocoptisine (15f) [7, 8]) were found to be the only products of the decarboxylation (Scheme 6).

OHC

 R^1

Н

Н

OMe

7a

7b

7c

R^{5}	5a 5b 5c 5d 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R ¹ H H H H O Me O Me O Me O Me O -(R ² H H H H H O <i>Me</i> O <i>Me</i>	2 2 2 2	R ³ H H H H H H OMe O-CH ₂ OMe O-CH ₂ OMe O-CH ₂	<i>R</i> ⁴ Н Н Н Н Н Н Н Н Н Н Н Н Н 	[₹] Н Н Н Н <i>М е е</i> Н Н Н Н Н <i>е е</i> Н Н Н Н Н <i>е е</i> Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	R Et i-Pr t-Bu Et Et Et Et Et Et Et Et Et Et
R^{5} $CO_{2}R$ R^{3} R^{4}	6a 6b 6c 6d 6f 6j 6h 6i 6k	R ¹ H H O <i>Me</i> O <i>Bn</i> O-C H O <i>Me</i> O <i>Me</i>	$ \begin{array}{c} R^2 \\ H \\ H \\ H \\ OMe \\ OMe \\ H_2 \cdot O \\ H \\ OMe \\ OM$	R ³ H H H H H H H H OMe OMe	R ⁴ H H H H H H O <i>Me</i>	R⁵ H H H H H H Me Me	F M E M M E E E E E E E E	e e t e t t t t t t
N CO ₂ Et	R	2		Et	R ² R		N N N	
$\begin{array}{cccc} R^2 & R^3 & R^4 \\ H & H & H \\ H & OMe & H \\ OMe & OMe & CH_3 \end{array}$	8a 8b	R ¹ OM O	<i>R</i> ² e O <i>M</i> € ⊦CH₂-O	9	9a 9b 9c	R ¹ O <i>Me</i> OBn O-C	R ² O <i>Me</i> O <i>Me</i> H ₂ -O	

Scheme 3

In summary, we have shown the usefulness of the easily available 1-benzylated Reissert compounds as educts for the synthesis of 8-oxoberberines. This sequence represents a short route to the title compounds, which are of general interest because of their natural occurence and remarkable antitumor and antileukemic properties [2].

10,11,12	R^1	R^2	R^3
а	Н	Н	Н
b	CH₃	Н	Н
С	Br	Н	Н
d	NO_2	Н	Н
е	-(C	H) ₄ -	Н
f	Н	Н	CO ₂ -t-Bu

	R^1	R^2	R^3	R^4
13a	Н	Н	Н	Н
13b	OMe	OMe	Н	Н
13c	OBn	OMe	Н	Н
13d	O-C	H ₂ -O	Н	Н
13e	Н	Н	OMe	Н
13f	OMe	OMe	OMe	OMe
13g	OMe	OMe	O-Cł	− 2-0
13h	O-C	H ₂ -O	OMe	OMe
13i	O-C	H ₂ -O	O-Cł	− 2-0

Scheme 5

Fig. 1. Crystal structure of 13b

15

14,15	R^1	R^2	R^3	R^{4}
a	Н	Н	Н	Н
b	OMe	OMe	Н	Н
С	O-C⊦	l ₂ -O	Н	Н
d	OMe	OMe	OMe	OMe
е	O-C⊦	l ₂ -O	OMe	OMe
f	O-CH ₂ -O		O-CH ₂ -O	
	S	Scheme 6		

Table 1. Crystallographic data of 13b^a

Formula	C ₂₀ H ₁₉ NO ₅
Formula weight	353.37
Temperature (°K)	295
Color, shape	Pale yellow platelet
Crystal dimensions (mm)	$0.17 \times 0.43 \times 0.53$
Crystal system	monoclinic
Space group	<i>P21/c</i>
Cell dimensions:	
$a/ m \AA$	11.064(4)
\dot{b} /Å	11.1823(14)
c/Å	14.154(3)
$\dot{\beta}/^{\circ}$	101.87(2)
$V/Å^3$	1713.7 (7)
Radiaton	$MoK_{\alpha} (\lambda = 0.71073 \text{ \AA})$
Z	4
 F(000)	744
F(000) μ/mm^{-1}	744 0.099
$F(000)$ μ/mm^{-1} Density/g cm ⁻³	744 0.099 1.370
$F(000)$ μ/mm^{-1} Density/g cm ⁻³ Reflections collected	744 0.099 1.370 2806
F(000) μ/mm^{-1} Density/g cm ⁻³ Reflections collected Independent reflections	744 0.099 1.370 2806 2680 ($R_i = 0.0264$)
F(000) μ/mm^{-1} Density/g cm ⁻³ Reflections collected Independent reflections Observed reflections	744 0.099 1.370 2806 2680 ($R_i = 0.0264$) 2152 ($I > 2\sigma I$)
F(000) μ/mm^{-1} Density/g cm ⁻³ Reflections collected Independent reflections Observed reflections No. of parameters refined	744 0.099 1.370 2806 2680 ($R_i = 0.0264$) 2152 (I > 2σ I) 237/0
F(000) μ/mm^{-1} Density/g cm ⁻³ Reflections collected Independent reflections Observed reflections No. of parameters refined <i>R</i> -values	744 0.099 1.370 2806 2680 ($R_i = 0.0264$) 2152 (I > 2 σ I) 237/0
F(000) μ/mm^{-1} Density/g cm ⁻³ Reflections collected Independent reflections Observed reflections No. of parameters refined <i>R</i> -values <i>R</i> 1 (2 σ I/all data)	744 0.099 1.370 2806 2680 ($R_i = 0.0264$) 2152 (I > 2 σ I) 237/0 0.0432/0.0574
F(000) μ/mm^{-1} Density/g cm ⁻³ Reflections collected Independent reflections Observed reflections No. of parameters refined <i>R</i> -values <i>R</i> 1 (2 σ I/all data) <i>wR</i> 2 (2 σ I/all data)	744 0.099 1.370 2806 2680 ($R_i = 0.0264$) 2152 (I > 2σ I) 237/0 0.0432/0.0574 0.1047/0.1139
F(000) μ/mm^{-1} Density/g cm ⁻³ Reflections collected Independent reflections Observed reflections No. of parameters refined <i>R</i> -values <i>R</i> 1 (2 σ I/all data) <i>wR</i> 2 (2 σ I/all data) Goodness of Fit	744 0.099 1.370 2806 2680 ($R_i = 0.0264$) 2152 (I > 2σ I) 237/0 0.0432/0.0574 0.1047/0.1139 1.181

^a Further details of the crystal structure determination are available from Cambridge Crystallographic Data Center, 12 Union Road, GB Cambridge CB21EZ quoting the deposition number CCDC 159936 and the complete literature source (e-mail: deposit@ccdc.cam.ac.uk)

Experimental

Melting points are measured with a Reichert hot-stage microscope and are uncorrected. IR: Perkin Elmer FT-IR Paragon 1000 and Jasco FT-IR 410. NMR: Jeol GSX 400 and Jeol GSX 500 (¹H: 400 and 500 MHz, ¹³C: 100 and 125 MHz, CDCl₃ (unless otherwise stated), *TMS* as internal reference). MS (70 eV): Hewlett Packard MS-Engine. Elemental analyses: Heraeus CHN-Rapid; the results are in good agreement with the calculated values. Thin layer chromatography (TLC): aluminum sheets Kieselgel 60 F_{254} (Merck), thickness of layer 0.2 mm. Flash chromatography (FC): ICN-SiliTech 32–36, 60 Å. Compounds **10a–10d** are commercial products. *Reissert* compound **1a** was prepared according to Ref. [9].

Reissert Compounds 1b-1g; General Procedure

To a solution of the isoquinoline in 120 cm^3 of CH_2Cl_2 was added an aqueous solution of KCN and then dropwise under vigorous stirring and ice cooling the corresponding quantity of benzoyl chloride. Since the emulsion formed can warm up to boiling temperature the reaction flask should be equipped with a reflux condenser. Stirring was continued for 2 h under cooling and for 5 h at ambient temperature. The beige coloured emulsion was diluted with 150 cm^3 of CH_2Cl_2 and 200 cm^3 of brine. The organic layer was washed with $3 \times 100 \text{ cm}^3$ of H_2O and dried with Na_2SO_4 . After removing the solvent *in vacuo*, the residue was recrystallized from *Et*OH. The crystals were collected by filtration, washed with a small amount of *Et*OH, and dried at 60°C *in vacuo*. The melting points of **1b–1d** and **1g** are cited in Refs. [10–15] and are identical with those found; IR spectra were measured in KBr.

1,2-Dihydro-2-(4-methylbenzoyl)isoquinoline-1-carbonitrile (1b, [10])

Isoquinoline 63 mmol, KCN 126 mmol, *p*-toluic acid chloride 240 mmol; yield: 68%; IR: $\bar{\nu} = 1651$ (C=O) cm⁻¹; TLC (*n*-hexane:petroleum ether = 3:1): $R_f = 0.58$.

1,2-Dihydro-2-(4-methoxybenzoyl)isoquinoline-1-carbonitrile (1c, [11])

Isoquinoline 63 mmol, KCN 126 mmol, 4-methoxybenzoyl chloride 240 mmol; yield: 82%; IR: $\bar{\nu} = 1662 \text{ (C=O) cm}^{-1}$; TLC (petroleum ether: *Et*OA*c* = 3:2): $R_{\rm f} = 0.50$.

2-Benzoyl-1,2-dihydro-6,7-dimethoxyisoquinoline-1-carbonitrile (1d, [12, 13])

6,7-Dimethoxyisoquinoline 61 mmol, KCN 126 mmol, benzoyl chloride 244 mmol; yield: 74%; IR: $\bar{\nu} = 2237$ (C=N), 1660 (C=O) cm⁻¹; TLC (*n*-hexane:*Et*OAc = 3:2): $R_{\rm f} = 0.60$.

2-Benzoyl-7-benzyloxy-1,2-dihydro-6-methoxyisoquinoline-1-carbonitrile (1e, [14])

7-Benzyloxy-6-methoxyisoquinoline 50.1 mmol, KCN 180 mmol, benzoyl chloride 200 mmol; yield: 68%; IR: $\bar{\nu} = 2239$ (C \equiv N), 1650 (C=O) cm⁻¹; TLC (*n*-hexane:*Et*OA*c* = 3:2): $R_{\rm f} = 0.65$.

1,2-Dihydro-6,7-dimethoxy-2-(4-methylbenzoyl)isoquinoline-1-carbonitrile (1f, $C_{20}H_{18}N_2O_3$)

6,7-Dimethoxyisoquinoline 63 mmol, KCN 126 mmol, *p*-toluic acid chloride 240 mmol; yield: 75%; IR: $\bar{\nu} = 2239 \text{ (C} \equiv \text{N})$, 1658 (C=O) cm⁻¹; TLC (*n*-hexane:EtOAc = 3:2): $R_{\text{f}} = 0.60$; MS (EI): m/z (%) = 334 (M^{+•}, 13), 119 (100), 91 (74); ¹H NMR: $\delta = 7.43$ and 7.19 (2d, each J = 7.9 Hz, each 2H), 6.77 and 6.65 (2s, 5-H, 8-H), 6.55–6.44 (m, 3-H), 6.40 (s, 1-H), 5.90 (d, J = 7.7 Hz, 4-H), 3.85 and 3.84 (2s, 2 OCH₃), 2.34 (s, CH₃) ppm; ¹³C NMR: δ = 168.90, 150.32, 149.26, 142.69, 130.69, 129.65 (2C), 129.46, 129.34 (2C), 129.12, 124.79, 123.70, 116.75, 109.74, 108.77, 56.34, 56.20, 45.02, 21.66 ppm.

(Bromomethyl)arene Derivatives 3a-3h and 10a-10f, General Procedures

Method A: A mixture of the *o*-toluic acid esters **2** or 1-methylnaphthalene or *p*-toluic acid *t*-butylester [16], *N*-bromosuccinimide (*NBS*) and benzoyl peroxide was refluxed for 2 h. After cooling the solid was filtered off. The filtrate was washed with $2 \times 50 \text{ cm}^3$ of H₂O, dried with Na₂SO₄ and evaporated under reduced pressure. The product thus obtained was purified by destillation or flash chromatography.

Method B: To a refluxing solution of **2** in dry benzene, irradiated with a 500 W lamp, was added dropwise a solution of Br_2 in the same solvent. After the addition was complete the mixture was heated under reflux for further 30 min without irradiation, after cooling to ambient temperature consecutively washed with 100 cm³ of ice cold water, 100 cm³ of saturated NaHCO₃ solution and again 100 cm³ of H₂O, and dried with Na₂SO₄. The solvent was removed *in vacuo* and the products were purified by destillation or flash chromatography. Educts **2a** and **2b** are commercial products, **2c**-**2f**, **2h** and **2i** are described in Refs. [17–24]. The bromomethyl derivatives **10a**-**10d** are commercial products.

3-Methoxy-2-methyl-benzoic acid ethylester (2g, C₁₁H₁₄O₃)

A mixture of 2.0 g (12 mmol) of 3-methoxy-2-methyl-benzoic acid [25], 30 cm³ of *Et*OH, and 2 cm³ of conc. H₂SO₄ was refluxed for 12 h. After removing the solvent *in vacuo*, the oily residue was consecutively diluted with 10 cm³ of ice cold H₂O and 20 cm³ of Et₂O. The aqueous layer was extracted with 2×50 cm³ of Et₂O, the combined organic phases were washed with 20 cm³ of saturated NaHCO₃ solution and 20 cm³ of H₂O, and dried with Na₂SO₄. After removing the solvent *in vacuo* a colourless oil was obtained, which was used for the next step without further purification. Yield: 2.3 g (99%); TLC (*n*-hexane:*Et*OA*c* = 3:1): R_f = 0.70; IR (film): $\bar{\nu}$ = 1726 (CO₂*R*) cm⁻¹; MS (EI): *m/z* (%) = 194 (M⁺•, 39), 149 (M⁺• –OC₂H₅, 100), 91 (C₇H₇, 75); ¹H NMR: δ = 7.39 (dd, *J* = 7.9/3.1 Hz, 6-H), 7.19 (br t, *J* = 7.9 Hz, 5-H), 6.96 (dd, *J* = 7.9/0.9 Hz, 4-H), 4.35 (q, *J* = 7.1 Hz, OCH₂), 3.83 (s, OCH₃), 2.42 (s, *Ph*-CH₃), 1.38 (t, *J* = 7.1 Hz, OC–CH₃) ppm.

2-(Bromomethyl)benzoic acid methylester (3a)

Method A, yield: 86%, bp 90–94°C/0.2 Pa [9]; TLC (*n*-hexane:EtOAc = 3:2): $R_f = 0.80$.

2-(Bromomethyl)benzoic acid ethylester (**3b**)

Method A, yield: 93%, bp 98–100°C/0.16 Pa [9]; TLC (*n*-hexane:EtOAc = 3:2): $R_f = 0.83$.

2-(Bromomethyl)benzoic acid isopropylester (3c)

Method A, yield: 82%, bp 107–109°C/0.15 Pa [26]; TLC (*n*-hexane:EtOAc = 3:2): $R_f = 0.86$.

2-(Bromomethyl)benzoic acid t-butylester (3d, C₁₂H₁₅BrO₂)

Method A, yield: 78%; TLC (petroleum ether:CHCl₃ = 2:1): $R_f = 0.77$; IR (film): $\bar{\nu} = 1712$ (CO₂*R*), 704 (C–Br) cm⁻¹; MS (EI): m/z(%) = 215 (M^{+•}–C₄H₉, 4), 213 (M^{+•}–C₄H₉, 4), 133 (100), 105 (46), 77 (43); ¹H NMR: $\delta = 7.95$ (m, 6-H), 7.68–7.50 (m, 3-H, 4-H, 5-H), 5.35 (s, CH₂–Br), 1.63 (s, C(CH₃)₃) ppm.

Protoberberines from Reissert-Compounds

2-(Bromomethyl)-6-methoxybenzoic acid ethylester (3e)

Method B, yield: 95% [27]; TLC (*n*-hexane:EtOAc = 3:2): $R_f = 0.67$.

2-(Bromomethyl)-4,5-dimethoxybenzoic acid ethylester (3f)

Method B, yield: 53%, mp 78–81°C [20]; TLC (*n*-hexane:EtOAc = 3:2): $R_f = 0.69$.

2-(Bromomethyl)-3-methoxybenzoic acid ethylester (**3g**, C₁₁H₁₃BrO₃)

Method B, yield: 81%; TLC (*n*-hexane:*EtOAc* = 3:2): $R_f = 0.37$; MS (EI): m/z(%) = 274 (M^{+•}, 5), 272 (M^{+•}, 5), 193 (78), 165 (100), 77 (77); ¹H NMR: $\delta = 7.51$ (dd, J = 8.0/1.1 Hz, 6-H), 7.33 (t, J = 8.0 Hz, 5-H), 7.05 (dd, J = 8.0/1.1 Hz, 4-H), 5.05 (s, CH₂–Br), 4.40 (q, J = 7.1 Hz, OCH₂), 3.92 (s, OCH₃), 1.42 (t, J = 7.1 Hz, CH₃) ppm.

6-(Bromomethyl)-2,3-(methylenedioxy)benzoic acid ethylester (3h)

Method B, yield: 96%, mp 67°C [28]; TLC (*n*-hexane:EtOAc = 3:2): $R_f = 0.76$.

6-(Chloromethyl)-2,3-dimethoxybenzoic acid ethylester (3i)

Educt is N-dimethoxybenzyl-N,N-dimethylamine; yield: 89%, bp $130^{\circ}C/0.05$ Pa [24]; TLC (*n*-hexane:*Et*OAc = 3:2): $R_f = 0.65$.

1-(Bromomethyl)naphthalene (10e)

Method A, yield: 85%, colourless liquid [29]; TLC (*EtOAc:n*-hexane = 3:1): $R_f = 0.78$; MS (EI): m/z (%) = 221 (M^{+•}-H, 100), 219 (M^{+•}-H, 100), 141 (63); ¹H NMR: $\delta = 8.10$ (m, 4-H), 7.82–7.77 (m, 3H), 7.57–7.33 (m, 3H), 4.90 (s, CH₂–Br) ppm.

4-(Bromomethyl)benzoic acid t-butylester (10f)

Method A, yield: 73%, colourless liquid [30]; TLC (petroleum ether:CHCl₃ = 2:1): $R_f = 0.70$; IR (film): $\bar{\nu} = 1713$ (CO₂R), 704 (C–Br) cm⁻¹; MS (CI): m/z (%) = 273 (M^{+•} + 1, 12), 272 (M^{+•}, 100), 271 (M^{+•} + 1, 12), 269 (M^{+•}, 98), 215 (29), 123 (67); ¹H NMR: $\delta = 7.90$ and 7.88 (2dd, each J = 6.5/1.7 Hz, 2-H, 6-H), 7.53 (dd, J = 6.5/1.7 Hz, 1H, 3-H/5-H), 7.34 (br d, J = 6.2 Hz, 1H, 3-H/5-H), 4.39 (s, CH₂–Br), 1.51 (s, C(CH₃)₃) ppm.

Benzylated Reissert Compounds 4 and 11, General Procedures

Method A: According to Refs. [1, 9]; before extraction with benzene, the mixture was diluted with 20 cm^3 of H₂O. The products were dried *in vacuo* at 60°C.

Method B: A solution of the corresponding *Reissert* compound **1** in dry *DMF* was stirred for 30 min under N₂ at ambient temperature. After addition of NaH (60% dispersion in mineral oil) the reaction flask was equipped with a septum, and a solution of the appropriate benzyl halogenide **3** or **10** in *DMF* was added dropwise over *ca*. 15 min by a syringe under vigorous stirring. Stirring was continued for several hours and then the mixture was quenched cautiously with 800 cm³ of ice/H₂O. The aqueous layer was extracted with $4 \times 200 \text{ cm}^3$ of *EtOAc* and the combined organic extracts were consecutively washed with 100 cm³ of H₂O and 100 cm³ of brine and dried with Na₂SO₄. Further workup was the same as described under Method A. For preparation and spectroscopic data of **4a**, **4b**, **4i**, and **4i** see Ref. [9].

2-[[2-Benzoyl-1-cyano-1,2-dihydroisoquinolin-1-yl]methyl]benzoic acid isopropylester (4c, C₂₈H₂₄N₂O₃)

Method A, **1a** 31.9 mmol, **3c** 33.9 mmol, cetrimonium bromide 69 mg, C_6H_6 100 cm³, 50% NaOH solution 15 cm³, 16 h; yield: 65%, mp 155–156°C; TLC (*n*-hexane:*Et*OAc = 3:1): $R_f = 0.55$; IR (KBr): $\bar{\nu} = 2240$ (C \equiv N), 1712, 1675 (C=O) cm⁻¹; MS (EI): m/z (%) = 305 (10), 218 (52), 105 (100); MS (CI): m/z (%) = 437 (100), 306 (74), 105 (49).

2-[[2-Benzoyl-1-cyano-1,2-dihydroisoquinolin-1-yl]methyl]benzoic acid t-butylester (4d, C₂₉H₂₆N₂O₃)

Method A, **1a** 20 mmol, **3d** 16.6 mmol, cetrimonium bromide 49 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 6h; yield: 53%, mp 161–162°C; TLC (*n*-hexane:*EtOAc* = 3:1): R_f =0.70; IR (KBr): $\bar{\nu}$ =2241 (C=N), 1713, 1684 (C=O) cm⁻¹; MS (EI): m/z (%) = 218 (71), 105 (100), 84 (65); MS (CI): m/z (%) = 451 (14), 395 (100), 368 (51).

2-[[1-Cyano-1,2-dihydro-2-(4-methylbenzoyl)isoquinolin-1-yl]methyl]benzoic acid methylester (**4e**, C₂₇H₂₂N₂O₃)

Method A, **1b** 14.2 mmol, **3a** 17.5 mmol, cetrimonium bromide 50 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 4 h; yield: 74%; mp 176–177°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.54$; IR (KBr): $\bar{\nu} = 1722$, 1665 (C=O) cm⁻¹; MS (EI): m/z (%) = 277 (5), 218 (29), 119 (100); MS (CI): m/z (%) = 423 (58), 278 (78), 119 (33).

$\label{eq:linear} \begin{array}{l} 2\mbox{-}[[1\mbox{-}Cyano\mbox{-}1,2\mbox{-}dihydro\mbox{-}2\mbox{-}(4\mbox{-}methylbenzoyl) is oquinolin\mbox{-}1\mbox{-}yl]methyl] benzoic acid ethylester ({\bf 4f}, C_{28}H_{24}N_2O_3) \end{array}$

Method A, **1b** 21.8 mmol and **3b** 24.7 mmol, cetrimonium bromide 53 mg, C₆H₆ 60 cm³, 50% NaOH solution 10 cm³, 4h; yield: 65%, mp 149°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f}$ =0.59; IR (KBr): $\bar{\nu}$ =1721, 1667 (C=O) cm⁻¹; MS (EI): m/z (%) = 291 (12), 218 (58), 119 (100); MS (CI): m/z (%) = 437 (71), 292 (92), 119 (100).

$\label{eq:linear} \begin{array}{l} 2\mbox{-}[[1\mbox{-}Cyano\mbox{-}1,2\mbox{-}dihydro\mbox{-}2\mbox{-}(4\mbox{-}methoxybenzoyl)\mbox{isoquinolin}\mbox{-}1\mbox{-}yl]\mbox{methyl}\mbox{benzoic} \\ acid methylester ({\bf 4g}, C_{27}H_{22}N_2O_4) \end{array}$

Method A, **1c** 13.4 mmol, **3a** 17.5 mmol, cetrimonium bromide 51 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 4 h; yield: 52%, mp 168–169°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.54$; IR (KBr): $\bar{\nu} = 2242$ (C \equiv N), 1725, 1674 (C=O) cm⁻¹; MS (EI): m/z (%) = 277 (11), 218 (44), 135 (100); MS (CI): m/z (%) = 439 (100), 278 (41), 135 (38).

$\label{eq:2-linear} \begin{array}{l} 2\mbox{-}[\mbox{-}l\mbox{-}c\mbox{-}a\mbox{-}l\m$

Method A, **1d** 14 mmol, **3a** 17.1 mmol, cetrimonium bromide 50 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 4.5 h; yield: 90%, mp 162°C; TLC (*n*-hexane:*EtOAc* = 3:1): R_f = 0.36; IR (KBr): $\bar{\nu}$ = 1727, 1672 (C=O) cm⁻¹; MS (EI): m/z (%) = 337 (53), 305 (59), 278 (100); MS (CI): m/z (%) = 469 (12), 338 (90), 105 (100).

2-[[2-Benzoyl-7-benzyloxy-1-cyano-1,2-dihydro-6-methoxyisoquinolin-1-yl]methyl]benzoic acid ethylester (**4j**, C₃₅H₃₀N₂O₅)

Method A, **1e** 12.6 mmol, **3b** 13 mmol, cetrimonium bromide 40 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 11 h; yield: 77%, mp 149°C; TLC (*n*-hexane:*EtOAc* = 1:1): $R_f = 0.48$; IR (KBr):

 $\bar{\nu} = 1717$, 1676 (C=O) cm⁻¹; MS (EI): m/z (%) = 427 (43), 354 (42), 91 (100); MS (CI): m/z (%) = 559 (2), 428 (13), 79 (100).

2-[[2-Benzoyl-1-cyano-1,2-dihydro-6,7-methylenedioxyisoquinolin-1-yl]methyl]benzoic acid ethylester (**4k**, C₂₈H₂₂N₂O₅)

Method B, **1g** 9.9 mmol, **3b** 12 mmol, *DMF* 50 cm³, 60% NaH dispersion 390 mg, 1 h; yield: 67%, mp 144°C; TLC (*n*-hexane:*Et*OA*c* = 3:1): $R_f = 0.44$; IR (KBr): $\bar{\nu} = 2242$ (C \equiv N), 1714, 1668 (C=O) cm⁻¹; MS (EI): m/z (%) = 335 (19), 289 (57), 262 (100); MS (CI): m/z (%) = 467 (2), 336 (72), 105 (100).

$\label{eq:2-linear} \begin{array}{l} 2\mbox{-}[[2\mbox{-}Benzoyl\mbox{-}1\mbox{-}cyano\mbox{-}1\mbox{-}2\mbox{-}dihydroisoquinolin\mbox{-}1\mbox{-}yl]methyl]\mbox{-}4\mbox{-}5\mbox{-}dimethoxybenzoic acid ethylester (4m, C_{29}H_{26}N_2O_5) \end{array}$

Method A, **1a** 2 mmol, **3f** 1.9 mmol, cetrimonium bromide 10 mg, C_6H_6 30 cm³, 50% NaOH solution 2.5 cm³, 7 h; yield: 61%, mp 181°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.26$; IR (KBr): $\bar{\nu} = 2240$ (C \equiv N), 1710, 1676 (C=O) cm⁻¹; MS (EI): m/z (%) = 305 (29), 278 (100), 105 (100); MS (CI): m/z (%) = 483 (100), 352 (100), 105 (29).

2-[[2-Benzoyl-1-cyano-1,2-dihydroisoquinolin-1-yl]methyl]-3-methoxy-benzoic acid ethylester (**4n**, C₂₈H₂₄N₂O₄)

Method A, **1a** 3.8 mmol, **3g** 4.2 mmol, cetrimonium bromide 50 mg, C₆H₆ 50 cm³, 50% NaOH solution 7.5 cm³, 17 h; yield: 64%, mp 164°C; TLC (*n*-hexane:*Et*OA*c* = 1:1): $R_f = 0.43$; IR (KBr): $\bar{\nu} = 2229$ (C=N), 1714, 1677 (C=O) cm⁻¹; MS (EI): m/z (%) = 259 (16), 105 (100), 77 (23); MS (CI): m/z (%) = 453 (22), 322 (100), 105 (53).

2-[[1-Cyano-1,2-dihydro-6,7-dimethoxy-2-(4-methylbenzoyl)isoquinolin-1-yl]methyl]-6-methoxybenzoic acid ethylester (**40**, C₃₁H₃₀N₂O₆)

Method B, **1d** 12 mmol, **3e** 13.5 mmol, *DMF* 100 cm³, 60% NaH dispersion 480 mg, 1 h; yield: 70%, mp 168°C; TLC (*n*-hexane:*EtOAc* = 1:1): $R_f = 0.41$; IR (KBr): $\bar{\nu} = 2236$ (C \equiv N), 1718, 1676 (C=O) cm⁻¹; MS (EI): m/z (%) = 381 (5), 308 (100), 119 (29); MS (CI): m/z (%) = 382 (100), 336 (13), 119 (72).

6-[[2-Benzoyl-1-cyano-1,2-dihydroisoquinolin-1-yl]methyl]-2,3-methylenedioxybenzoic acid ethylester (**4p**, C₂₈H₂₂N₂O₅)

Method A, **1a** 3.8 mmol, **3h** 4.2 mmol, cetrimonium bromide 50 mg, C₆H₆ 50 cm³, 50% NaOH solution 7.5 cm³, 12 h; yield: 71%, mp 152°C; TLC (*n*-hexane:*Et*OAc = 3:1): $R_f = 0.39$; IR (KBr): $\bar{\nu} = 2231$ (C=N), 1715, 1676 (C=O) cm⁻¹; MS (EI): m/z (%) = 335 (9), 262 (42), 105 (100); MS (CI): m/z (%) = 467 (33), 336 (58), 105 (100).

6-[[2-Benzoyl-1-cyano-1,2-dihydro-6,7-dimethoxyisoquinolin-1-yl]methyl]-2,3-dimethoxybenzoic acid ethylester (4q, $C_{31}H_{30}N_2O_7$)

Method B, **1d** 13.8 mmol, **3i** 14 mmol, *DMF* 100 cm³, 60% NaH dispersion 550 mg, 1 h; yield: 71%, mp 135–136°C; TLC (*n*-hexane:*EtOAc* = 3:1): R_f =0.37; IR (KBr): $\bar{\nu}$ = 2243 (C \equiv N), 1709, 1674 (C=O) cm⁻¹; MS (EI): m/z (%) = 366 (13), 338 (100), 105 (19); MS (CI): m/z (%) = 366 (10), 338 (11), 105 (100).

6-[[1-Cyano-1,2-dihydro-6,7-dimethoxy-2-(4-methylbenzoyl)isoquinolin-1-yl]methyl]-2,3-dimethoxybenzoic acid ethylester (**4r**, $C_{32}H_{32}N_2O_7$)

Method B, **1f** 12.7 mmol, **3i** 13 mmol, *DMF* 100 cm³, 60% NaH dispersion 508 mg, 1 h; yield: 72%, mp 155°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.40$; IR (KBr): $\bar{\nu} = 2242$ (C \equiv N), 1714, 1663 (C=O) cm⁻¹; MS (EI): m/z (%) = 366 (10), 338 (100), 119 (52); MS (CI): m/z (%) = 557 (1), 412 (5), 195 (100).

6-[[2-Benzoyl-1-cyano-1,2-dihydro-6,7-methylenedioxyisoquinolin-1-yl]methyl]-2,3-dimethoxybenzoic acid ethylester (**4t**, C₃₀H₂₆N₂O₇)

Method B, **1g** 14.1 mmol, **3i** 14.3 mmol, *DMF* 100 cm³, 60% NaH dispersion 550 mg, 1 h; yield: 74%, mp 161°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.56$; IR (KBr): $\bar{\nu} = 2239$ (C \equiv N), 1709, 1673 (C=O) cm⁻¹; MS (EI): m/z (%) = 395 (2), 350 (12), 322 (100); MS (CI): m/z (%) = 396 (34), 322 (10), 105 (100).

6-[[2-Benzoyl-1-cyano-1,2-dihydro-6,7-methylenedioxyisoquinolin-1-yl]methyl]-2,3-methylenedioxybenzoic acid ethylester (**4u**, C₂₉H₂₂N₂O₇)

Method B, **1g** 7.1 mmol, **3h** mmol, *DMF* 50 cm³, 60% NaH dispersion 283 mg, 1 h; yield: 63%, mp 167°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f}$ = 0.65; IR (KBr): $\bar{\nu}$ = 2243 (C=N), 1712, 1675 (C=O) cm⁻¹; MS (EI): m/z (%) = 379 (16), 333 (16), 306 (100); MS (CI): m/z (%) = 511 (2), 380 (31), 105 (100).

2-Benzoyl-1-benzyl-1,2-dihydroisoquinoline-1-carbonitrile (11a)

Method A, **1a** 15.9 mmol, **10a** 16.3 mmol, cetrimonium bromide 47 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 5h; yield: 92%, TLC (*n*-hexane:*Et*OA*c* = 3:1): $R_f = 0.55$; Ref. [31].

2-Benzoyl-1,2-dihydro-1-(2-methylbenzyl)isoquinoline-1-carbonitrile (11b)

Method A, **1a** 15.3 mmol, **10b** 15.6 mmol, cetrimonium bromide 44 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 3.5 h; yield: 88%; TLC (*n*-hexane:*Et*OAc = 3:1): $R_f = 0.56$; Ref. [31].

2-Benzoyl-1-(2-bromobenzyl)-1,2-dihydroisoquinoline-1-carbonitrile (11c, C₂₄H₁₇BrN₂O)

Method A, **1a** 15.3 mmol, **10c** 15.6 mmol, cetrimonium bromide 51 mg, C₆H₆ 50 cm³, 50% NaOH solution 7.5 cm³, 7 h; yield: 58%, mp 171°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f}$ =0.63; IR (KBr): $\bar{\nu}$ =1660 (C=O) cm⁻¹; MS (EI): m/z (%) = 105 (100), 77 (47); MS (CI): m/z (%) = 431 (1), 429 (1), 105 (24).

2-Benzoyl-1,2-dihydro-1-(2-nitrobenzyl)isoquinoline-1-carbonitrile (11d)

Method A, **1a** 15.3 mmol, **10d** 15.6 mmol, cetrimonium bromide 50 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 5.5 h; yield: 88%; TLC (*n*-hexane:*Et*OAc = 3:1): $R_f = 0.49$; Ref. [32].

2-Benzoyl-1,2-dihydro-1-(naphth-1-ylmethyl)isoquinoline-1-carbonitrile (11e, C₂₈H₂₀N₂O)

Method A, **1a** 15.3 mmol, **10e** 15.6 mmol, cetrimonium bromide 50 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 6h; yield: 64%, mp 141°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.49$; IR (KBr):

 $\bar{\nu} = 1669 \text{ (C=O) cm}^{-1}$; MS (EI): m/z (%) = 400 (3), 268 (100), 259 (91); MS (CI): m/z (%) = 401 (100), 259 (80), 105 (78).

$\label{eq:constraint} \begin{array}{l} 4-[[2-Benzoyl-1-cyano-1,2-dihydroisoquinolin-1-yl]methyl] benzoic \ acid \ t-butylester \ (11f, C_{29}H_{26}N_2O_3) \end{array}$

Method A, **1a** 15.9 mmol, **10f** 16.6 mmol, cetrimonium bromide 47 mg, C_6H_6 50 cm³, 50% NaOH solution 7.5 cm³, 6 h; yield: 42%, mp 160°C; TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.71$; IR (KBr): $\bar{\nu} = 1712$, 1677 (C=O) cm⁻¹; MS (EI): m/z (%) = 262 (59), 105 (100), 84 (89); MS (CI): m/z (%) = 451 (60), 395 (100), 368 (44).

Oxazoloisoquinolines 5 and by-products 6-9

General procedure according to Ref. [1]. For isolation of the by-products 6-9 the reaction mixtures were concentrated *in vacuo* and the residues separated by flash chromatography; eluents were the same as indicated under TLC of compounds **5**. For yields and analytical data of compounds **5b** and **5h** as well as **6b** and **6e** see Ref. [1].

2-[(5,6-Dihydro-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]benzoic acid methylester (**5a**, C₂₆H₂₃NO₄)

4a 7.3 mmol, CH₃CO₂H 15 cm³, CF₃CO₂H 27 cm³, NaBH₃CN 15.7 mmol, 1 h; yield: 45%, mp 128°C; IR (KBr): $\bar{\nu} = 1785$, 1722 (C=O) cm⁻¹; MS (EI): m/z (%) = 369 (4), 310 (46), 264 (53), 149 (100); TLC (petroleum ether: *EtOAc* = 3:1): $R_{\rm f} = 0.71$; ¹H NMR: $\delta = 7.86$ (dd, J = 7.7/1.4 Hz, 10-H), 7.81, 7.53, and 7.47 (3dd, each J = 7.6/1.5 Hz, 3 arom H), 7.41–7.24 (m, 6 arom H), 7.17–7.12 (m, 7-H), 7.03–6.96 (m, 2 arom H), 5.67 (s, 3-H), 4.12 and 3.84 (AB, J = 14.0 Hz, benzyl-CH₂), 3.72 (s, OCH₃), 3.29 (ddd, J = 14.3/12.9/4.3 Hz, 5-H_a), 3.14 (ddd, J = 16.9/12.9/5.8 Hz, 6-H_a), 2.84–2.75 (m, 5-H_b), 2.54 (dd, J = 16.9/4.3 Hz, 6-H_b) ppm; ¹³C NMR: $\delta = 174.03$, 168.78, 136.91, 135.62, 133.61, 133.58, 132.97, 131.16, 130.01, 129.72, 129.50, 128.24, 127.82, 127.72, 127.05, 126.74, 90,80, 66.86, 51.79, 40.58, 37.18, 21.82 ppm.

2-[(5,6-Dihydro-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]benzoic acid isopropylester (**5c**, C₂₈H₂₇NO₄)

4c 6.9 mmol, CH₃CO₂H 15 cm³, CF₃CO₂H 27 cm³, NaBH₃CN 15.7 mmol, 1 h; yield: 32%, mp 131–133°C; IR (KBr): $\bar{\nu} = 1776$, 1705 (C=O) cm⁻¹; MS (EI): m/z (%) = 397 (5), 310 (100), 91 (15); TLC (petroleum ether: *EtOAc* = 3:1): $R_{\rm f} = 0.78$; ¹H NMR: $\delta = 7.87$ (dd, J = 7.8/1.5 Hz, 10-H), 7.81 (dd, J = 7.7/1.6 Hz, 1 arom H), 7.53 (dd, J = 7.7/1.2 Hz, 1 arom H), 7.45 (dt, J = 7.7/1.6 Hz, 1 arom H), 7.53 (dd, J = 7.7/1.2 Hz, 1 arom H), 7.45 (dt, J = 7.7/1.6 Hz, 1 arom H), 7.39–7.23 and 7.16–7.11 (2m, 7 + 2 arom H), 5.65 (s, 3-H), 5.08 (sept, J = 6.2 Hz, 1 H), 4.20 and 3.79 (AB, J = 14.1 Hz, benzyl-CH₂), 3.34 (ddd, J = 14.6/13.1/4.6 Hz, 5-H_a), 3.13 (ddd, J = 16.9/13.1/6.1 Hz, 6-H_a), 2.78 (ddd, J = 14.6/6.1/1.2 Hz, 5-H_b), 2.53 (dt, J = 16.9/4.6 Hz, 6-H_b), 1.29 and 1.04 (2d, J = 6.2 Hz, 2 CH₃) ppm; ¹³C NMR: $\delta = 174.07$, 167.76, 137.05, 135.60, 133.61, 133.56, 133.48, 133.14, 131.02, 129.96, 129.72, 129.46, 128.35 (2C), 128.22 (2C), 127.76, 127.67, 127.01, 126.63, 90.80, 67.98, 66.88, 40.40, 37.11, 21.84, 21.80, 21.67 ppm.

2-[(5,6-Dihydro-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]benzoic acid t-butylester (5d, C₂₉H₂₉NO₄)

4d 6.7 mmol, CH₃CO₂H 15 cm³, CF₃CO₂H 20 cm³, NaBH₃CN 15.7 mmol, 10 min; yield: 29%, mp 135°C; IR (KBr): $\bar{\nu} = 1781$, 1699 (C=O) cm⁻¹; MS (EI): m/z (%) = 411 (8), 354 (12), 310 (100), 264 (76), 91 (60); TLC (petroleum ether: EtOAc = 3:1): $R_f = 0.88$; ¹H NMR: $\delta = 7.86$ (d,

J = 7.7 Hz, 10-H), 7.84 and 7.53 (2d, J = 8.1 and 7.7 Hz, 2 arom H), 7.43 (t, J = 7.7 Hz, 1 arom H), 7.36–7.25 (m, 7 arom H), 7.13 (d, J = 7.3 Hz, 7-H), 7.00 (dd, J = 8.1/0.9 Hz, 2 arom H), 5.66 (s, 3-H), 4.26 and 3.75 (AB, J = 14.1 Hz, benzyl-CH₂), 3.40 (dt, J = 14.8/4.7 Hz, 5-H_a), 3.12 (dt, J = 17.3/4.9 Hz, 6-H_a), 2.82 (dd, J = 14.8/4.9 Hz, 5-H_b), 2.54 (dd, J = 17.3/4.7 Hz, 6-H_b), 1.46 (s, 3 CH₃) ppm.

2-[[5,6-Dihydro-3-(4-methylphenyl)-1-oxooxazolo[4,3-a]isoquinolin-10b-yl]methyl]benzoic acid methylester (**5e**, C₂₇H₂₅NO₄)

4e 7.1 mmol, CH₃CO₂H 15 cm³, CF₃CO₂H 20 cm³, NaBH₃CN 15.7 mmol, 1 h; yield: 43%, mp 111–113°C; IR (KBr): $\bar{\nu} = 1776$, 1717 (C=O) cm⁻¹; MS (EI): m/z (%) = 383 (14), 324 (100), 105 (19), 84 (39); TLC (petroleum ether: *EtOAc* = 4:1): $R_{\rm f} = 0.73$; ¹H NMR: $\delta = 7.78$ (dd, J = 7.8/1.9 Hz, 10-H), 7.75 and 7.45 (2dd, each J = 7.7/1.5 Hz, 1 arom H), 7.39 and 7.29 (2dt, each J = 7.7/1.5 Hz, 2 arom H), 7.27–7.17 (m, 8-H, 9-H), 7.09–6.00 (m, 3 arom H), 6.86–6.81 (m, 2 arom H), 5.57 (s, 3-H), 4.03 and 3.79 (AB, J = 14 Hz, benzyl-CH₂), 3.68 (s, CH₃), 3.20 (ddd, J = 14.4/13.1/4.5 Hz, 5-H_a), 3.05 (ddd, J = 16.8/13.1/5.7 Hz, 6-H_a), 2.72 (ddd, J = 14.4/5.7/1.3 Hz, 5-H_b), 2.45 (dd, J = 16.8/4.5 Hz, 6-H_b), 2.28 (s, CH₃) ppm; ¹³C NMR: $\delta = 173.06$, 167.76, 139.03, 135.98, 132.59, 132.50, 131.99, 131.88, 131.57, 130.11, 128.70, 128.44, 128.00 (2C), 127.23 (2C), 126.74, 126.70, 125.97, 125.66, 89.76, 65.84, 50.81, 39.51, 36.12, 20.76, 20.28 ppm.

2-[[5,6-Dihydro-3-(4-methylphenyl)-1-oxooxazolo[4,3-a]isoquinolin-10b-yl]methyl]benzoic acid ethylester (**5f**, C₂₈H₂₇NO₄)

4f 6.9 mmol, CH₃CO₂H 15 cm³, CF₃CO₂H 27 cm³, NaBH₃CN 15.7 mmol, 1 h; yield: 47%, mp 139°C; IR (KBr): $\bar{\nu} = 1776$, 1709 (C=O) cm⁻¹; MS (EI): m/z (%) = 397 (9), 324 (100), 105 (18); TLC (petroleum ether: *EtOAc* = 4:1): $R_f = 0.79$; ¹H NMR: $\delta = 7.87 - 7.77$ (m, 2 arom H), 7.51, (d, J = 8.0 Hz, arom H), 7.43 and 7.34 (2t, each J = 8.0 Hz, 2 arom H), 7.31–7.19 (m, 3 arom H), 7.11 (d, J = 7.9 Hz, 7-H), 7.09–7.01 and 6.91–6.83 (2m, each 2 arom H), 5.61 (s, 3-H), 4.29–4.06 (m, 3 H), 3.80 (d, J = 14.0 Hz, 1 H), 3.28 (dt, J = 14.1/4.2 Hz, 5-H_a), 3.09 (ddd, J = 17.3/12.6/5.6 Hz, 6-H_a), 2.76 (dd, J = 14.1/5.6 Hz, 5-H_b), 2.50 (dd, J = 17.3/4.2 Hz, 6-H_b), 2.32 (s, CH₃), 1.20 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.02$, 168.29, 139.91, 136.93, 133.60, 133.49, 133.22, 133.02, 132.58, 130.97, 129.62, 129.41, 128.85, 128.37, 128.26, 127.68, 127.64, 126.91, 126.60, 90.72, 66.83, 60.60, 40.42, 37.06, 21.73, 21.22, 14.00 ppm.

2-[[5,6-Dihydro-3-(4-methoxyphenyl)-1-oxooxazolo[4,3-a]isoquinolin-10b-yl]methyl]benzoic acid methylester (**5g**, C₂₇H₂₅NO₅)

4g 6.8 mmol, CH₃CO₂H 15 cm³, CF₃CO₂H 27 cm³, NaBH₃CN 15.7 mmol, 1 h; yield: 27%, mp 156°C; IR (KBr): $\bar{\nu} = 1783$, 1707 (C=O) cm⁻¹; MS (EI): m/z (%) = 399 (18), 340 (68), 121 (100); TLC (petroleum ether: *Et*OA*c* = 4:1): $R_{\rm f} = 0.68$; ¹H NMR: $\delta = 7.86-7.79$ (m, 2 arom H), 7.52 (dd, J = 7.5/1.5 Hz, 1 arom H), 7.45 and 7.35 (2dt, each J = 7.5/1.5 Hz, 2 arom H), 7.32–7.22 and 7.14–7.10 (2m, 2 + 1 arom H), 6.93 and 6.78 (2d, each J = 8.8 Hz, each 2 arom H), 5.62 (s, 3-H), 4.10 and 3.83 (AB, J = 14.0 Hz, benzyl-CH₂), 3.79 and 3.75 (2s, 2 CH₃), 3.26 (ddd, J = 14.3/13.2/4.5 Hz, 5-Ha), 3.15-3.03 (m, 6-Ha), 2.76 (ddd, J = 14.3/5.8/1.1 Hz, 5-Hb), 2.51 (dd, J = 16.9/4.5 Hz, 6-Hb) ppm.

2-[(9-Benzyloxy-5,6-dihydro-8-methoxy-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]benzoic acid ethylester (**5i**, C₃₅H₃₃NO₆)

4j 1.8 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 15 min; yield: 30%, mp 168°C; IR (KBr): $\bar{\nu} = 1785$, 1722 (C=O) cm⁻¹; MS (EI): m/z (%) = 519 (9), 446 (10), 400 (14), 355 (21), 91

(100); TLC (*n*-hexane:*Et*OA*c* = 1:1): $R_f = 0.85$; ¹H NMR: $\delta = 7.79$ and 7.56–7.52 (2m, 1 + 2 arom H), 7.46–7.24 and 7.07–7.02 (2m, 10 + 2 arom H), 6.59 and 5.63 (2s, 7-H and 3-H), 5.22 and 5.16 (2d, each *J* = 12.0 Hz, OBn), 4.24–4.04 (m, OCH₂), 4.04 and 3.64 (AB, *J* = 14.0 Hz, benzyl-CH₂), 3.89 (s, OCH₃), 3.23 (ddd, *J* = 14.3/13.0/4.6 Hz, 5-H_a), 3.04 (ddd, *J* = 16.8/13.0/5.8 Hz, 6-H_a), 2.74 (dd, *J* = 14.3/5.8 Hz, 5-H_b), 2.40 (dd, *J* = 16.8/4.6 Hz, 6-H_b), 1.19 (t, *J* = 7.2 Hz, CH₃) ppm; ¹³C NMR (CDCl₃): $\delta = 174.09$, 168.28, 149.44, 147.02, 136.95, 136.93, 135.69, 133.54, 133.29, 131.00, 129.97, 129.61, 128.54 (2C), 128.34 (2C), 128.22 (2C), 127.95, 127.85, 126.63, 126.45, 124.36, 112.81, 111.96, 90.74, 71.13, 66.39, 60.58, 56.02, 40.40, 37.22, 21.38, 14.06 ppm.

2-[(5,6-Dihydro-8,9-methylenedioxy-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-ylethyl]benzoic acid ethylester (**5j**, C₂₈H₂₅NO₆)

4k 1.8 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 1 h; yield: 37%, mp 134°C; IR (KBr): $\bar{\nu} = 1783$, 1716 (C=O) cm⁻¹; MS (EI): m/z (%) = 427 (12), 354 (100), 308 (6), 91 (10); TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f} = 0.81$; ¹H NMR: $\delta = 7.81$ (dd, J = 7.7/1.5 Hz, arom H), 7.51 (dd, J = 7.7/1.4 Hz, arom H), 7.45 (dt, J = 7.7/1.5 Hz, arom H), 7.38–7.32 (m, 2 arom H), 7.32 (s, 10-H), 7.29–7.24 and 7.01–6.97 (2m, 2 + 2 arom H), 6.57 (s, 7-H), 5.97 and 5.94 (2d, each J = 1.5 Hz, OCH₂O), 5.62 (s, 3-H), 4.28–4.05 (m, OCH₂), 4.11 and 3.73 (AB, J = 14.0 Hz, benzyl-CH₂), 3.23 (ddd, J = 14.5/13.1/4.7 Hz, 5-H_a), 3.03 (ddd, J = 16.8/13.1/5.8 Hz, 6-H_a), 2.73 (ddd, J = 14.5/5.8/1.1 Hz, 5-H_b), 2.41 (dd, J = 16.8/4.7 Hz, 6-H_b), 1.19 (t, J = 7.1 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.00$, 168.31, 147.42, 146.47, 136.89, 135.66, 107.47, 101.08, 90.75, 66.88, 60.62, 40.46, 37.24, 22.09, 14.06 ppm.

6-[(5,6-Dihydro-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]-2-methoxybenzoic acid ethylester (**5k**, C₂₈H₂₇NO₅)

4I 2.2 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 1 h; yield: 29%, mp 152°C; IR (KBr): $\bar{\nu} = 1783$, 1716 (C=O) cm⁻¹; MS (EI): m/z (%) = 413 (4), 340 (100), 264 (19), 91 (16); TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.61$; ¹H NMR: $\delta = 7.82$ (dd, J = 7.6/1.5 Hz, 10-H), 7.39–7.33 and 7.32–7.22 (2m, 1+5 arom H), 7.19–7.14 (m, 2 arom H), 7.11 (dd, J = 7.5/1.5 Hz, arom H), 6.97 and 6.86 (2dd, each J = 8.0/0.7 Hz, 2 arom H), 5.70 (s, 3-H), 4.32–4.17 (m, OCH₂), 3.83 (s, OCH₃), 3.67 and 3.42 (AB, J = 14.7 Hz, benzyl-CH₂), 3.18–3.01 (m, 5-H_a and 6-H_a), 2.83–2.72 (m, 6-H_b), 2.51–2.39 (m, 5-H_b), 1.20 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.54$, 168.19, 156.94, 135.62, 135.57, 133.67, 132.97, 130.13, 130.02, 129.60, 128.47 (2C), 128.30 (2C), 127.85, 127.45, 127.04, 125.88, 123.44, 110.02, 90.93, 66.03, 61.01, 56.21, 41.60, 37.48, 21.69, 14.03 ppm.

6-[(5,6-Dihydro-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]-2,3-methylenedioxy-benzoic acid ethylester (5l, C₂₈H₂₅NO₆)

4k 2.1 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 1 h; yield: 45%, mp 147°C; IR (KBr): $\bar{\nu} = 1777$, 1710 (C=O) cm⁻¹; MS (EI): m/z (%) = 427 (9), 354 (100), 91 (12); TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f} = 0.61$; ¹H NMR: $\delta = 7.81$ (d, J = 7.7/1.5 Hz, 10-H), 7.40–7.35 and 7.34–7.29 (2m, 1+2 arom H), 7.28–7.23 (m, 8-H and 9-H), 7.17–7.10 (m, 3 arom H), 6.94 and 6.85 (2d, each J = 7.9 Hz, 2 arom H), 6.05 and 6.02 (2d, each J = 1.5 Hz, OCH₂O), 5.68 (s, 3-H), 4.21 (dq, J = 10.9/7.2 Hz, OCH₂), 3.82 and 3.71 (2d, each J = 14.1 Hz, benzyl-CH₂), 3.20 (dt, J = 13.1/4.9 Hz, 5-H_a), 3.11 (dt, J = 12.8/4.9 Hz, 6-H_a), 2.85–2.78 (m, 5-H_b), 2.55–2.47 (m, 6-H_b), 1.19 (t, J = 7.1 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.00$, 165,73, 147.23, 146.98, 135.75, 133.62, 132.91, 129.98, 129.42, 129.06, 128.26 (4C), 127.77, 127.66, 127.02, 126.33, 116.74, 109.96, 101.47, 90.82, 66.77, 60.89, 40.31, 37.39, 21.85, 14.02 ppm.

6-[(5,6-Dihydro-8,9-dimethoxy-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]-2,3-dimethoxybenzoic acid ethylester (**5m**, C₃₁H₃₃NO₈)

4q 1.8 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 25 min; yield: 40%, mp 143°C; IR (KBr): $\bar{\nu} = 1782$, 1710 (C=O) cm⁻¹; MS (EI): m/z (%) = 430 (100), 322 (22), 105 (77); TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f} = 0.52$; ¹H NMR: $\delta = 7.40-7.34$ and 7.32–7.26 (2m, 1 + 2 arom H), 7.29 (s, 10-H), 7.22–7.16 (m, 3 arom H), 6.92 (d, J = 7.7 Hz, arom H), 6.58 and 5.70 (2s, 7-H and 3-H), 4.21 (dq, J = 10.7/7.2 Hz, OCH₂), 3.94 and 3.91 (2s, 2 OCH₃), 3.89 (s, 2 OCH₃), 3.52 and 3.48 (AB, J = 14.6 Hz, benzyl-CH₂), 3.19–2.98 (m, 5-H_a and 6-H_a), 2.84–2.75 and 2.44–2.35 (2m, 5-H_b and 6-H_b), 1.19 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.51$, 167.73, 151.73, 148.90, 148.13, 146.57, 135.67, 130.99, 130.06, 128.54, 128.26, 127.69, 126.98 (2C), 125.99 (2C), 124.54, 113.50, 111.61, 109.87, 90.90, 66.32, 61.42, 60.99, 56.14, 55.93 (2C), 40.53, 37.60, 21.42, 14.0 ppm.

6-[[5,6-Dihydro-8,9-dimethoxy-3-(4-methylphenyl)-1-oxooxazolo[4,3-a]isoquinolin-10b-yl]methyl]-2,3-dimethoxybenzoic acid ethylester (**5n**, C₃₂H₃₅NO₈)

4r 1.8 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 25 min; yield: 37%, mp 141°C; IR (KBr): $\bar{\nu} = 1783$, 1709 (C=O) cm⁻¹; MS (EI): m/z (%) = 517 (5), 444 (100), 338 (9), 105 (12); TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.55$; ¹H NMR: $\delta = 7.28-7.25$ (m, 2 arom H), 7.17 (d, J = 8.7 Hz, arom H), 7.10–7.08 (m, 3 arom H), 6.91 (d, J = 8.7 Hz, arom H), 6.57 and 5.67 (2s, 7-H and 3-H), 4.22 (dq, J = 10.8/7.1 Hz, OCH₂), 3.94 and 3.92 (2s, 2 OCH₃), 3.87 (s, 2 OCH₃), 3.53–3.44 (m, benzyl-CH₂), 3.17–2.95 (m, 5-H_a and 6-H_a), 2.83–2.75 and 2.46–2.31 (2m, 5-H_b and 6-H_b), 2.34 (s, CH₃), 1.19 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.56$, 167.72, 151.66, 148.77, 148.00, 146.45, 140.10, 135.56, 130.92, 128.94 (2C), 128.49 (2C), 127.72, 126.93, 125.97, 124.47, 113.39, 111.48, 109.77, 90.82, 66.32, 61.46, 61.42, 56.09, 55.90, 40.45, 37.51, 21.37, 21.31, 14.01 ppm.

6-[(5,6-Dihydro-8,9-dimethoxy-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]-2,3-methylenedioxybenzoic acid ethylester (**50**, C₃₀H₂₉NO₈)

4s 1.9 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 25 min; yield: 35%, mp 144°C; IR (KBr): $\bar{\nu} = 1779$, 1709 (C=O) cm⁻¹; MS (EI): m/z (%) = 487 (6), 414 (100), 91 (12); TLC (*n*-hexane:*EtOAc* = 1:1): $R_f = 0.78$; ¹H NMR: $\delta = 7.41-7.36$ and 7.35–7.30 (2m, 1 + 2 arom H), 7.24 (s, 10-H), 7.21–7.16 (m, 2 arom H), 6.93 and 6.84 (2d, each J = 8.2 Hz, 2 arom H), 6.56 (s, 7-H), 6.05 and 6.02 (2d, each J = 1.3 Hz, OCH₂O), 5.64 (s, 3-H), 4.19 (dq, J = 10.7/7.2 Hz, OCH₂), 3.93 and 3.88 (2s, 2 OCH₃), 3.78 and 3.71 (AB, J = 14.1 Hz, benzyl-CH₂), 3.14 (dt, J = 13.2/5.0 Hz, 5-H_a), 3.04 (dt, J = 16.4/5.0 Hz, 6-H_a), 2.84–2.75 and 2.44–2.35 (2m, 5-H_b and 6-H_b), 1.20 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.30$, 165.80, 148.86, 148.06, 147.26, 146.98, 135.78, 130.03, 129.12, 128.32 (4C), 126.27, 126.00, 124.33, 116.74, 111.46, 110.08, 109.93, 101.48, 90.82, 66.35, 60.87, 56.07, 55.90, 40.12, 37.39, 21.40, 14.04 ppm.

6-[(5,6-Dihydro-8,9-methylenedioxy-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]-2,3-dimethoxybenzoic acid ethylester (**5p**, C₃₀H₂₉NO₈)

4t 1.9 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 25 min; yield: 41%, mp 146°C; IR (KBr): $\bar{\nu} = 1778$, 1708 (C=O) cm⁻¹; MS (EI): m/z (%) = 487 (4), 414 (100), 322 (27), 105 (33), 91 (12); TLC (*n*-hexane:*Et*OAc = 1:1): $R_{\rm f} = 0.81$; ¹H NMR: $\delta = 7.37-7.32$ and 7.31–7.24 (2m, 1 + 2 arom H), 7.29 (s, 10-H), 7.18–7.12 (m, 3 arom H), 6.91 (d, J = 8.8 Hz, arom H), 6.56 (s, 7-H), 5.97 and 5.94 (2d, each J = 1.6 Hz, OCH₂O), 5.66 (s, 3-H), 4.20 (dq, J = 10.7/7.2 Hz, OCH₂), 3.90 and 3.88 (2s, 2 OCH₃), 3.48 and 3.44 (AB, J = 14.1 Hz, benzyl-CH₂), 3.14–2.95 (m, 5-H_a and 6-H_a), 2.80–2.73 and 2.41–2.33 (2m, 6-H_b and 5-H_b), 1.17 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.31$, 167.74, 151.76, 147.45, 146.79, 146.57, 135.62, 130.95, 130.05, 128.51 (2C), 128.24 (2C), 127.80, 127.32, 126.91, 125.81, 113.53, 108.73, 107.32, 101.48, 90.86, 66.68, 61.42, 60.99, 55.94, 40.60, 37.57, 22.09, 14.01 ppm.

6-[(5,6-Dihydro-8,9-methylenedioxy-1-oxo-3-phenyloxazolo[4,3-a]isoquinolin-10b-yl)methyl]-2,3-methylenedioxybenzoic acid ethylester (**5q**, C₂₉H₂₅NO₈)

4u 2.0 mmol, CH₃CO₂H 5 cm³, CF₃CO₂H 9 cm³, NaBH₃CN 5.2 mmol, 45 min; yield: 49%, mp 171°C; IR (KBr): $\bar{\nu} = 1780$, 1702 (C=O) cm⁻¹; MS (EI): m/z (%) = 471 (10), 398 (100), 91 (12); TLC (*n*-hexane:*EtOAc* = 1:1): $R_{\rm f} = 0.55$; ¹H NMR: $\delta = 7.41-7.35$ and 7.35–7.28 (2m, 1 + 2 arom H), 7.29 (s, 10-H), 7.18–7.12 (m, 2 arom H), 6.92 and 6.85 (2d, each J = 7.9 Hz, 2 arom H), 6.56 (s, 7-H), 6.05, 6.02, 5.97, and 5.94 (4d, each J = 1.4 Hz, 2 OCH₂O), 5.64 (s, 3-H), 4.21 (dq, J = 10.9/7.2 Hz, OCH₂), 3.78 and 3.64 (AB, J = 14.4 Hz, benzyl-CH₂), 3.12 (dt, J = 13.1/4.8 Hz, 5-H_a), 3.02 (dt, J = 16.4/4.8 Hz, 6-H_a), 2.82–2.73 and 2.44–2.35 (2m, 5-H_b and 6-H_b), 1.20 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 174.13$, 166.02, 147.46, 147.29, 147.04, 146.80, 135.75, 130.10, 129.04, 128.36 (4C), 127.39, 126.41, 125.73, 116.76, 110.04, 108.71, 107.47, 101.56, 101.17, 90.68, 66.69, 60.95, 40.00, 37.30, 22.09, 13.98 ppm.

Aldehydes **6** 2-[(2-Benzoyl-1-formyl-1,2-dihydroisoquinolin-1-yl)methyl]benzoic acid methylester (**6a**, C₂₆H₂₁NO₄)

Yield: 16%, colourless solid, mp 113–115°C (*n*-hexane); IR (KBr): $\bar{\nu} = 1725$, 1658 (C=O) cm⁻¹; MS (CI): m/z (%) = 440 (6), 412 (100), 382 (28), 105 (54); TLC (petroleum ether:EtOAc = 3:1): $R_f = 0.55$; ¹H NMR: $\delta = 9.59$ (s, CHO), 7.65–7.61 (m, 2 arom H), 7.56 (dd, J = 7.7/1.5 Hz, arom H), 7.53–7.49 and 7.48–7.41 (2m, 1+2 arom H), 7.29–7.24 and 7.19–7.16 (2m, 2+1 arom H), 7.14 (dd, J = 7.7/1.3 Hz, arom H), 7.08 (dt, J = 7.7/1.5 Hz, arom H), 6.93–6.88 (m, arom H), 6.66 (dd, J = 7.7/1.3 Hz, arom H), 6.22 and 5.19 (2d, each J = 7.9 Hz, 3-H and 4-H), 4.26 and 3.83 (AB, J = 14.0 Hz, benzyl-CH₂), 3.67 (s, OCH₃) ppm; ¹³C NMR: $\delta = 191.22$, 170.19, 168.25, 136.56, 133.65, 132.77, 132.27, 131.45, 131.33, 130.50, 129.88, 128.95 (2C), 128.53 (2C), 127.72, 127.41, 127.25 (2C), 126.46 (2C), 125.58, 107.94, 72.42, 51.96, 37.95 ppm.

$\label{eq:linear} \begin{array}{l} 2\mbox{-}[[1\mbox{-}Formyl\mbox{-}1,2\mbox{-}dihydro\mbox{-}2\mbox{-}(4\mbox{-}methylbenzoyl)\mbox{isoquinolin\mbox{-}}1\mbox{-}yl]\mbox{methyl}\mbox{benzoic} \\ acid methylester ({\bf 6c}, C_{27}H_{23}NO_4) \end{array}$

Yield: 9%, colourless resin; IR (film): $\bar{\nu} = 1723$, 1657 (C=O) cm⁻¹; MS (CI): m/z (%) = 426 (24), 155 (49), 137 (100), 119 (38); TLC (petroleum ether:EtOAc = 4:1): $R_f = 0.53$; ¹H NMR: $\delta = 9.50$ (s, CHO), 7.49–7.43 and 7.23–7.16 (2m, 3 + 4 arom H), 7.12–7.08 (m, arom H), 7.06 (dd, J = 7.7/1.2 Hz, arom H), 7.00 (dt, J = 7.5/1.5 Hz, arom H), 6.84–6.80 (m, arom H), 6.58 (dd, J = 7.7/1.2 Hz, arom H), 6.16 and 5.10 (2d, each J = 7.9 Hz, 2 arom H), 4.15 and 3.74 (AB, J = 14.0 Hz, benzyl-CH₂), 3.59 and 2.34 (2s, 2 CH₃) ppm.

2-[[1-Formyl-1,2-dihydro-2-(4-methoxybenzoyl)isoquinolin-1-yl]methyl]benzoic acid methylester (6d, C₂₇H₂₃NO₅)

Yield: 7%, colourless resin; IR (film): $\bar{\nu} = 1720$, 1655 (C=O) cm⁻¹; MS (CI): m/z (%) = 442 (49), 153 (100); TLC (petroleum ether: EtOAc = 4:1): $R_f = 0.69$; ¹H NMR: $\delta = 9.55$ (s, CHO), 7.63–7.59 (m, 2 arom H), 7.53 (dd, J = 7.8/1.5 Hz, arom H), 7.29–7.25 and 7.19–7.12 (2m, 3 + 1 arom H), 7.06 (dt, J = 7.8/1.5 Hz, arom H), 6.97–6.93 and 6.91–6.88 (2m, 2 + 1 arom H), 6.62 (dd, J = 7.8/1.1 Hz, arom H), 6.27 and 5.18 (2d, each J = 7.9 Hz, 2 arom H), 4.23 and 3.79 (AB, J = 14.3 Hz, benzyl-CH₂), 3.86 (s, OCH₃), 3.66 (s, CH₃) ppm.

2-[(2-Benzoyl-7-benzyloxy-1-formyl-1,2-dihydro-6-methoxyisoquinolin-1-yl)methyl]benzoic acid ethylester (**6f**, C₃₅H₃₁NO₆)

Yield: 8%, colourless crystals, mp 176°C (*n*-hexane); IR (KBr): $\bar{\nu} = 1719$, 1659 (C=O) cm⁻¹; TLC (*n*-hexane:*EtOAc* = 1:1): $R_f = 0.65$; ¹H NMR (CDCl₃): $\delta = 9.50$ (s, CHO), 7.65–7.28 (m, 11 arom H), 7.13 and 7.01 (2dt, J = 7.6/1.2 and 7.6/1.4 Hz, 2 arom H), 6.75 (s, arom H), 6.44–6.40 (m, 2 arom H), 6.12 (d, J = 7.9 Hz, arom H), 5.11 and 5.07 (2d, each J = 7.8 Hz, OBn), 4.20 and 3.69 (AB, J = 14.0 Hz, benzyl-CH₂), 4.17–4.10 (m, OCH₂), 3.86 (s, OCH₃), 1.32 (t, J = 7.0 Hz, CH₃) ppm.

2-[(2-Benzoyl-1-formyl-1,2-dihydro-6,7-methylenedioxyisoquinolin-1-yl)methyl]benzoic acid ethylester (**6g**, C₂₈H₂₃NO₆)

Yield: 13%, colourless resin; IR (film): $\bar{\nu} = 1736$, 1691 (C=O) cm⁻¹; TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f} = 0.62$; MS (CI): m/z = 498 (4), 470 (100), 105 (54); ¹H NMR: $\delta = 9.53$ (s, CHO), 7.63–7.58 (m, 2 arom H), 7.55 (dd, J = 7.6/1.6 Hz, arom H), 7.52–7.47 and 7.46–7.42 (2m, 1 + 2 arom H), 7.16 and 7.12 (2 dt, J = 7.6/1.5 and 7.6/1.6 Hz, 2 arom H), 6.76 (dd, J = 7./1.5 Hz, arom H), 6.69 and 6.37 (2s, 2 arom H), 6.10 (d, J = 7.8 Hz, 1H), 6.02 and 5.96 (2d, each J = 1.5 Hz, OCH₂O), 5.04 (d, J = 7.8 Hz, 1H), 4.20–4.17 (m, OCH₂), 4.15 and 3.81 (AB, J = 14.0 Hz, benzyl-CH₂), 1.29 (t, J = 7.2 Hz, CH₃) ppm.

2-[(2-Benzoyl-1-formyl-1,2-dihydroisoquinolin-1-yl)methyl]-6-methoxybenzoic acid ethylester (**6h**, C₂₈H₂₅NO₅)

Yield: 16%, colourless oil; IR (film): $\bar{\nu} = 1726$, 1656 (C=O) cm⁻¹; TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f} = 0.42$; MS (CI): m/z = 456 (26), 382 (81), 322 (100), 212 (91); ¹H NMR: $\delta = 9.54$ (s, CHO), 7.71–7.67 and 7.51–7.38 (2m, 2 + 3 arom H), 7.34–7.28, 7.23–7.20, and 6.94–6.91 (3m, 2 + 1 + 1 arom H), 6.81 (t, J = 7.9 Hz, arom H), 6.65 and 6.45 (2d, each J = 7.9 Hz, 2 arom H), 5.67 and 5.19 (2d, each J = 7.8 Hz, 2 arom H), 4.41 (dq, J = 7.1/10.7 Hz, OCH₂), 3.75 and 3.31 (AB, J = 14.5 Hz, benzyl-CH₂), 3.72 (s, OCH₃), 1.39 (t, J = 7.1 Hz, CH₃) ppm; ¹³C NMR: $\delta = 191.67$, 170.78, 168.07, 155.71, 134.27, 133.95, 132.45, 131.21, 129.62 (2C), 129.03, 128.74, 128.62, 128.25 (2C), 127.61, 126.72, 126.51, 125.56, 125.49, 123.04, 108.94, 107.47, 72.13, 61.48, 55.76, 38.57, 14.17 ppm.

2-[[1-Formyl-1,2-dihydro-6,7-dimethoxy-2-(4-methylbenzoyl)isoquinolin-1-yl]methyl]-6-methoxybenzoic acid ethylester (**6i**, C₃₁H₃₁NO₇)

Yield: 22%, yellowish oil; IR (film): $\bar{\nu} = 1726$, 1622 (C=O) cm⁻¹; TLC (*n*-hexane:*EtOAc* = 1:1): $R_{\rm f} = 0.63$; MS (CI): m/z = 530 (100), 500 (12), 336 (55); ¹H NMR: $\delta = 9.49$ (s, CHO), 7.58 and 7.23 (2d, each J = 8.2 Hz, 2 + 2 arom H), 6.84 (t, J = 8.2 Hz, arom H), 6.72 (s, arom H), 6.66 (d, J = 8.2 Hz, arom H), 6.45 (s, arom H), 6.38 (d, J = 7.9 Hz, 1H), 5.78 (d, J = 8.2 Hz, arom H), 5.12 (d, J = 7.9 Hz, 1H), 4.39 (q, J = 7.2 Hz, OCH₂), 3.92 and 3.88 (2s, 2 OCH₃), 3.71 and 3.32 (AB, J = 14.5 Hz, benzyl-CH₂), 3.70 (s, OCH₃), 2.38 (s, CH₃), 1.38 (t, J = 7.2, CH₃) ppm.

6-[[1-Formyl-1,2-dihydro-6,7-dimethoxy-2-(4-methylbenzoyl)isoquinolin-1-yl]methyl]-2,3-dimethoxybenzoic acid ethylester (**6k**, C₃₁H₃₁NO₇)

Yield: 10%, yellowish resin; IR (film): $\bar{\nu} = 1731$, 1658 (C=O) cm⁻¹; TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f} = 0.31$; MS (CI): m/z = 560 (16), 336 (16), 215 (100), 119 (39); ¹H NMR: $\delta = 9.50$ (s, CHO), 7.56 and 7.24 (2d, each J = 8.2 Hz, 2 + 2 arom H), 6.70 (s, arom H), 6.66 (d, J = 8.6 Hz, 5-H), 6.47 (s, 8-H), 6.37 (d, J = 7.9 Hz, 3-H), 5.99 and 5.17 (2d, J = 8.6 and 7.9 Hz, arom H and 4-H), 4.35 (q, J = 7.2 Hz, OCH₂), 3.91, 3.89, 3.76, and 3.72 (4s, 4 OCH₃), 3.62 and 3.30 (AB, J = 14.8 Hz, benzyl-CH₂), 2.40 (s, CH₃), 1.35 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR: $\delta = 192.38$, 170.59, 167.27, 151.20, 149.25, 148.44,

145.38, 141.70, 131.11, 129.53 (3C), 128.92 (2C), 127.15, 126.85, 125.87, 125.46, 118.56, 112.48, 109.79, 108.43, 107.07, 72.16, 61.33, 61.31, 56.23, 56.01, 55.87, 37.15, 21.56, 14.21 ppm.

2-[(2-Benzyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]benzoic acid ethylester (7a)

Yield: 3%, light yellow oil. Analytical and spectroscopic data were in line with those published in Ref. [1].

2-[(2-Benzyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-6-methoxybenzoic acid ethylester (**7b**, C₂₇H₂₉NO₃)

Yield: 13%, colourless oil; TLC (*n*-hexane:EtOAc = 3:1): $R_f = 0.81$; IR (film): $\bar{\nu} = 1721$ (C=O) cm⁻¹; MS (CI): m/z (%) = 444 (M^{+•} + 29, 10), 416 (M^{+•} + 1, 100), 222 (51); ¹H NMR: $\delta = 7.25-7.00$ (m, 9 arom H), 6.87, 6.80, and 6.74 (3d, each J = 8.3 Hz, 3 arom H), 4.32 (q, J = 7.1 Hz, OCH₂), 3.96 (dd, J = 9.0/5.0 Hz, 1-H), 3.83 (s, OCH₃), 3.73 and 3.60 (AB, J = 13.6 Hz, N-benzyl-CH₂), 3.30 (dt, J = 12.5/4.8 Hz, 1H), 3.12 (dd, J = 14.00/10.5 Hz, 3-H_a), 3.00 (ddd, J = 16.7/10.5/6.3 Hz, 4-H_a), 2.90–2.78 (m, 3-H_b + 1H), 2.52 (dd, J = 16.7/4.1 Hz, 4-H_b), 1.29 (t, J = 7.1 Hz, CH₃) ppm; ¹³C NMR: $\delta = 168.62$ (C=O), 156.30, 139.62, and 138.62 (3s, 3C) 138.06 (s, C-4a), 134.12 (s, C-8a), 129.45 and 128.93 (2d, 2C), 128.64 (d, 2C), 128.31 (d, C-5), 127.91 (d, 2C), 126.57, 126.07, and 125.54 (3d, C-6, C-8, C-7), 124.62 (s, 1C), 123.59, 108.83, and 62.17 (3d, 2C, C-1), 60.99 and 57.74 (2t, OCH₂, N-CH₂), 55.96 (q, OCH₃), 41.79, 39.66, and 23.67 (3t, benzyl-CH₂, C-3, C-4), 14.20 (q, CH₃) ppm.

2-[[1,2,3,4-Tetrahydro-6,7-dimethoxy-2-(4-methylbenzyl)isoquinolin-1-yl]methyl]-6-methoxybenzoic acid ethylester (**7c**, C₃₀H₃₅NO₅)

Yield: 2%, colourless oil; TLC (*n*-hexane:EtOAc = 1:1) $R_f = 0.79$; IR (film): $\bar{\nu} = 1716$ (C=O) cm⁻¹; MS (CI): m/z (%) = 490 (M^{+•} + 1, 49), 296 (100); ¹H NMR: $\delta = 7.21$ (t, J = 7.9 Hz, arom H), 7.07 and 7.03 (2d, each J = 7.8 Hz, 4 arom H), 6.80 (d, J = 7.9 Hz, arom H), 6.69 (br d, J = 7.9 Hz, arom H), 6.58 and 6.21 (2s, 8-H, 5-H), 4.28 (q, J = 7.2 Hz, OCH₂), 3.93–3.86 (m, 1-H), 3.85 and 3.83 (2s, 2 OCH₃), 3.72 (d, J = 13.5 Hz, 1H, N-CH₂), 3.64 (s, OCH₃), 3.60 (d, J = 13.5 Hz, 1H, N-CH₂), 3.28–3.18 (m, 1H), 3.13 (dd, J = 13.7/8.0 Hz, 3-H_a), 2.97–2.87 (m, 4-H_a), 2.87–2.77 (m, 3-H_b + 1H), 2.46–2.39 (m, 4-H_b), 2.32 (s, CH₃), 1.29 (t, J = 7.2 Hz, CH₃) ppm.

2-[(6,7-Dimethoxyisoquinolin-1-yl)methyl]benzoic acid ethylester (8a)

Yield: 13%, light yellow oil. Analytical and spectroscopic data were in line with those published in Ref. [1].

2-[(6,7-Methylenedioxyisoquinolin-1-yl)methyl]benzoic acid ethylester (8b, C₂₀H₁₇NO₄)

Yield: 5%, colourless oil; TLC (*n*-hexane:EtOAc = 3:1) $R_f = 0.34$; ¹H NMR: $\delta = 8.30$ (d, J = 5.7 Hz, 3-H), 7.96 (dd, J = 7.7/1.6 Hz, arom H), 7.42 (s, 8-H), 7.38 (d, J = 5.7 Hz, 4-H), 7.32 (dt, J = 7.7/1.8 Hz, arom H), 7.26 (dt, J = 7.7/1.6 Hz, arom H), 7.06 (s, 5-H), 7.03–6.99 (m, arom H), 6.05 (s, OCH₂O), 4.96 (s, CH₂), 4.31 (q, J = 7.1 Hz, OCH₂), 1.30 (t, J = 7.1 Hz, CH₃) ppm.

6,7-Dimethoxyisoquinoline-1-carbonitrile (9a)

Yield: 15%, TLC (petroleum ether:EtOAc = 3:1): $R_f = 0.48$ (blue fluorescent, $\lambda = 365 \text{ nm}$); IR (KBr): $\bar{\nu} = 2227$ (CN) cm⁻¹; MS (EI): m/z (%) = 214 (M^{+•}, 100), 199 (13), 184 (5); mp and ¹H NMR data were in line with those published in Ref. [33].

7-Benzyloxy-6-methoxyisoquinoline-1-carbonitrile (9b)

Yield: 52%; TLC (*n*-hexane:EtOAc = 1:1): $R_f = 0.42$ (blue fluorescent, $\lambda = 365$ nm); mp and spectroscopic data were in line with those published in Ref. [34].

6,7-*Methylenedioxyisoquinoline-1-carbonitrile* (=[1,3]-*Dioxolo*[4,5-g]*isoquinoline-1-carbonitrile*, **9c**)

Yield: 25%, TLC (*n*-hexane:EtOAc = 3:1): $R_f = 0.41$ (blue fluorescent, $\lambda = 365 \text{ nm}$); IR (KBr): $\bar{\nu} = 2226 \text{ (CN) cm}^{-1}$; mp, MS, and ¹H NMR data were in line with those published in Ref. [35].

The aldehydes **12** were prepared by the general procedure according to Ref. [1] starting from 0.6–0.7 mmol **11a–11e**/2.5 cm³ of AcOH, 4.5 cm³ of F₃CCO₂H, and 1.2–1.4 mmol of NaCNBH₃; reaction time: 45 min (**12a**, **12b**), 60 min (**12c–12e**).

2-Benzoyl-1-benzyl-1,2-dihydroisoquinoline-1-carbaldehyde (12a, C24H19NO2)

Yield: 46%, mp 106°C (*n*-hexane); IR (KBr): $\bar{\nu} = 1726$, 1656 (C=O) cm⁻¹; MS (CI): m/z (%) = 354 (100), 324 (10), 262 (3), 105 (4); TLC (petroleum ether:EtOAc = 3:1): $R_f = 0.70$; ¹H NMR: $\delta = 9.69$ (s, CHO), 7.55–7.44 and 7.32–7.25 (2m, 5 + 3 arom H), 7.18–7.12 and 7.11–7.05 (2m, 1 + 2 arom H), 6.97–6.93 (m, 5-H), 6.80–6.75 (m, 5-H + 2 arom H), 6.30 and 5.26 (2d, each J = 7.9 Hz, 3-H, 4-H), 3.83 and 3.30 (AB, J = 13.9 Hz, Ar–CH₂) ppm; ¹³C NMR: $\delta = 191.67$ (d, CHO), 170.05 (s, CO), 135.89 and 133.51 (2s, 2C), 131.17 (d, 1C), 131.11 (s, C-4a), 130.35 (d, C-8), 128.87 (d, C-6/C-7), 128.68, 128.59, and 128.33 (3d, each 2C), 127.80, 127.75 (2d, 2C), 127.38 (s, C-8a), 126.82 (d, C-6/C-7), 126.74 (d, C-3), 126.58 (d, 1C), 125.50 and 107.58 (2d, C-5, C-4), 72.65 (s, C-1), 41.69 (t, Ar–CH₂) ppm.

2-Benzoyl-1,2-dihydro-1-(2-methylbenzyl)isoquinoline-1-carbaldehyde (12b, C₂₅H₂₁NO₂)

Yield: 24%, colourless resin; IR (KBr): $\bar{\nu} = 1730$, 1648 (C=O) cm⁻¹; TLC (petroleum ether: *EtOAc* = 3:1): $R_{\rm f} = 0.69$; ¹H NMR (CDCl₃): $\delta = 9.63$ (s, CHO), 7.56–7.44 and 7.31–7.22 (2m, 5+4 arom H), 7.18–7.12 and 7.11–7.05 (2m, 2 arom H), 6.97–6.93 (m, 5-H), 6.53 (d, J = 7.7 Hz, arom H), 6.25, 5.23 (2d, each J = 7.9 Hz, 3-H, 4-H), 3.92 and 3.30 (AB, J = 13.9 Hz, Ar–CH₂), 1.88 (s, CH₃) ppm.

2-Benzoyl-1-(2-bromobenzyl)-1,2-dihydroisoquinoline-1-carbaldehyde (12c, C24H18BrNO2)

Yield: 32%, light yellow resin; IR (KBr): $\bar{\nu} = 1735$, 1659 (C=O) cm⁻¹; MS (CI): m/z (%) = 434 (100), 432 (98), 404 (12), 402 (12); TLC (petroleum ether:EtOAc = 5:1): $R_f = 0.50$; ¹H NMR: $\delta = 9.59$ (s, CHO), 7.63–7.60 and 7.55–7.50 (2m, 1 + 2 arom H), 7.49–7.44 and 7.34–7.22 (2m, 2 + 3 arom H), 6.95–6.89 (m, 3 arom H), 6.79 (dt, J = 7.6/1.6 Hz, arom H), 6.43 (d, J = 7.9 Hz, 3-H), 6.24 (dd, J = 7.6/1.6 Hz, arom H), 5.22 (d, J = 7.9 Hz, 4-H), 4.12 and 3.37 (AB, J = 14.4 Hz, Ar–CH₂) ppm; ¹³C NMR: $\delta = 191.36$, 170.38, 136.03, 133.74, 132.55, 132.40, 132.10, 131.57, 129.27, 129.22, 128.72, 128.32, 128.01, 127.68, 127.04, 126.41, 125.82, 125.77, 108.28, 71.65, 40.35 ppm.

2-Benzoyl-1,2-dihydro-1-(2-nitrobenzyl)isoquinoline-1-carbaldehyde (12d, $C_{24}H_{18}N_2O_4$)

Yield: 28%, light yellow resin; IR (KBr): $\bar{\nu} = 1731$, 1631 (C=O) cm⁻¹; MS (CI): m/z (%) = 399 (100), 369 (8), 105 (47); TLC (petroleum ether: EtOAc = 5:1): $R_f = 0.65$; ¹H NMR: $\delta = 9.45$ (s, CHO), 7.56–7.35 and 7.23–7.03 (2m, 3 + 8 arom H), 6.84–6.81 (m, 5-H), 6.55 (dd, J = 7.9/1.4 Hz, arom H), 6.25 and 5.19 (2d, each J = 7.9 Hz, 3-H, 4-H), 4.17 and 3.57 (AB, J = 14.1 Hz, Ar–CH₂) ppm.

1010

2-Benzoyl-1,2-dihydro-1-(naphth-1-ylmethyl)isoquinoline-1-carbaldehyde (12e, C₂₈H₂₁NO₂)

Yield: 12%, light yellow resin; TLC (petroleum ether: EtOAc = 5:1): $R_f = 0.56$; ¹H NMR: $\delta = 9.63$ (s, CHO), 7.84–7.70 (m, 3H), 7.68–7.17 (m, 11H), 6.98 and 6.96 (2d, each J = 7.1 Hz, 2H), 5.62 and 4.83 (2d, each J = 7.9 Hz, 3-H, 4-H), 4.45 and 3.51 (AB, each J = 14.5 Hz, CH₂) ppm.

The 8-oxoprotoberberine carboxylic acids **13** were prepared by the general procedure according to Ref. [1] starting from 0.5–2.4 mmol of **5**; the crude product was dried *in vacuo* at ambient temperature and recrystallized. Analytical and spectroscopic data of the compounds **13a** and **13b** are listed in Ref. [1].

$\label{eq:2-Benzyloxy-5,6,8,13-tetrahydro-3-methoxy-8-oxo-13aH-dibenzo[a,g]quinolizine-13a-carboxylic acid (13c, C_{26}H_{23}NO_5)$

Yield: 88%, mp 231°C (*EtOAc*); TLC (CHCl₃:CH₃OH=9:1): $R_f = 0.47$; IR (KBr): $\bar{\nu} = 1719$, 1601 (C=O) cm⁻¹; MS (CI): m/z (%) = 414 (4), 386 (37), 384 (100), 374 (61), 282 (58); ¹H NMR (*DMSO*-d_6): $\delta = 13.16$ (s, CO₂H), 7.92 (d, J = 7.7 Hz, 9-H), 7.56–7.30 (m, 9 arom H), 6.86 (s, 4-H), 5.14 and 5.04 (AB, J = 11.8 Hz, benzyl-CH₂), 4.77 (dt, J = 12.5/3.5 Hz, 6-H_a), 3.86 (d, J = 15.5 Hz, 13-H_a), 3.80 (s, OCH₃), 3.23 (dt, J = 12.5/8.0 Hz, 6-H_b), 3.01 (d, J = 15.5 Hz, 13-H_b), 2.84 (m, 5-H_{ab}) ppm; ¹³C NMR (*DMSO*-d_6): $\delta = 173.23$, 163.57, 148.89, 146.25, 136.90, 136.21, 132.10, 128.29 (2C), 128.15, 127.92 (2C), 127.87, 127.80, 127.59, 127.39, 127.08, 125.83, 112.13, 111.89, 70.43, 63.92, 55.35, 40.43, 37.19, 27.60 ppm.

5,6,8,13-Tetrahydro-2,3-methylenedioxy-8-oxo-13aH-dibenzo[a,g]quinolizine-13a-carboxylic acid (**13d**, C₁₉H₁₅NO₅)

Yield: 97%, mp 224°C (*EtOAc*); TLC (CHCl₃:CH₃OH=9:1): $R_{\rm f}$ =0.35; IR (KBr): $\bar{\nu}$ =1705, 1635 (C=O) cm⁻¹; MS (EI): m/z (%) = 292 (7), 291 (9), 276 (16); ¹H NMR (*DMSO*-d₆): δ =13.27 (s, CO₂H), 7.91 (dd, J=7.5/1.3 Hz, 9-H), 7.52 (dt, J=7.5/1.4 Hz, 11-H), 7.43–7.35 (m, 10-H, 12-H), 7.25 (s, 1-H), 6.83 (s, 4-H), 6.05–6.02 (m, OCH₂O), 4.69 (dt, J=12.6/3.5 Hz, 6-H_a), 3.89 (d, J=15.6 Hz, 13-H_a), 3.30–3.20 (m, 6-H_b), 3.09 (d, J=15.6 Hz, 13-H_b), 2.86–2.79 (m, 5-H_{ab}) ppm; ¹³C NMR (*DMSO*-d₆): δ =172.97, 163.56, 146.64, 146.22, 135.97, 131.97, 128.71, 128.12, 127.54, 127.24, 127.18, 127.11, 108.22, 106.15, 101.10, 64.39, 41.03, 38.10, 28.25 ppm.

5,6,8,13-Tetrahydro-9-methoxy-8-oxo-13aH-dibenzo[a,g]quinolizine-13a-carboxylic acid (**13e**, C₁₉H₁₇NO₂)

Yield: 96%, mp 229°C (CH₃OH); TLC (CHCl₃:CH₃OH = 9:1): R_f = 0.41; IR (KBr): $\bar{\nu}$ = 1719, 1618 (C=O) cm⁻¹; MS (EI): m/z (%) = 280 (26), 279 (27), 278 (56), 277 (45), 248 (34); ¹H NMR (*DMSO*-d₆): δ = 13.07 (s, CO₂H), 7.72–7.68 (br d, J = 7.6 Hz, 1-H), 7.46–7.41 (m, 2-H, 3-H), 7.36–7.26 (m, 4-H, 11-H), 7.01 and 6.94 (2d, each J = 7.9 Hz, 12-H, 10-H), 4.68 (dt, J = 12.7/4.2 Hz, 6-H_a), 3.80 (s, OCH₃), 3.77 (d, J = 15.7 Hz, 13-H_a), 3.35–3.23 (m, 6-H_b), 3.05 (d, J = 15.7 Hz, 13-H_b), 2.98–2.83 (m, 5-H_{ab}) ppm; ¹³C NMR (*DMSO*-d₆): δ = 172.93, 161.32, 159.33, 138.63, 135.95, 132.59, 128.82, 127.39, 126.65, 125.82, 119.61, 116.94, 111.64, 55.74, 49.14, 42.08, 37.49, 28.54 ppm.

5,6,8,13-Tetrahydro-2,3,9,10-tetramethoxy-8-oxo-13aH-dibenzo[a,g]quinolizine-13a-carboxylic acid (**13f**, C₂₂H₂₃NO₇)

Yield: 95%, mp 218°C (*EtOAc*); TLC (CHCl₃:CH₃OH = 9:1): $R_f = 0.23$; IR (KBr): $\bar{\nu} = 1709$, 1638 (C=O) cm⁻¹; MS (EI): m/z (%) = 428 (30), 414 (70), 370 (48), 369 (27), 368 (100); ¹H NMR (*DMSO*-d₆): $\delta = 13.03$ (s, CO₂H), 7.22 (s, 1-H), 7.18 and 7.08 (2d, each J = 8.2 Hz, 11-H, 12-H) 6.84 (s, 4-H), 4.69 (dt, J = 12.9/4.2 Hz, 6-H_a), 3.80 (s, OCH₃), 3.79–3.76 (m, 13-H_a, 2 OCH₃), 3.75

(s, OCH₃), 3.23 (ddd, J = 12.9/10.1/4.9 Hz, 6-H_b), 2.91 (d, J = 15.1 Hz, 13-H_b), 2.87–2.74 (m, 5-H_{ab}) ppm; ¹³C NMR (*DMSO*-d₆): $\delta = 173.69$, 162.12, 152.99, 148.99, 148.24, 147.43, 129.06, 127.64, 125.91, 122.73, 122.32, 115.88, 111.74, 109.69, 63.73, 60.64, 55.85, 55.72, 55.44, 41.51, 37.77, 28.00 ppm.

5,6,8,13-Tetrahydro-2,3-dimethoxy-9,10-methylenedioxy-8-oxo-13aH-dibenzo[a,g] quinolizine-13a-carboxylic acid (**13g**, C₂₁H₁₉NO₇)

Yield: 95%, mp 210°C (CH₃OH); TLC (CHCl₃:CH₃OH = 9:1): R_f = 0.21; IR (KBr): $\bar{\nu}$ = 1725, 1622 (C=O) cm⁻¹; MS (EI): m/z (%) = 412 (39), 398 (12), 354 (60), 353 (29), 352 (100); ¹H NMR (*DMSO*-d₆): δ = 13.18 (s, CO₂H), 7.23 (s, 1-H), 7.01 (d, *J* = 7.6 Hz, 12-H), 6.82 (s, 4-H), 6.81 (d, *J* = 7.6 Hz, 11-H), 6.15 and 6.08 (2s, OCH₂O), 4.72 (dt, *J* = 12.9/4.0 Hz, 13-H_a), 3.84 (d, *J* = 15.6 Hz, 6-H_a), 3.78 and 3.77 (2s, 2 OCH₃), 3.22–3.13 (m, 13-H_b), 2.93 (d, *J* = 15.6 Hz, 6-H_b), 2.85–2.78 (m, 5-H_{ab}) ppm; ¹³C NMR (*DMSO*-d₆): δ = 173.09, 161.25, 148.31, 147.54, 147.42, 147.15, 129.07, 127.51, 125.81, 119.83, 111.87, 111.74, 111.14, 109.89, 101.91, 64.29, 55.78, 55.48, 40.57, 36.97, 27.88 ppm.

5,6,8,13-Tetrahydro-9,10-dimethoxy-2,3-methylenedioxy-8-oxo-13aH-dibenzo[a,g] quinolizine-13a-carboxylic acid (**13h**, C₂₁H₁₉NO₇)

Yield: 95%, mp 226°C (CH₃OH); TLC (CHCl₃:CH₃OH = 9:1): $R_{\rm f}$ = 0.28; IR (KBr): $\bar{\nu}$ = 1727, 1616 (C=O) cm⁻¹; MS (EI): m/z (%) = 412 (39), 398 (100), 354 (69), 352 (100); ¹H NMR (*DMSO*-d₆): δ = 13.10 (s, CO₂H), 7.21 (s, 1-H), 7.17 and 7.06 (2d, each J = 8.4 Hz, 12-H, 11-H), 6.82 (s, 4-H), 6.04–6.00 (m, OCH₂O), 4.57 (dt, J = 12.9/4.4 Hz, 6-H_a), 3.80 (s, OCH₃), 3.75–3.69 (m, OCH₃, 13-H_a), 3.44–3.23 (m, 6-H_b), 2.93 (d, J = 15.2 Hz, 13-H_b), 2.86–2.72 (m, 5-H_{ab}) ppm; ¹³C NMR (*DMSO*-d₆): δ = 173.00, 161.55, 152.45, 148.93, 146.63, 146.24, 129.07, 128.86, 127.27, 122.81, 122.31, 115.90, 108.26, 106.03, 101.12, 64.04, 60.67, 55.87, 40.69, 37.26, 28.37 ppm.

5,6,8,13-Tetrahydro-2,3,9,10-di(methylenedioxy)-8-oxo-13aH-dibenzo[a,g]quinolizine-13a-carboxylic acid (**13i**, C₂₀H₁₅NO₇)

Yield: 98%, mp 218°C (*EtOAc*); TLC (CHCl₃:CH₃OH=9:1): R_f =0.25; IR (KBr): $\bar{\nu}$ =1720, 1636 (C=O) cm⁻¹; MS (EI): m/z (%)=382 (41), 338 (80), 337 (42), 336 (100), 335 (36); ¹H NMR (*DMSO*-d₆): δ =13.24 (s, CO₂H), 7.23 (s, 1-H), 7.01 and 6.83–6.77 (2d, each *J*=8.0 Hz, 12-H, 11-H), 6.80 (s, 4-H), 6.15, 6.09, and 6.02 (3s, 2 OCH₂O), 4.63 (dt, *J*=12.8/4.3 Hz, 6-H_a), 3.79 (d, *J*=15.5 Hz, 13-H_a), 3.25–3.14 (m, 6-H_b), 2.93 (d, *J*=15.5 Hz, 13-H_b), 2.84–2.74 (m, 5-H_{ab}) ppm; ¹³C NMR (*DMSO*-d₆): δ =172.86, 161.23, 147.56, 147.09, 146.68, 146.25, 128.75, 127.77, 127.14, 119.78, 111.80, 111.03, 108.19, 106.22, 101.88, 101.11, 64.54, 41.23, 38.02, 28.30 ppm.

Tetra- and Dihydro-8H-dibenzoquinolizin-8-ones 14/15, General Procedure

The acids 13 were decarboxylated by heating them to the melting temperature *in vacuo* (water pump). The products 14/15 were separated by FC.

5,6,13,13a-Tetrahydro-8H-dibenzo[a,g]quinolizin-8-one (Berbin-8-one, 14a) and 5,6-Dihydro-8H-dibenzo[a,g]quinolizin-8-one (15a)

From 500 mg (1.7 mmol) of **13a**; reaction time: 15 min; yields: **14a** 61%, **15a** 26%; for NMR and MS data see Ref. [1].

1012

Protoberberines from Reissert-Compounds

5,6,13,13a-Tetrahydro-2,3-dimethoxy-8H-dibenzo[a,g]quinolizin-8-one (2,3-Dimethoxy-berbin-8-one, **14b**) and 5,6-Dihyro-2,3-dimethoxy-8H-dibenzo[a,g] quinolizin-8-one (**15b**)

From 300 mg (0.9 mmol) of **13b**; reaction time: 15 min; yields: **14b** 54%, **15b** 31%; for NMR and MS data see Ref. [1].

5,6,13,13a-Tetrahydro-2,3-methylenedioxy-8H-dibenzo[a,g]quinolizin-8-one (2,3-Methylenedioxyberbin-8-one, Gusanlung D, **14c**) and 5,6-Dihydro-2,3-methylenedioxy-8H-dibenzo[a,g]quinolizin-8-one (**15c**)

From 150 mg (0.4 mmol) of **13d**; reaction time: 10 min; **14c**: yield: 27%; TLC (*EtOAc*: *n*-hexane = 2:1): $R_{\rm f} = 0.50$; ¹³C NMR: $\delta = 158.67$, 146.77, 146.57, 137.24, 132.33, 131.81, 128.85, 128.60, 128.55, 127.37, 126.87, 108.81, 105.97, 101.00, 55.18, 38.49, 37.78, 29.61 ppm; mp, IR, MS, ¹H, and ¹³C NMR data were in line with those published in Refs. [3, 36]; **15c**: yield: 58%; TLC (*EtOAc:n*-hexane = 2:1): $R_{\rm f} = 0.33$; MS (EI): m/z (%) = 291 (M^{+•}, 66), 276 (100); ¹³C NMR: $\delta = 162.10$, 148.71, 147.43, 137.40, 136.65, 132.27, 130.29, 127.94, 126.27, 126.01, 124.57, 123.73, 107.96, 105.06, 101.89, 101.48, 39.69, 28.57 ppm; mp, IR, and ¹H NMR data were in line with those published in Ref. [37].

5,*6*,*13*,*13a*-Tetrahydro-2,*3*,*9*,*10*-tetramethoxy-8H-dibenzo[*a*,*g*]quinolizin-8-one (Di-hydropalmatin-8-one, **14d**) and *5*,*6*-Dihydro-2,*3*,*9*,*10*-tetramethoxy-8H-dibenzo[*a*,*g*] quinolizin-8-one (Oxypalmatine, **15d**)

From 240 mg (0.6 mmol) of **13f**; reaction time: 15 min; **14d**: yield: 47%; TLC (*EtOAc:n*-hexane = 2:1): $R_f = 0.48$; IR (KBr): $\bar{\nu} = 1640$ (C=O) cm⁻¹; MS (EI): m/z (%) = 369 (M^{+•}, 93), 368 (50), 354 (23), 192 (46), 178 (100), 163 (21); mp, ¹H and ¹³C NMR data were in line with those published in Ref. [2]; **15d**: yield: 47%; TLC (*EtOAc:n*-hexane = 2:1): $R_f = 0.32$; MS (EI): m/z (%) = 367 (M^{+•}, 100), 352 (70), 338 (47), 324 (24), 308 (21), 280 (9); ¹³C NMR: $\delta = 160.22$, 151.32, 150.05, 149.53, 148.37, 135.61, 132.37, 128.48, 122.32, 122.13, 119.33, 118.98, 110.45, 107.52, 100.87, 61.59, 56.85, 56.23, 56.01, 39.39, 28.22 ppm; mp and ¹H NMR data were in line with those published in Ref. [5].

5,6-Dihydro-9,10-dimethoxy-2,3-methylenedioxy-8H-dibenzo[a,g]quinolizin-8-one (*Berberin-8-one, Oxyberberine, Berlambin,* **15e**)

From 200 mg (0.5 mmol) of **13h**; reaction time: 10 min; purification of the crude product by FC; yield: 81%; TLC (*EtOAc:n*-hexane = 2:1): $R_f = 0.36$; IR (KBr): $\bar{\nu} = 1643$ (C=O) cm⁻¹; mp, MS, ¹H, and ¹³C NMR data were in line with those published in Refs. [3, 5, 38].

5,6-Dihydro-2,3,9,10-di(methylenedioxy)-8H-dibenzo[a,g]quinolizin-8-one (Coptisin-8-one, 15f)

From 300 mg (0.78 mmol) of **13i**; reaction time: 30 min; purification of the crude product by FC (*n*-hexane:*Et*OA*c* = 2:1); yield: 73%; TLC (CHCl₃:CH₃OH = 9:1): $R_f = 0.35$; mp, IR, MS, ¹H, and ¹³C NMR data were in line with those published in Ref. [39].

References

- [1] VII: Reimann E, Grasberger F, Polborn K (2000) Monatsh Chem 131: 73
- [2] Matulenko MA, Meyers AJ (1996) J Org Chem 61: 573 and further lit cited therein
- [3] Zhang JS, le Men-Olivier L, Massiot G (1995) Phytochemistry 39: 439

- [4] Nimgirawath S, Ponghusabun O (1994) Austr J Chem 47: 951
- [5] Grigg R, Sridharan V, Stevenson P, Sukhirthalingam S, Worakun T (1990) Tetrahedron 46: 4003
- [6] Huang WJ, Singh OV, Chen CH, Chion SY, Lee SS (2002) Helv Chim Acta 85: 1069
- [7] Lou ZC, Gao CY, Lin FT, Zhang J, Lin MC, Sharaf M, Wong LK, Slatkin DJ, Schiff PL Jr (1992) Planta Medica 58: 114
- [8] Leete E, Murril JB (1967) Phytochemistry 6: 231
- [9] Reimann E, Benend H (1992) Monatsh Chem 123: 939
- [10] Gibson HW (1970) J Heterocyclic Chem 7: 1169
- [11] Cook MJ, Katritzky AR, Page AD (1977) J Am Chem Soc 99: 165
- [12] Jackson YA, Stephenson EK, Cava M (1993) Heterocycles 36: 1047
- [13] Cava MP, Noguchi J (1972) J Org Chem 37: 2936
- [14] Kido K, Watanabe Y (1980) Heterocycles 14: 1151
- [15] Chantimakorn V, Nimgirawath S (1989) Austr J Chem 42: 209
- [16] Tilley JW, Danho W, Lovey K, Wagner R, Swistok J, Makofske R, Michalewsky J, Triscari J, Nelson D, Weatherford S (1991) J Med Chem 34: 1125
- [17] Jones JA (1964) J Org Chem 29: 3531
- [18] Roclofsen DP, DeGraaf JWM, Hagendoorn JA, Verschoor HM, Van Bekkum H (1970) Recl Trav Chim Pays-Bas 89: 193
- [19] Hauser FM, Pogany SA (1980) Synthesis, 814
- [20] Grethe G, Lee HL, Uskokovic M, Brossi A (1968) J Org Chem 33: 494
- [21] Cushman M, Choong T, Valko JT, Koleck MP (1980) J Org Chem 45: 5067
- [22] Ziegler FE, Fowler KW (1976) J Org Chem 41: 1564
- [23] Eliel EL, Ferdinand TN, Carolyn SRM (1954) J Org Chem 19: 1693
- [24] Dean RT, Rappoport H (1978) J Org Chem 43: 2115
- [25] Meyers AJ, Gabel R, Mihelich E (1978) J Org Chem 43: 1372
- [26] Jahangir, Fisher LE, Clark RD, Muchowski JM (1989) J Org Chem 54: 2992
- [27] Eicher T, Tiefensee K, Pick R (1988) Synthesis, 525
- [28] Ollero L, Castedo L, Domingez D (1999) Tetrahedron 55: 4445
- [29] Lutz RE, Bailey PS, Rowlett RJ Jr, Wilson JW, Allison RK, Clark MT, Leake NH, Jordan RH, Keller RJ, Nicodemus KC (1947) J Org Chem 12: 760
- [30] Wang W, Obeyesekere NU, McMurray JS (1996) Tetrahedron Letters 37: 6661
- [31] Reimann E, Höglmüller A (1985) Arch Pharm (Weinheim) 318: 487
- [32] Neumeyer JL, Oh KH, Weinhardt KK, Neustadt BR (1969) J Org Chem 34: 3786
- [33] Ruchirawat S (1978) Heterocycles 9: 1345
- [34] Reimann E, Renz H (1993) Arch Pharm (Weinheim) 323: 253
- [35] Hung TV, Mooney BA, Prager RH (1981) Austr J Chem 34: 151
- [36] Kessar VS, Singh P, Vohra R, Kaur NP, Venugopal D (1992) J Org Chem 57: 6716
- [37] Ruchirawat S, Lertwanawatana W, Thepchumrune P (1980) Tetrahedron Letters 21: 189
- [38] Jahangir, MacLean DB, Holland H (1987) Can J Chem 65: 727
- [39] Li M, Chen X, Tang QM, Zhang JS (2001) Planta Medica 67: 189
- [40] Sheldrick GM, Programs for the Solution and Refinement of Crystal Structures, Göttingen, 1990 and 1993