Variationen modulo 4_4+, 4+3_3+4_, 4_5+, 5_4+4_5+4_4+ bei Seltenerdcarbidhalogeniden

Variations modulo 4_{4+} , $4_{+}3_{-}3_{+}4_{-}$, $4_{-}5_{+}$, $5_{-}4_{+}4_{-}5_{+}4_{-}4_{+}$ with Rare Earth Carbide Halides

Hansjürgen Mattausch*^[a] und Arndt Simon^[a]

Professor Hanskarl Müller-Buschbaum zum 80. Geburtstag gewidmet

Keywords: Cerium; Praseodymium; Carbides; Halides; Cluster compounds

Abstract. The new compounds $Pr_8(C_2)_4Cl_5(1)$, $Pr_{14}(C_2)_7Cl_9(2)$, $Pr_{22}(C_2)_{11}Cl_{14}(3)$, $Ce_2(C_2)Cl(4)$, $La_2(C_2)Br(5)$, $Ce_2(C_2)Br(6)$, $Pr_2(C_2)Br(7)$, $Ce_{18}(C_2)_9Cl_{11}(8)$, and $Ce_{26}(C_2)_{13}Cl_{16}(9)$ were prepared by heating mixtures of LnX_3 , Ln and carbon or in an alternatively way LnX_3 , and " Ln_2C_{3-x} " in appropriate amounts for several days between 750 and 1200 °C. The crystal structures were investigated by X-ray powder analysis (5–7) and/or single crystal diffraction (1–4, 8, 9). $Pr_8(C_2)_4Cl_5$ crystallizes in space group $P2_1/c$ with the lattice parameters a = 7.6169(12), b = 16.689(2), c = 6.7688(2) Å, $\beta = 103.94(1)$ °, $Pr_{14}(C_2)_7Cl_9$ in Pc with a = 7.6134(15), b = 29.432(6), c = 6.7705(14) Å, $\beta = 104.00(3)$ °, $Pr_{22}(C_2)_{11}Cl_{14}$ in $P2_1/c$ with a = 7.612(2), b = 46.127(9), c = 6.761(1) Å, $\beta = 103.92(3)$ °, $Ce_2(C_2)_2Cl$ in C2/c with a = 14.573(3), b = 4.129(1), c = 6.696(1) Å, $\beta = 101.37(3)$ °, $La_2(C_2)_2Br$ in C2/c with a = 15.313(5), b = 4.193(2), c = 6.842(2) Å,

Einleitung

Verbindungen aus Seltenerdmetall (Ln), Kohlenstoff und Halogen (X) kristallisieren im Bereich $2.0 \le Ln/X \le 1.0$ als Schichtstrukturen. Die Selterdmetallatome bilden Doppelschichten, deren Oktaederlücken durch Carbid- (C4-), Ethenid- (C_2^{4-}) oder Ethanid-Anionen (C_2^{6-}) besetzt sind.^[1-4] Zwischen den Schichtpaketen Ln-Cx-Ln befinden sich Einfach- bzw. Doppelschichten aus Halogenatomen. Für Zusammensetzungen Ln / X = 2.0 und Ln / X = 1.0 sind die Schichten eben, im Bereich dazwischen gewinkelt^[5,6] bzw. gewellt.^[7] Für letztere seien die Verbindungen der Serie $(La_6(C_2)_3Cl_4)_m(La_8(C_2)_4Cl_5)_n$ angeführt: $La_6(C_2)_3Cl_4$ (m = 1, n = 0), $La_8(C_2)_4Cl_5$ (m = 0, n = 0) 1), $La_{14}(C_2)_7 Cl_9$ (*m* = 2, *n* = 2), $La_{20}(C_2)_{10} Cl_{17}$ (*m* = 4, *n* = 2), $La_{22}(C_2)_{11}Cl_{14}$ (m = 2, n = 4) und $La_{36}(C_2)_{18}Cl_{23}$ (m = 4, n = 4) 6).^[7] Es sind jeweils drei und/oder vier Oktaederstränge zu Bändern verknüpft, die mit alternierender Neigung (positive Steigung ₊, negative _) weiter zu Schichten verbunden sind.

E-Mail: Hj.Mattausch@fkf.mpg.de [a] Max-Planck-Institut für Festkörperforschung

70569 Stuttgart, Germany

$$\begin{split} \beta &= 100.53(3) ^{\circ}, \text{Ce}_2(\text{C}_2)_2\text{Br in } C2/c \text{ with } a = 15.120(3), b = 4.179(1), \\ c &= 6.743(2) \text{ Å}, \beta = 101.09(3) ^{\circ}, \text{Pr}_2(\text{C}_2)_2\text{Br in } C2/c \text{ with } a = 15.054(5), \\ b &= 4.139(1), c = 6.713(3) \text{ Å}, \beta = 101.08(3) ^{\circ}, \text{Ce}_{18}(\text{C}_2)_9\text{Cl}_{11} \text{ in } P\overline{1} \\ \text{with } a = 6.7705(14), b = 7.6573(15), c = 18.980(4) \text{ Å}, a = 88.90(3) ^{\circ}, \\ \beta &= 80.32(3) ^{\circ}, \gamma = 76.09(3) ^{\circ}, \text{ and } \text{Ce}_{26}(\text{C}_2)_{13}\text{Cl}_{16} \text{ in } P2_1/c \text{ with } a = \\ 7.6644(15), b &= 54.249(11), c = 6.7956(14) \text{ Å}, \beta = 103.98(3) ^{\circ} \text{ The } \\ \text{crystal structures are composed of } Ln \text{ octahedra centered by } \text{C}_2 \text{ dumb-bells. Such } Ln_6(\text{C}_2)\text{-octahedra are condensed into chains which are } \\ \text{joined into undulated sheets. In compounds 1–4 three and four up and \\ \text{down inclined ribbons alternate } (4,4,-4,+3,-3,+4,-4,+4,-3,-), \text{ in } \\ \text{compounds 8 and 9 four and five } (4,+5,-5,+4,-4,+5,-4,+4), \text{ and in compounds } 4-7 \text{ one, one ribbons } (1,1) \text{ are present. The } Ln-(\text{C}_2)\text{-Ln } \text{ layers } \\ \text{are separated by monolayers of } X \text{ atoms.} \end{split}$$

Stukturvariationen unterschiedlicher Wellenlänge und Verknüpfung sind denkbar.^[7]

Wir berichten über Darstellung und röntgenographische Charakterisierung der vom System La-C- $Cl^{[7]}$ bekannten isotypen Verbindungen $Pr_8(C_2)_4Cl_5$, $Pr_{14}(C_2)_7Cl_9$, $Pr_{22}(C_2)_{11}Cl_{14}$, $Ce_2(C_2)Cl$, $La_2(C_2)Br$, $Ce_2(C_2)Br$, $Pr_2(C_2)Br$, mit 4+4--, $4_{+3}_{-3}_{+4}_{-3}_{-4}_{-4}_{+3}_{-5}_{-5}$ bzw 1+1--Wellen. Zudem fanden wir die Verbindungen Ce₁₈(C₂)₉Cl₁₁ und Ce₂₆(C₂)₁₃Cl₁₆ mit bisher nicht bekannter Modulation 4+5- und 5+4-4+5-4+4-.

Experimenteller Teil

Ausgangsstoffe und Präparation

Zur Präparation wurden zwei Routen verfolgt (1, 2, s. u.). Als Ausgangsstoffe dienten sublimiertes Seltenerdmetall *Ln* (99.99 %; Fa. Alfa – A. Johnson Matthey Company), mechanisch zerkleinert, Graphitpulver (reinst; Fa. Aldrich), im Hochvakuum bei 1075 °C / 24h ausgeheizt, *LnX*₃ (La*X*₃ aus La₂O₃, Ce*X*₃ (Cer Metall in H*X* gelöst) und Pr*X*₃ aus Pr₆O₁₁ nach der Ammoniumhalogenidmethode dargestellt^[8] und in Tantalgefäßen^[9] destilliert) und "*Ln*₂C_{3-x}", dargestellt durch mehrmaliges Aufschmelzen von Tabletten aus *Ln*-Metall und Kohlenstoff unter Argon im Lichtbogen, homogenisiert durch nachfolgendes Tempern bei 1100 °C / 3d. "*Ln*₂C_{3-x}" ist ein Gemenge

^{*} Dr. Hj. Mattausch

Heisenbergstraße 1

von Ln_2C_3 und feinverteiltem Metall (0.47 < x < 0.49).^[10] Sämtliche Edukte und Produkte wurden unter Argon in Schlenk-Gefäßen aufbewahrt und im Handschuhkasten (Fa. M. Braun) gehandhabt. Die Reaktionen erfolgten in Tantalkapseln, die unter Argon gasdicht zugeschweißt und zum Schutz gegen Oxidation in Ampullen aus Kieselglas eingeschmolzen waren.

(1) LnX_3 wurde mit Ln-Metall und Kohlenstoff durch Tempern der angegeben Mengen (insgesamt ca. 1 g) umgesetzt. $LnX_3 / Ln / C : 1 / 5 / 6$: Ce₂(C₂)Cl (1180 °C / 2d) röntgenrein, La₂(C₂)Br (1200 °C / 6d) röntgenrein, Ce₂(C₂)Br (1170 °C / 40d) röntgenrein, Pr₂(C₂)Br (1200 °C / 13d) ca. 20 % Anteil; Nebenprodukte: Pr₃(C₂)Br₃, Pr₁₀(C₂)₆Br₆); bei der Ausgangszusammensetzung 5 / 19 / 24 entstehen Pr₈(C₂)₄Cl₅ (1080 °C / 3d,) ca. 90 % Anteil und Ce₈(C₂)₄Cl₅ (1080 °C / 3d) röntgenrein; bei 3 / 11 / 14: Pr₁₄(C₂)₇Cl₉ (1030 °C / 14d) ca. 50 % Anteil, Nebenprodukte: Pr₂₂(C₂)₁₁Cl₁₄ (ausgelesene Einkristalle) und Pr₂CCl. Im System Ce–C–Cl wurden bei Mischungen 3 / 11 / 14 oder 5 / 19 / 24 (1060°/1080 °C / 7d) neben Ce₁₈(C₂)₉Cl₁₁ Einkristalle von Ce₂₆(C₂)₁₃Cl₁₆ gefunden.

(2) CeCl₃ und "Ce₂C_{3-x}" wurden zu Pillen gepresst und getempert (insgesamt ca. 1 g). CeCl₃ / Ce₂C_{3-x}: 11 / 43: Ce₁₈(C₂)₉Cl₁₁, (x = 0.49, 750 °C, 1070 °C / 1d; röntgenrein), 8 / 31: Ce₂₆(C₂)₁₃Cl₁₆ (x = 0.48, 750 °C, 1080 °C / 1d; röntgenrein). Nach (2) konnten gegenüber (1) bereits nach kurzer Reaktionszeit einphasige Proben dargestellt werden. Die Verbindungen bilden golden glänzende Kristalle, die gegenüber Feuchtigkeit empfindlich sind. An Luft hydrolisieren die Proben innerhalb von Sekunden.

Röntgendiffraktometrie

Röntgenpulverdiagramme wurden in modifizierter Guinier-Anordnung^[11] (Imaging plates, Fuji BAS-5000) mit Cu- $K_{\alpha 1}$ -Strahlung aufgenommen (Silicium als Standard). Zur Bestimmung der Gitterparameter wurden Pulverproben unter Argon in Glaskapillaren eingeschmolzen und auf einem Pulverdiffraktometer Stoe STADI P mit Mo- K_{a1} gemessen. Wegen der außerordentlichen Ähnlichkeit der Kristallstrukturen konnten zur Phasenanalyse Pulverdiagramme nur beschränkt herangezogen werden. Durch wenige eindeutig indizierbare Reflexe h k l bei charakteristischen Beugungswinkeln d konnten die einzelnen Verbindungen jedoch zweifelsfrei zugeordnet werden: Ce₈(C₂)₄Cl₅: 0 3 1, d = 4.25 Å, 1 3 1, d = 3.46 Å; $Ce_{18}(C_2)_9Cl_{11}$: -1 0 3, 1 0 4, d =4.15 Å, $1 \ge 4, -1 = -15$, d = 2.95 Å, 0 = -32, d = 2.41 Å und $Ce_{26}(C_2)_{13}Cl_{16}$: 0 10 1, d = 4.19 Å, -2.9 1, d = 3.11 Å. Einkristalle wurden unter getrocknetem Petroleum ausgesucht, unter Argon in Glaskapillaren eingeschmolzen und mittels Präzessions-Aufnahmen auf ihre Qualität überprüft. Intensitätsdaten wurden mit einem Flächendetektor-

Tabelle 1. Kristalldaten und Strukturverfeinerung für Pr₈(C₂)₄Cl₅, Pr₁₄(C₂)₇Cl₉ und Ce₁₈(C₂)₉Cl₁₁.

Summenformel	$Pr_8(C_2)_4Cl_5$	$Pr_{14}(C_2)_7Cl_9$	$Ce_{18}(C_2)_9Cl_{11}$
Molmasse /g·mol ⁻¹	1400.61	2459.93	3128.29
Farbe, Form	golden, Latten	golden, Latten	golden, Latten
Temperatur /K		293(2)	
Wellenlänge /Å		0.71073 (Mo-	K_{a})
Kristallsystem	monoklin	monoklin	triklin
Raumgruppe	$P2_1/c$	Pc	$P\overline{1}$
Zelldimensionen /Å, °	a = 7.617(1)	a = 7.611(2)	a = 6.771(1)
	b = 16.689(2)	b = 29.392(6)	b = 7.657(2)
	c = 6.769(1)	c = 6.764(1)	c = 18.980(4)
	$\beta = 103.94(1)$	$\beta = 103.90(3)$	$\alpha = 88.90(3)$
			$\beta = 80.32(3)$
			$\gamma = 76.09(3)$
Zellvolumen /Å ³	835.1(2)	1468.7(5)	941.3(3)
Formeleinheiten pro Zelle	2	2	1
Berechnete Dichte /g·cm ⁻³	5.570	5.562	5.519
Absorptionskoeffizient /mm ⁻¹	23.633	23.539	22.040
F(000)	1210	2126	1339
Kristallgröße /mm	$0.08 \times 0.05 \times 0.03$	$0.67 \times 0.27 \times 0.02$	$0.23 \times 0.08 \times 0.03$
Diffraktometer		IPDS II (Stoe, Dar	rmstadt)
Gemessener θ -Bereich /°	$2.44 \le \theta \le 25.97$	$2.08 \le \theta \le 29.23$	$2.18 \le \theta \le 22.00$
Indexbereich	$-9 \le h \le 9$	$-10 \le h \le 10$	$-7 \le h \le 6$
	$-20 \le k \le 20$	$-40 \le k \le 40$	$-8 \le k \le 7$
	$-8 \le l \le 7$	$-8 \le l \le 9$	$-19 \le l \le 19$
Anzahl d. gemessenen Reflexe	5768	13954	4301
Anzahl d. unabhängigen Reflexe	1640	7381	2184
Absorptionskorrektur	numerisch ^[12]	empirisch ^[13]	numerisch ^[12]
Max., min. Transmission	0.3484, 0.1548	0.213, 0.066	0.3466, 0.0692
Strukturlösung		Direkte Methode	en ^[14]
Verfeinerung		Vollmatrix-Least-Squar	es für F^{2} ^[15]
Daten / Restraints / Parameter	1640 / 0 / 97	7381 / 2 / 266	2184 / 0 / 170
Goodness-of-Fit für F^2	0.847	1.042	1.059
<i>R</i> -Werte $[I \ge 2\sigma(I)]$	R1 = 0.0319	R1 = 0.0658	R1 = 0.0406
	wR2 = 0.0430	wR2 = 0.1720	wR2 = 0.1002
<i>R</i> -Werte (sämtliche Daten)	R1 = 0.0667,	R1 = 0.0821,	R1 = 0.0517
	wR2 = 0.0469	wR2 = 0.1846	wR2 = 0.1045
Größtes Maximum / Minimum /e•Å ⁻³	1.220 / -1.817	12.163 / -5.044	2.171 / -2.607

Tabelle 2. Kristalldaten und Strukturverfeinerung für Pr₂₂(C₂)₁₁Cl₁₄, Ce₂₆(C₂)₁₃Cl₁₆ und Ce₂(C₂)Cl.

Summenformel	Pr ₂₂ (C ₂) ₁₁ Cl ₁₄	Ce ₂₆ (C ₂) ₁₃ Cl ₁₆	$Ce_2(C_2)Cl$
Molmasse /g·mol ⁻¹	3860.54	4522.58	339.71
Farbe, Form	golden, Plättchen	golden, Nadeln	golden, Plättchen
Temperatur /K	8	293(2)	5
Wellenlänge /Å		0.71073 (Mo- K_a)	
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	$P2_{1}/c$	$P2_{1}/c$	C2/c
Zelldimensionen /Å. °	a = 7.612(2)	a = 7.664(2)	a = 14.573(3)
· · · · · · · · · · · · · · · · · · ·	b = 46.127(9)	b = 54.249(11)	b = 4.129(1)
	c = 6.761(1)	c = 6.796(1)	c = 6.696(1)
	$\beta = 103.92(3)$	$\beta = 103.98(3)$	$\beta = 101.37(3)$
	<i>p</i> ======(=)	<i>p</i> = = = = = = = = = = = = = = = = = = =	p (-)
Zellvolumen /Å ³	2304.0(8)	2741.8(10)	394.98(13)
Formeleinheiten pro Zelle	1	2	4
Berechnete Dichte /g·cm ⁻³	5.569	5.478	5.713
Absorptionskoeffizient /mm ⁻¹	23.573	21.865	23.192
F(000)	3336	3872	580
Kristallgröße /mm	$0.20 \times 0.08 \times 0.04$	$0.22 \times 0.06 \times 0.04$	$0.08 \times 0.06 \times 0.04$
Diffraktometer		IPDS II (Stoe, Darmstad	lt)
Gemessener θ -Bereich /°	$1.77 \le \theta \le 23.50$	$1.50 \le \theta \le 18.99$	$2.85 \le \theta \le 29.94$
Indexbereich	$-8 \le h \le 8$	$-6 \le h \le 6$	$-20 \le h \le 20$
	$-51 \le k \le 51$	$-49 \le k \le 49$	$-5 \le k \le 5$
	$-7 \le l \le 7$	$-6 \le l \le 5$	$-9 \le l \le 9$
Anzahl d. gemessenen Reflexe	11856	7290	1852
Anzahl d. unabhängigen Reflexe	3397	2190	569
Absorptionskorrektur	numerisch ^[12]	numerisch ^[12]	numerisch ^[12]
Max., min. Transmission	0.2782, 0.0723	0.984, 0.381	0.2847, 0.084
Strukturlösung		Direkte Methoden ^[14]	
Verfeinerung		Vollmatrix-Least-Squares für	$F^{2[15]}$
Daten / Restraints / Parameter	3397 / 0 / 208	2190 / 0 / 243	569 / 0 / 20
Goodness-of-Fit für F^2	0.977	0.913	1.100
<i>R</i> -Werte $[I \ge 2\sigma(I)]$	R1 = 0.0308	R1 = 0.0662	R1 = 0.0319
	wR2 = 0.0695	wR2 = 0.0981	wR2 = 0.0430
<i>R</i> -Werte (sämtliche Daten)	R1 = 0.0436,	R1 = 0.0911	R1 = 0.0667
× /	wR2 = 0.0728	wR2 = 0.1068	wR2 = 0.0469
Größtes Maximum / Minimum /e·Å-3	2.012 / -1.766	1.584 / -1.706	4.817 / -3.911

diffraktometer (*Stoe* IPDS II) mit Mo- K_a -Strahlung gesammelt. Einzelheiten zur Datensammlung und Strukturverfeinerung finden sich in Tabelle 1 und Tabelle 2, die verfeinerten Atomkoordinaten und isotrope Auslenkungsparameter in Tabelle 3 und Tabelle 4 und die wichtigsten Atomabstände in den Tabellen 5–9. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Fax: +49-7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de) unter Angabe der Hinterlegungsnummer CSD-420776 (Ce₂₆(C₂)₁₃Cl₁₆), CSD-420777 (Pr₁₄(C₂)₇Cl₉), CSD-420778 (Ce₁₈(C₂)₉Cl₁₁), CSD-420779 (Pr₈(C₂)₄Cl₅), CSD-422301 (Pr₂₂(C₂)₁₁Cl₁₄) und CSD-422300 (Ce₂(C₂)Cl) angefordert werden.

Ergebnisse und Diskussion

Monoklin in dem Raumgruppentyp $P_{1/c}$ kristallisieren die Verbindungen $Pr_8(C_2)_4Cl_5$ (1), mit a = 7.6169(12), b = 16.689(2), c = 6.7688(2) Å, $\beta = 103.94(1)^\circ$, $Pr_{22}(C_2)_{11}Cl_{14}$ (3) mit a = 7.612(2), b = 46.127(9), c = 6.761(1) Å, $\beta = 103.92(3)^\circ$ und $Ce_{26}(C_2)_{13}Cl_{16}$ (9) mit a = 7.6644(15), b = 54.249(11), c = 6.7956(14) Å, $\beta = 103.98(3)^\circ$, in Pc $Pr_{14}(C_2)_7Cl_9$ (2) mit a = 7.6134(15), b = 29.432(6), c = 6.7705(14) Å, $\beta = 104.00(3)^\circ$, in C2/c $Ce_2(C_2)_2Cl$ (4) mit a = 14.573(3), b = 4.129(1), c = 6.696(1) Å, $\beta = 101.37(3)^\circ$ und $Ln_2(C_2)_2$ Br mit a = 15.313(5), b = 4.193(2), c = 6.842(2) Å, $β = 100.53(3)^{\circ}$ (La₂(C₂)₂Br (5)), a = 15.120(3), b = 4.179(1), c = 6.743(2) Å, $β = 101.09(3)^{\circ}$ (Ce₂(C₂)₂Br (6)), und a = 15.054(5), b = 4.139(1), c = 6.713(3) Å, $β = 101.08(3)^{\circ}$ (Pr₂(C₂)₂Br (7)), und Ce₁₈(C₂)₉Cl₁₁ (8) triklin in $P\overline{1}$ mit a = 6.7705(14), b = 7.6573(15), c = 18.980(4) Å, $α = 88.90(3)^{\circ}, β = 80.32(3)^{\circ}, γ = 76.09(3)^{\circ}.$ Ce₂(C₂)₂Cl und die Bromide Ln_2 (C₂)₂Br sind mit La₂(C₂)₂Cl isotyp,^[7] Pr₈(C₂)₄Cl₅, Pr₁₄(C₂)₇Cl₉ und Pr₂₂(C₂)₁₁Cl₁₄ mit den formelgleichen Lanthanchloriden.^[7] Die Gitterkonstanten der Verbindungen (5–7) wurden aus Pulverdaten verfeinert, die Kristallstrukturen von (1–4, 8, 9) aus Einkristalluntersuchungen bestimmt (Tabelle 1 und Tabelle 2).

In Abbildung 1 sind die Strukturen von $Pr_8(C_2)_4Cl_5$ (a), $Pr_{14}(C_2)_7Cl_9$ (b), $Pr_{22}(C_2)_{11}Cl_{14}$ (d), $Ce_{26}(C_2)_{13}Cl_{16}$ (e) längs [010] und die von $Ce_{18}(C_2)_9Cl_{11}$ (c) längs [100] als Projektionen dargestellt. Die *Ln*-Atome bilden verzerrte durch C₂-Gruppen zentrierte Oktaeder. Je 3, 4 oder 5 von diesen sind über gemeinsame Kanten zu Bändern verknüpft, die dann zu den in der Abbildung gezeigten gewellten Schichten kondensiert sind. Die Wellung der Schichten entsteht durch Auf- (+) bzw. Abwärtsneigung (_) aneinander stoßender Bänder. Einzelschichten aus Chloratomen verknüpfen die *Ln*-(C₂)-*Ln*-Pakete. In

1095

ARTICLE

Tabelle 3. Atomkoordinaten und isotrope Auslenkungsparameter $/Å^2 \times 10^3$ für $Pr_8(C_2)_4Cl_5$, $Pr_{14}(C_2)_7Cl_9$ und $Ce_{18}(C_2)_9Cl_{11}$. U_{eq} wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors; in Klammern Standardabweichungen.

Tabelle 4.	Atomkoordinaten	und i	sotrope	Auslenkun	gsparame	eter
$/\text{\AA}^2 \times 10^3$	für Pr ₂₂ (C ₂) ₁₁ Cl ₁₄ ,	$Ce_{26}(C_2)$	13Cl16 u	nd Ce ₂ (C ₂)	Cl. U_{eq} w	ird
berechnet	als ein Drittel der S	Spur des	orthogo	onalisierten	U _{ij} -Tensc	ors;
in Klamm	ern Standardabweicl	hungen.			5	

$\overline{Pr_8(C_2)}$	4Cl ₅				Pr
Atom	W.N.	<i>x</i> / <i>a</i>	y/b	z/c	U _{eq} At
Pr1 Pr2 Pr3 Pr4 Cl1 Cl2 Cl3 Cl Cl Cl2 Cl3 Cl Cl2	4e 4e 4e 4e 4e 4e 2b 4e 4e 4e	$\begin{array}{c} 0.1541(1)\\ 0.2279(1)\\ 0.0766(1)\\ 0.6965(1)\\ 0.3541(4)\\ 0.4172(4)\\ 0.5\\ 0.024(2)\\ 0.953(2) \end{array}$	$\begin{array}{c} 0.5693(1)\\ 0.4499(1)\\ 0.6954(1)\\ 0.6726(1)\\ 0.7033(2)\\ 0.5977(2)\\ 0.5\\ 0.540(1)\\ 0.659(1) \end{array}$	0.6229(1) 1.1171(1) 0.1255(1) 0.3935(1) 0.5188(5) 1.0193(5) 0.5 1.221(2) 0.732(2)	9(1) Pr 11(1) Pr. 9(1) Pr 11(1) Pr. 13(1) Pr. 15(1) Pr. 13(3) Pr' 13(3) Pr'
Č3	4e	0.900(2)	0.585(1)	0.278(2)	18(3) Pr
$\frac{C4}{Pr_{14}(C_2)}$	-4e	0.843(2)	0.784(1)	0.282(2)	$\frac{12(3)}{Pr}$
Atom	W.N.	<i>x/a</i>	y/b	z/c	U_{eq} Cl
Pr1 Pr2 Pr3 Pr4 Pr5 Pr6 Pr7 Pr7 Pr8 Pr9 Pr10 Pr11 Pr12 Pr11 Pr12 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl2 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl2 Cl2 Cl3 Cl4 Cl5 Cl2 Cl2 Cl2 Cl3 Cl4 Cl5 Cl2 Cl2 Cl2 Cl2 Cl2 Cl2 Cl2 Cl2 Cl2 Cl2	2a 2a 2a 2a 2a 2a 2a 2a	0.6103(2) 0.2280(2) 0.6022(2) 0.6022(2) 0.3319(2) 0.1499(2) 0.6904(2) 0.6904(2) 0.2206(2) 0.2206(2) 0.3752(2) 0.7551(2) 0.1464(2) 0.5259(2) 0.803(1) 0.939(1) 0.966(1) 0.868(1) 0.966(1) 0.966(1) 0.966(1) 0.966(1) 0.966(1) 0.966(1) 0.966(1) 0.968(1) 0.033(1) 0.098(1) 0.098(1) 0.098(1) 0.0428(3) 0.439(3) 0.458(3) 0.413(3) 0.551(3) 0.540(4) 0.413(4) 0.301(3) 0.619(3)	0.3886(1) 0.3961(1) 0.1810(1) 0.3148(1) 0.3286(1) 0.4570(1) 0.1136(1) 0.1023(1) 0.1704(1) 0.0310(1) 0.0438(1) 0.2408(1) 0.2530(1) 0.2562(2) 0.4737(2) 0.3672(2) 0.4178(2) 0.1969(2) 0.0869(2) 0.0307(2) 0.0261(2) 0.1419(3) 0.31(1) 0.4118(1) 0.451(1) 0.092(1) 0.122(1) 0.52(1) 0.0307(1) 0.307(1) 0.307(1) 0.0017(1)	0.5216(2) 0.7712(2) 0.0076(2) 0.2851(2) 0.2851(2) 0.2762(3) 0.0090(2) 0.5011(2) 0.7627(2) 0.2594(2) 0.2594(2) 0.9912(2) 0.795(2) 0.5110(2) 0.9057(10) 0.8869(13) 0.9076(13) 0.3867(12) 0.3653(11) 0.4038(12) 0.3653(11) 0.4079(11) 0.8872(10) 0.8830(14) 0.178(4) 0.160(4) 0.675(4) 0.101(4) 0.6255(4) 0.129(4) 0.625(5) 0.668(4) 0.123(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{C14}{Ce_{10}(C_{c})}$	$\frac{2a}{2a}$	0.292(3)	0.262(1)	0.166(3)	$\frac{6(4)}{Cl}$
Atom	W.N.	<i>x/a</i>	y/b	z/c	U_{eq} Cl
Ce1 Ce2 Ce3 Ce4 Ce5 Ce6 Ce7 Ce8 Ce9 Cl1 Cl2 Cl3 Cl5 Cl6 Cl7 Cl C2 C3 C4 C5 C6 C7 C8 C6 C7 C8 C6 C7 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	2i 2i 2i 2i 2i 2i 2i 2i 2i 2i	$\begin{array}{c} 0.0937(2)\\ 0.8740(2)\\ 0.4334(2)\\ 0.4334(2)\\ 0.9944(2)\\ 0.9944(2)\\ 0.3603(2)\\ 0.5434(2)\\ 0.8173(2)\\ 0.2489(2)\\ 0.2489(2)\\ 0.2489(2)\\ 0.3989(7)\\ 0.4797(7)\\ 0.8486(7)\\ 0\\ 0\\ 0.3967(7)\\ 0.2829(7)\\ 0.541(3)\\ 0.749(3)\\ 0.541(3)\\ 0.749(3)\\ 0.585(3)\\ 0.295(4)\\ 0.103(4)\\ 0.103(3)\\ 1.015(3)\\ 0.64(2)\\ \end{array}$	$\begin{array}{c} 0.8467(1)\\ 0.8098(1)\\ 0.8729(1)\\ 1.2573(1)\\ 0.9326(1)\\ 1.2286(1)\\ 0.9229(1)\\ 1.3049(1)\\ 1.3149(1)\\ 0.6445(6)\\ 0.5857(6)\\ 0.6445(6)\\ 0.5857(6)\\ 0.6500(6)\\ 0.5368(6)\\ 1.059(2)\\ 1.064(3)\\ 1.019(3)\\ 1.122(3)\\ 1.159(3)\\ 1.014(3)\\ 1.053(3)\\ 1.169(2)\\ \end{array}$	$\begin{array}{c} 0.0618(1)\\ 0.4889(1)\\ 0.3850(1)\\ 0.3850(1)\\ 0.2734(1)\\ 0.0455(1)\\ 0.1733(1)\\ 0.1542(1)\\ 0.2901(1)\\ 0.2901(1)\\ 0.285(2)\\ 0.3609(2)\\ 0\\ 0.2670(2)\\ 0.4542(2)\\ 0.478(1)\\ 0.076(1)\\ 0.306(1)\\ 0.369(1)\\ 0.369(1)\\ 0.194(1)\\ 0.143(1)\\ 0.211(1)\\ 0.2$	$\begin{array}{c} \frac{1}{16(1)} & \text{Cl} \\ 16(1) & \text{Cl} \\ 18(1) & \text{Cl} \\ 16(1) & \text{Cl} \\ 19(1) & \text{Cl} \\ 19(1) & \text{Cl} \\ 19(1) & \text{Cl} \\ 26(1) & \text{Cd} \\ 26(1) & \text{Cd} \\ 26(1) & \text{Cd} \\ 28(1) & \text{Cf} \\ 20(1) & \text{Cf} \\ 22(1) & \text{Cf} \\ 22(1) & \text{Cf} \\ 31(5) & \text{Cf} \\ 34(5) & \text{Cf} \\ 33(5) & \text{Ce} \\ 32(5) & \text{Cf} \\ 3$

$Pr_{22}(C_2)$	11Cl14				
Atom	W.N.	<i>x/a</i>	y/b	z/c	$U_{\rm eq}$
Pr1	4 <i>e</i>	0.3892(1)	0.4505(1)	0.6328(1)	10(1)
Pr2	4 <i>e</i>	0.3940(1)	0.4114(1)	0.1357(1)	9(1)
Pr3 Dr4	4e 4e	0.2450(1) 0.7714(1)	0.3224(1) 0.4595(1)	0.1446(1) 0.3611(1)	9(1) 10(1)
Pr5	4e	0.7714(1) 0.3084(1)	0.4976(1)	0.3011(1) 0.1251(1)	9(1)
Pr6	4 <i>e</i>	0.7008(1)	0.3590(1)	0.3797(1)	9(1)
Pr7	4 <i>e</i>	0.5489(1)	0.2698(1)	0.3872(1)	9(1)
Pr8	4 <i>e</i>	0.6269(1)	0.3155(1)	0.8841(1)	8(1)
Pr9 Dr10	4e 4e	0.3192(1) 0.7744(1)	0.3654(1) 0.4042(1)	0.63/6(1) 0.8677(1)	9(1)
Pr11	4e 4e	0.7744(1) 0.1688(1)	0.4042(1) 0.2781(1)	0.8077(1) 0.6550(1)	10(1)
Cl1	4 <i>e</i>	0.1169(3)	0.4473(1)	0.2387(4)	14(1)
Cl2	4 <i>e</i>	0.1184(3)	0.4132(1)	0.7423(4)	14(1)
Cl3	4e	0.8262(3)	0.2667(1)	0.7809(4)	14(1)
Cl4	4 <i>e</i>	0.9739(3)	0.3401(1)	0.7616(4)	16(1)
CIS	4e 4e	0.8889(3) 0.0550(3)	0.3033(1) 0.3756(1)	0.2803(4) 0.2412(4)	14(1) 14(1)
Cl7	4e	0.0466(3)	0.3730(1) 0.4841(1)	0.7402(4)	15(1)
C1	4 <i>e</i>	0.3738(12)	0.3099(2)	0.5386(14)	11(2)
C2	4 <i>e</i>	0.5077(12)	0.4640(2)	0.0269(14)	9(2)
C3	4e	0.5744(13)	0.3715(2)	0.9821(15)	12(2)
C4 C5	4 <i>e</i>	0.5162(12) 0.5002(12)	0.3989(2)	0.5295(14)	11(2)
C5 C6	4e 4e	0.5002(13) 0.6293(13)	0.3208(2) 0.4189(2)	0.4814(13) 0.4788(15)	14(1) 14(1)
C7	4e	0.0293(13) 0.4263(12)	0.2830(2)	0.9927(14)	11(2)
C8	4 <i>e</i>	0.3141(12)	0.2372(2)	0.5433(14)	10(2)
C9	4 <i>e</i>	0.5637(13)	0.4919(2)	0.4739(15)	13(2)
C10	4 <i>e</i>	0.6243(12)	0.4440(2)	0.9789(14)	11(1)
<u>CII</u>	4 <i>e</i>	0.4494(12)	0.3546(2)	0.0383(14)	11(2)
$Ce_{26}(C_2$	$)_{13}Cl_{16}$				
Atom	W.N.	<i>x</i> / <i>a</i>	y/b	z/c	$U_{\rm eq}$
Ce1	4 <i>e</i>	0.3850(2)	0.2328(1)	0.1283(2)	16(1)
Ce2	4 <i>e</i>	0.2363(2)	0.0341(1)	0.6365(2)	19(1)
Ce3	4e	0.6191(2) 0.3103(2)	0.0398(1)	0.37/0(2) 0.1316(2)	16(1) 18(1)
Ce5	4e 4e	0.5105(2) 0.5527(2)	0.9901(1) 0.0784(1)	0.1310(2) 0.8830(2)	10(1) 17(1)
Ce6	4e	0.5527(2) 0.5551(2)	0.0704(1) 0.1127(1)	0.3832(2)	19(1)
Ce7	4e	0.7664(2)	0.2262(1)	0.8639(2)	22(1)
Ce8	4e	0.6955(2)	0.1884(1)	0.3733(2)	20(1)
Ce9	4 <i>e</i>	0.6259(2)	0.1514(1)	0.8797(2)	18(1)
Cell	4e 4e	0.1/18(2) 0.3124(2)	0.1193(1) 0.1940(1)	0.0485(3) 0.6326(2)	$\frac{2}{(1)}$
Cel2	4e	0.2436(2)	0.1570(1)	0.0320(2) 0.1384(2)	21(1)
Ce13	4 <i>e</i>	0.1714(2)	0.0724(1)	0.1471(3)	30(1)
Cl1	4e	0.8337(9)	0.0804(1)	0.2812(10)	25(2)
Cl2	4 <i>e</i>	0.1063(8)	0.2354(1)	0.7316(9)	17(2)
C13	4e 4e	0.8889(9) 0.8322(9)	0.0482(1) 0.1101(1)	0.7790(10) 0.7797(11)	20(2) 26(2)
Cl5	4e	0.0322(9) 0.9594(9)	0.0159(1)	0.2593(10)	22(2)
C16	4 <i>e</i>	0.8883(9)	0.1428(1)	0.2799(10)	25(2)
Cl7	4 <i>e</i>	0.0496(9)	0.2027(1)	0.2331(10)	21(2)
Cl8	4 <i>e</i>	0.9673(9)	0.1724(1)	0.7568(11)	28(2)
	4e 4e	0.442(3)	0.0077(5) 0.1507(5)	0.524(4) 0.485(4)	15(7) 21(7)
C_{3}^{2}	4e 4e	0.490(4) 0.520(4)	0.1397(3) 0.9689(5)	0.483(4) 0.019(4)	$\frac{21(7)}{30(8)}$
C4	4 <i>e</i>	0.412(3)	0.0685(5)	0.483(4)	18(7)
C5	4 <i>e</i>	0.424(3)	0.1230(5)	0.989(4)	16(7)
C6	4 <i>e</i>	0.321(3)	0.0845(5)	0.541(4)	16(7)
C7	4e 4e	0.360(4)	0.0445(5) 0.2610(6)	0.031(4)	26(8)
C9	че 4e	0.010(4) 0.503(4)	0.2010(0) 0.2223(5)	0.970(4) 0.523(4)	24(7)
Č10	4 <i>e</i>	0.438(4)	0.1850(5)	0.033(4)	27(8)
C11	4 <i>e</i>	0.368(4)	0.1465(5)	0.543(4)	19(7)
C12	4 <i>e</i>	0.315(4)	0.1075(5)	0.042(4)	30(8)
C13	4 <i>e</i>	0.385(1)	0.1980(6)	0.981(5)	35(9)
$Ce_2(C_2)$	Cl				
Atom	W.N.	<i>x/a</i>	y/b	z/c	Ueq
Cel	8 <i>f</i>	0.3514(1)	0.1977(1)	0.6229(1)	17(1)
CII C1	4e 8f	0.5 0.277(1)	0.7146(9) 0.636(2)	0.25	24(1)
C1	oj	0.2//(1)	0.030(2)	0.4/4(2)	ZZ(Z)

Tabelle 5. Kürzeste Abstände /Å für Pr₈(C₂)₄Cl₅ und Pr₁₄(C₂)₇Cl₉ berechnet mit den Gitterparametern der Einkristallmessung; in Klammern Standardabwajahung

Tabelle 5. Fortsetzung

Standardadweienu	ingen.		
$Pr_8(C_2)_4Cl_5$			
Pr1–Pr1	3.427(2)	Pr3–Pr3	3.845(1)
Pr1–Pr2	3.759(1)	Pr3–Pr3	3.845(1)
Pr1–Pr2	3.817(1)	Pr3–Pr4	3.676(1)
Pr1-Pr2 Pr1 Pr3	4.115(1)	Pr3-Pr4 Pr3-C11	5./88(1) 2.030(3)
Pr1-Pr3	3.093(1) 3.973(1)	Pr3-Cl1	2.930(3) 2 977(3)
Pr1-Pr3	4.161(1)	Pr3–Cl2	3.287(3)
Pr1–Pr4	3.864(1)	Pr3–C1	2.734(12)
Pr1–Pr4	4.203(1)	Pr3–C2	2.673(14)
Pr1–Cl1	2.887(3)	Pr3–C2	2.765(13)
Pr1–Cl2 Pr1–Cl2	2.975(3)	Pr3-C3	2.642(14)
Pr1-C13 Pr1-C1	2,100(1) 2,633(12)	Pr3-C4	2.381(13) 2.710(12)
Pr1-C1	2.707(14)	113-04	2.710(12)
Pr1–C2	2.386(12)	Pr4–Pr4	4.257(1)
Pr1–C3	2.661(14)	Pr4–Cl1	2.975(3)
Pr1–C3	2.709(15)	Pr4–Cl2	3.148(3)
	2 0 2 5 (2)	Pr4–Cl3	3.403(1)
Pr2–Pr2	3.835(2)	Pr4-C2	2.637(14)
Pr2 - Pr3 Pr2 - Pr3	3.482(1)	Pr4-C3	2.395(14) 2.305(12)
$Pr2_Pr2$	4.239(1) 3 818(1)	Pr4-C4	2.595(12)
$Pr2_Pr4$	4 173(1)	114-04	2.077(13)
Pr2–Cl2	3.009(3)	C1–C3	1.34(2)
Pr2–Cl2	3.161(3)	C2–C4	1.35(2)
Pr2-C13	3.021(1)		
Pr2–C1	2.382(12)		
Pr2-C1	2.613(14) 2.620(12)		
PT2-C2 Pr2-C3	2.030(13) 2.682(15)		
Pr2-C3	2.082(13) 2.931(12)		
$\frac{112}{Pr_{12}(C_2)-Cl_2}$	2.951(12)		·
$D_{r1} D_{r2}$	2 705(2)	Date Date	2 762(2)
Pr1-Pr2 Pr1-Pr4	3.703(2) 3.984(2)	$P_{10} - P_{19}$ $P_{10} - P_{10}$	3.702(2) 3.837(2)
Pr1-Pr4	4.135(2)	Pr8–Pr11	3.469(2)
Pr1–Pr5	3.905(2)	Pr8–Pr12	3.821(2)
Pr1–Pr6	3.430(2)	Pr8–Pr12	4.175(2)
Pr1–Pr7	3.784(2)	Pr8–Pr12	4.667(2)
Pr1–Pr7	4.177(2)	Pr8–Pr14	4.261(2)
PrI-Pr/ PrI-PrI/	4.585(3)	Pro-Clo	3.002(7)
PTI-PTI4 Pr1 C13	4.035(2) 2.044(8)	Pr8 - Cl0 Pr8 - Cl0	3.102(7) 3.016(0)
Pr1-Cl4	3 172(8)	Pr8-C2	2.61(2)
Pr1–Cl7	2.943(6)	Pr8–C4	2.72(3)
Pr1–C1	2.62(2)	Pr8–C6	2.27(2)
Pr1–C3	2.60(3)	Pr8–C8	2.62(2)
Pr1–C9	2.96(3)	Pr8–C13	2.96(2)
PrI-CI0 PrI-CI2	2.31(3)	D=0 D=10	2 825(2)
PII-CI2	2.08(4)	Pr9-Pr10 Pr9-Pr10	5.625(2) 4 113(2)
Pr2–Pr4	3.455(2)	Pr9–Pr11	3.882(2)
Pr2–Pr5	3.763(2)	Pr9–Pr11	3.967(2)
Pr2–Pr5	4.167(2)	Pr9–Pr11	4.165(2)
Pr2–Pr6	3.952(2)	Pr9–Pr12	3.872(2)
Pr2-Pr6	4.014(2)	Pr9-Pr13 Pr0-C14	4.235(2)
Pr^{2}_{Pr}	3 931(2)	Pr9_C18	2.372(7) 2.876(6)
Pr2-Pr13	4.608(2)	Pr9-Cl9	3.155(8)
Pr2–Cl2	2.902(8)	Pr9–C2	2.68(2)
Pr2C13	3.183(8)	Pr9–C4	2.67(3)
Pr2–Cl4	2.944(8)	Pr9–C5	2.72(3)
Pr2–C1	2.73(2)	Pr9–C6	2.66(2)
Pr2-C3 Pr2-C10	2.47(2)	Pr9–C8	2.40(2)
$Pr_2 = C10$	2.33(3)	Pr10_Pr11	4 267(2)
Pr2-C12	2.72(4)	Pr10–Pr13	3.821(2)
	=(.)	Pr10–Pr13	4.187(2)
Pr3–Pr4	3.970(2)	Pr10-Pr14	3.487(2)
Pr3–Pr8	3.805(2)	Pr10-C15	3.136(7)
Pr3–Pr8	4.115(2)	Pr10-Cl6	2.991(6)
$Pr_{3}-Pr_{9}$ Pr_{2} Pr_{10}	5.419(2) 2.751(2)	Pr10-Cl9	3.023(9)
$r_{13}-r_{110}$ $p_{r_3}-p_{r_13}$	5.751(2) 4.204(2)	Pr10_C2	2.43(2) 2.67(3)
$Pr3_Pr13$	3 805(2)	Pr10-C6	2.66(2)
Pr3–Pr14	3.893(2)	Pr10–C7	2.68(2)
Pr3–Pr14	4.166(2)		
Pr3-C11	2.867(6)	Pr11–Pr11	3.842(2)
Pr3–Cl5	2.982(7)	Pr11-Pr12	3.672(2)
Pr3-Cl9	3.179(8)	Pr11-Pr12	3.783(2)
PT3-C2 Pr3-C4	2.02(2) 2.72(2)	Pr11-Clo Pr11-Clo	5.299(7) 2.920(6)
115-07	4.14(4)	1111-010	2.720(0)

Pr ₁₄ (C ₂) ₇ Cl ₉			
$D_r^2 C^5$	2 66(2)	Dr11 C19	2.060(7)
F13-C3	2.00(3)	FIII-Clo	2.909(7)
Pr3-C6	2.73(2)	Pr11–C2	2.71(2)
Pr3–C7	2.33(2)	Pr11-C4	2.65(3)
		Pr11_C8	2 69(2)
Da4 Da5	2.915(2)	D=11 C0	2.09(2)
F14-F13	3.813(2)		2.70(2)
Pr4–Pr/	4.352(2)	PrII-CI3	2.61(3)
Pr4–Pr13	3.689(2)	Pr11-C13	2.76(3)
Pr4–Pr14	3 832(2)		
$\mathbf{Pr}\mathbf{A} = \mathbf{Pr}1\mathbf{A}$	3.846(2)	Dr12 Dr12	1 252(2)
D 4 C11	3.840(2)	D 12 C16	4.232(2)
Pr4–CII	2.914(6)	Pr12-C16	3.148(7)
Pr4–Cl3	3.236(8)	Pr12-C18	2.975(6)
Pr4–Cl7	2.957(7)	Pr12-C18	3.785(6)
Pr4-C1	271(2)	$Pr12_C10$	3 300(0)
$D_{r}4 C7$	2.71(2)	$D_{m}12 - C1$	2.22(2)
PI4-C/	2.75(2)	Pr12-C4	2.52(5)
Pr4-C10	2.68(3)	Pr12-C8	2.62(2)
Pr4-C11	2.58(2)	Pr12-C13	2.28(3)
Pr4-C12	2 82(3)	Pr12-C13	2 72(3)
$D_{m4} C_{14}$	2.02(3)	1112 015	2.72(3)
P14-C14	2.77(2)	D 40 D 44	2 == 0 (2)
		Pr13–Pr14	3.779(2)
Pr5–Pr6	4.303(2)	Pr13-Cl1	2.970(6)
Pr5_Pr10	4 686(2)	Pr13_C15	3 166(7)
D ₂ 5 D ₂ 12	4.220(2)	D=12 C17	2 752(7)
FIJ-FIIJ	4.229(2)	FII3-CI/	3.733(7)
Pr5–Pr13	4.2/9(2)	Pr13-C19	3.420(9)
Pr5–Pr14	3.656(2)	Pr13-C5	2.43(3)
Pr5-Cl1	3.850(7)	Pr13-C7	2.68(3)
Pr5_C13	3114(7)	Pr13_C11	2 48(2)
D=5 C14	2 1 2 7 (2)	$D_{11} = 0.14$	2.40(2)
Pr5-Cl4	3.127(8)	Pr13-C14	2.00(2)
Pr5–Cl7	3.003(6)		
Pr5–C1	2.48(2)	Pr14-C11	2.981(7)
Pr5-C10	2 67(3)	Pr14-C15	3 307(7)
Dr5 C11	2.64(2)	Pr14 C17	2 002(6)
PIJ-C11	2.04(2)	F114-C1/	2.902(0)
Pr5-C14	2.46(2)	Pr14–C5	2.63(3)
		Pr14-C6	2.78(2)
Pr6–Pr6	3.844(2)	Pr14-C7	2.67(3)
Pr6_Pr7	3 667(2)	Pr14-C10	2 83(3)
$\mathbf{Dr6}$ $\mathbf{Dr7}$	2 785(2)	$D_{r14} C10$	2.03(3)
	3.783(2)	FII4-CII	2.73(2)
Pr6–Cl2	2.894(7)	Pr14–C14	2.59(2)
Pr6–Cl2	2.929(8)		
Pr6-Cl4	3.255(8)	C1-C12	1.31(3)
Pr6-C1	2 72(2)	$C_{2}^{-C_{4}}$	1 38(3)
Dr(C2	2.72(2)	$C_{2}^{-}C_{4}^{-}$	1.30(3)
Pro-C3	2.69(3)	03-09	1.30(4)
Pr6–C3	2.71(2)	C5–C6	1.44(3)
Pr6–C9	2.63(3)	C7-C14	1.36(3)
Pr6-C12	2 65(3)	$C_{8-C_{13}}$	1 46(3)
110 012	2.05(5)	C10 C11	1 25(2)
D 7 D 7	4 22 4 (2)	010-011	1.55(5)
Pr/-Pr/	4.224(2)		
Pr7–Cl2	3.002(7)		
Pr7-Cl3	3127(7)		
Pr7_Cl4	3 109(8)		
Pr7 C1	2 71(2)		
D 7 C2	3.71(2)		
Pr/-C3	2.39(3)		
Pr7–C9	2.35(3)		
Pr7–C9	2.67(3)		
$Pr7_C12$	2 41(3)		
11/-012	2.71(3)		

Pr₈(C₂)₄Cl₅ liegen ausschließlich 4-er Bänder der Abfolge $\cdots 4_{+}4_{-}\cdots$ vor, in Pr₁₄(C₂)₇Cl₉ wechseln 3-er mit 4-er Bändern $\cdots 4_{+}3_{-}3_{+}4_{-}\cdots$ wie in $Pr_{22}(C_{2})_{11}Cl_{14}\cdots 4_{+}3_{-}4_{+}4_{-}4_{+}3_{-}\cdots$. Diese Abfolgen sind vom System La / C / Cl bekannt.^[7] Bei $Ce_{18}(C_2)_9Cl_{11}$ und $Ce_{26}(C_2)_{13}Cl_{16}$ beobachtet man erstmals 5-er Bänder, die mit 4-er Bändern abwechseln. In Ce₁₈(C₂)₉Cl₁₁ lautet die Abfolge $...4_{+}5_{-}...$ und in $Ce_{26}(C_2)_{13}Cl_{16}$ $\cdots 5_{+}4_{-}4_{+}5_{-}4_{+}4_{-}\cdots$. Die Wellung in den Schichten ist für Ce₁₈(C₂)₉Cl₁₁ geringfügig größer als bei Ce₂₆(C₂)₁₃Cl₁₆. Bei ersterer sind die Knickwinkel ^{...}4₊5₋4₊^{...} 158°, 157°, 159°, bei letzterer ...5+4_4+5_4+4_... 158°, 158°, 157° 158°, 158°, 158°. Bei Ce₁₈(C₂)₉Cl₁₁ gibt es fünf kristallographisch unterschiedliche Cer-Oktaeder, a.)-e.); a.) Ce(2-4) zentriert mit C(1)-C(1), b.) Ce(1), Ce(6-8) mit C(2)-C(4), c.) Ce(3-5), Ce(7-9) mit C(3)-C(9), d.) Ce(2-5), Ce(9) mit C(5)-C(7) und e.) Ce(1), Ce(5-9) mit C(6)-C(8). Die gemittelten Cer-Cer-Abstände sind 3.49 Å $< d_{Ce-Ce} < 4.38$ Å. Die C-C-Abstände liegen im Be-

ARTICLE

4.276(1)

3.830(1)

4.111(1)

3.742(1)

3.829(1)

4.192(1)

3.027(3)

3.017(2)

3.154(2)

2.691(10)

2.658(9)

2.350(10)

2.925(9)

2.628(9) 3.844(1)3.887(1) 3.980(1) 4.162(1)3.678(1) 3.783(1) 2.923(2) 2.976(3) 3.284(2) 2.624(9) 2.748(9) 2.675(9) 2.765(9) 2.590(9) 2.736(9) 3.420(1) 4.253(1) 3.865(1) 2.891(2) 3.163(2) 2.968(3) 2.659(9) 2.720(9) 2.711(10) 2.377(9)2.616(9) 3.876(1) 4.200(1) 2.866(2)3.168(2) 2.976(3) 2.707(9) 2.664(10) 2.384(9) 2.626(9)2.698(9) 3.728(3) 2.969(2) 3.476(2) 3.175(3) 2.400(9)2.644(9) 2.682(10) 2.378(9) 4.256(1) 2.977(2) 3.381(2) 3.152(2) 2.408(9) 2.637(9) 2.397(9) 2.685(9) 1.37(1)1.37(1) 1.35(1) 1.36(1) 1.36(1) 1.34(1)

reich einer C-C-Doppelbindung (1.35 Å). Für Ce₂₆(C₂)₁₃Cl₁₆ sind es sieben unterschiedliche Oktaeder, a.)-g.); a.) Ce(2-4) zentriert mit C(1)-C(1), b.) Ce(6), Ce(8-12) mit C(1)-C(2), c.) Ce(2-5), Ce(13) mit C(3)-C(7), d.) Ce(2, 3, 5, 6, 10, 13) mit C(4)-C(6), e.) Ce(5, 6, 9, 10, 12, 13) mit C(5)-C(12), f.) Ce(1, 7, 8, 11) mit C(8)-C(9) und g.) Ce(1), Ce(7-9), Ce(11, 12) mit C(8)–C(9). Die Abstände 3.35 Å $< d_{Ce-Ce} < 4.42$ Å und $d_{C-C} =$ 1.30 Å sind etwas kürzer als in $Ce_{18}(C_2)_9Cl_{11}$, jedoch innerhalb der Standardabweichung (± 0.03 Å) (Tabellen 5-8) gleich. In-

Tabelle 7. Kürzeste Abstände /Å für Pr₂₂(C₂)₁₁Cl₁₄ berechnet mit den Gitterparametern der Einkristallmessung; in Klammern Standardabweichungen.

Pr6–Pr7

Pr6–Pr8

Pr6-Pr8

Pr6-Pr9

Pr6-Pr10

Pr6-Pr10

Pr6-Cl4

Pr6-Cl5

Pr6-C16

Pr6-C3

Pr6-C4

Pr6-C5

Pr6-C6

3.824(1)

3.842(1)

3.818(1)

4.330(1)

3.449(1)

3.982(1)

4.142(1)

3.962(1)

3.666(1)

2.960(3)

2.915(2)

3.260(2)

2.672(9)

Pr₂₂(C₂)₁₁Cl₁₄

Pr1–Pr2

Pr1-Pr2

Pr1–Pr4

Pr1-Pr4

Pr1-Pr5

Pr1-Pr5

Pr1–Pr5

Pr1-Pr9 Pr1-Pr10

Pr1-Cl1

Pr1-Cl2

Pr1-Cl7

Pr1–C2

Tabelle 6. Kürzes	ste A	lbstände /Å fü	r Ce ₁₈ (C_2	$_{9}Cl_{11}$	berecl	nnet mit	den
Gitterparametern	der	Einkristallme	ssung;	in	Klam	mern	Standard	ab-
weichungen.								

weichungen.				Pr1–C4	2.725(9)	Pr6-C11
$\overline{Ce_{18}(C_2)_9Cl_{11}}$				Pr1–C6 Pr1–C9	2.732(9) 2.692(9)	Pr7–Pr7
Ce1–Ce1	3.463(2)	Ce5–Ce7	3.863(2)	Pr1–C9	2.798(9)	Pr7–Pr8
Ce1–Ce5	4.000(2)	Ce5–Ce7	3.874(2)	Pr1–C10	2.559(9)	Pr7–Pr8
Ce1–Ce6	3.771(2)	Ce5–Ce8	3.702(2)	D 2 D 2	4.2(2(1))	Pr/-Pr8
Ce1–Ce6	3.825(2)	Ce5–Ce9	3.779(2)	Pr2-Pr3	4.262(1)	Pr/-Prll Pr7 $Pr11$
Cel-Ceb	4.115(2)	Ce5-CI1	2.961(4)	$\Gamma 12 - \Gamma 14$ Pr2 Pr5	4.028(1)	Pr7 C13
Cel-Ce7	5.880(2) 4.142(2)	Ce5-Cl5	3.233(4)	$Pr2_Pr6$	3.486(1)	$Pr7_C13$
Cel_Ce8	3855(2)	Ce5-C3	2.68(2)	Pr2-Pr9	3.902(1)	Pr7-C15
Ce1–Ce8	4.188(2)	Ce5–C5	2.64(2)	Pr2–Pr9	4.154(1)	Pr7–C1
Ce1-Cl1	2.926(4)	Ce5–C6	2.727(18)	Pr2–Pr10	3.781(1)	Pr7–C5
Ce1–Cl2	2.996(5)	Ce5–C7	2.795(19)	Pr2-Cl1	2.898(2)	Pr7–C7
Ce1–Cl5	3.163(1)	Ce5–C8	2.783(19)	Pr2-Cl2	2.966(3)	Pr7–C7
Cel-C2	2.63(2)	Ce5–C9	2.61(2)	Pr2–Cl6	3.281(2)	Pr7–C8
Cel-C2	2.719(19) 2.63(2)	Cof Cof	2 8 1 2 (2)	Pr2–C2	2.738(8)	Pr7–C8
Ce1-C4	2.03(2) 2.72(2)	Ce6-Ce7	3.642(3) 3.508(2)	Pr2–C3	2.653(9)	
Ce1–C4	2.395(19)	Ce6–Ce7	4234(2)	Pr2–C4	2.663(9)	Pr8–Pr9
001 00	21090(19)	Ce6–Ce8	3.818(2)	Pr2-C6	2.591(10) 2.712(0)	Pr8-Pr10 Pr8-Pr11
Ce2–Ce2	3.776(2)	Ce6–Ce8	4.152(2)	P12-C10 Pr2-C11	2.713(9)	$Pr_{0} = Pr_{11}$
Ce2–Ce3	3.477(2)	Ce6–Ce9	4.612(2)	112-011	2.738(9)	$Pr8_C14$
Ce2–Ce3	3.778(2)	Ce6–Cl2	3.056(4)	Pr3_Pr6	3.842(1)	Pr8-C15
Ce2–Ce3	4.099(2)	Ce6–Cl2	3.189(4)	Pr3–Pr7	3.478(1)	Pr8-C1
Ce2-Ce4	3.810(2)	Ceb-Cl5	3.030(2)	Pr3–Pr8	3.758(1)	Pr8–C3
Ce2-Ce4 Ce2-Ce4	3.838(2) 4.146(2)	Ce6-C2	2.73(2) 3.720(19)	Pr3–Pr9	3.803(1)	Pr8–C5
Ce2–Ce5	4.140(2) 4.168(2)	Ce6-C4	2.40(2)	Pr3–Pr9	4.116(1)	Pr8–C7
Ce2–Ce9	4.272(2)	Ce6–C4	2.61(3)	Pr3–Pr11	3.815(1)	Pr8-C11
Ce2-Cl3	2.977(4)	Ce6–C6	2.943(18)	Pr3–Pr11	4.171(1)	
Ce2–Cl7	3.021(5)	Ce6–C8	2.641(19)	Pr3–Pr11	4.671(1)	Pr9–Pr10
Ce2–Cl7	3.194(4)	G T G O	2 002(2)	Pr3-Cl4	3.010(3)	Pr9-Pr11
Ce2-CI	2.614(19)	Ce7 - Ce8	3.803(2)	Pr3-C15 Pr2 C16	3.104(2) 3.001(2)	Pr9-C12 Pr0-C14
Ce2-C1	2.72(2) 2.79(2)	Ce7-Ce9	3.713(2) 3.023(5)	Pr3_C1	2.001(2)	Pr9_C14
Ce2-C5	3.70(2)	Ce7–Cl2	3.023(3) 3.221(4)	Pr3-C5	2.071(0) 2.621(10)	Pr9-C1
Ce2–C7	2.351(19)	Ce7–Cl6	2.963(4)	Pr3-C7	2.635(9)	Pr9–C3
Ce2–C7	2.606(19)	Ce7–C2	2.664(19)	Pr3–C8	2.911(9)	Pr9–C4
		Ce7–C3	2.843(18)	Pr3-C11	2.383(9)	Pr9–C5
Ce3–Ce4	3.777(2)	Ce7–C4	2.74(2)			Pr9-C11
Ce3–Ce4	4.158(2)	Ce/-C6	2.59(2)	Pr4–Pr5	3.759(1)	
Ce3-Ce4	4.034(2)	Ce/-C8	2.69(2) 2.755(18)	Pr4–Pr5	3.917(1)	Pr10-C11
Ce3–Ce5	4148(2)	CC/-C9	2.755(18)	Pr4–Pr5	4.168(1)	Pr10-Cl2
Ce3–Ce7	3.988(1)	Ce8–Ce9	4.225(2)	Pr4–Pr6	4.672(1)	Pr10-Cl4
Ce3–Ce9	3.840(2)	Ce8–Ce9	4.242(2)	Pr4-Pr10 Dr4 Dr10	4.204(1)	Pr10-Clo Pr10-C2
Ce3-Cl3	3.033(5)	Ce8–Cl1	2.992(4)	P14-P110 Pr4 C11	4.207(1) 2.004(2)	Pr10-C3 Pr10-C4
Ce3–Cl6	2.920(4)	Ce8–Cl2	3.146(5)	Pr4-C17	$\frac{2.994(2)}{3.103(2)}$	Pr10_C6
Ce3–CI/	3.174(4)	Ce8–Cl5	3.440(2)	Pr4-C17	3.107(3)	Pr10-C10
$Ce_3 - C_1$	2.383(17) 2.711(17)	Ce8 - C2	2.303(19) 2.75(2)	Pr4–C2	2.645(9)	
Ce_3-C_3	2.711(17) 2 359(19)	Ce8-C8	2.73(2) 2.62(2)	Pr4–C6	2.393(9)	Pr11–Pr11
Ce3-C5	2.550(17)	Ce8-C9	2.02(2) 2.315(18)	Pr4–C9	2.427(10)	Pr11-C13
Ce3–C7	2.74(2)	000 07	2.010(10)	Pr4-C10	2.655(9)	Pr11–Cl4
		Ce9–Cl3	3.166(5)			Pr11-C15
Ce4–Ce5	3.527(2)	Ce9–Cl6	2.970(4)	Pr5–Pr5	3.714(1)	PrII-CI
Ce4–Ce8	4.640(2)	Ce9–Cl7	3.642(4)	Pr5-Pr10	4.5/6(1)	Pr11-C/
Ce4-Ce9	3.841(2)	Ce9-C3	2.66(2)	PI3-CI1 Pr5-C17	2.937(2) 2.030(3)	$Pr11 - C\delta$ $Pr11 - C\delta$
Ce4-Cl3	4.133(2) 3 139(4)	Ce9-C5	2.33(2) 2.329(18)	Pr5_C17	$\frac{2.939(3)}{3.167(2)}$	1111-00
Ce4-Cl7	3.061(5)	Ce9–C9	2.74(2)	Pr5-C2	2,372(9)	C1-C5
Ce4–Cl7	3.261(4)		(=)	Pr5-C2	2.617(9)	C2-C10
Ce4–C1	2.351(18)	C1C1	1.38(4)	Pr5–C9	2.684(10)	C3-C11
Ce4–C3	2.622(18)	C2-C4	1.32(3)	Pr5–C9	2.695(10)	C4-C6
Ce4–C5	2.74(2)	C3–C9	1.41(3)	Pr5-C10	2.862(9)	C7–C8
Ce4 - C/	2.59(2)	C5-C7	1.55(5)			C9–C9
	2.970(18)	0-08	1.30(3)			

Tabelle 8. Kürzeste Abstände /Å für $Ce_{26}(C_2)_{13}Cl_{16}$ und $Ce_2(C_2)Cl$ berechnet mit den Gitterparametern der Einkristallmessung; in Klammern Standardabweichungen.

Tabelle 8. Fortsetzung

$\overline{Ce_{26}(C_2)_{13}Cl_{16}}$			
Ce1-Ce1	3.877(2)	Ce7–Ce7	4.270(2)
Ce1-Ce1	3.877(2)	Ce7–Ce7	4.270(2)
Cel-Ce7	3.715(2)	Ce7–Ce8	3.839(2)
Cel-Ce/	3.800(2) 3.511(2)	Ce7 - Ce8	4.1/0(2) 4.669(3)
Cel-Cell	3.898(2)	Ce7–Ce9	4.009(3) 4.204(2)
Cel-Cell	4.013(2)	Ce7–Ce11	3.871(2)
Ce1-Ce11	4.173(2)	Ce7–Cl2	2.996(6)
Cel-Cel2	4.257(2)	Ce7–Cl7	3.162(7)
Ce1-Cl2	2.959(6)	Ce7-Cl8	3.439(8) 2 44(3)
Ce1–Cl2 Ce1–Cl7	3.267(7)	Ce7–C8	2.69(3)
Ce1–C8	2.62(3)	Ce7–C9	2.69(3)
Ce1–C8	2.72(3)	Ce7-C13	2.45(3)
Cel-C9	2.67(3)	C_{2} C_{2}	2 824(2)
Cel-Cl0	2.73(3)	Ce8–Ce9	3.834(2) 4 128(2)
Cel-C13	2.66(3)	Ce8–Ce12	3.844(2)
		Ce8–Cl6	3.026(7)
Ce2–Ce3	3.783(2)	Ce8–Cl7	3.181(7)
Ce2-Ce3	4.100(2)	Ce8 - Cl8	3.043(7)
Ce2-Ce4	3.820(2) 3.869(2)	Ce8-C2	2.40(3) 2.93(3)
Ce2–Ce4	4.158(2)	Ce8–C9	2.70(3)
Ce2–Ce5	3.534(2)	Ce8-C10	2.66(3)
Ce2-Ce10	4.651(2)	Ce8-C11	3.77(3)
Ce2–Ce13	3.850(3)	Ce8–C13	2.67(3)
Ce2-Ce13	4.1/0(3) 3 139(7)	Ce9_Ce10	3 860(3)
Ce2-Cl5	3.070(7)	Ce9–Ce11	3.460(2)
Ce2–Cl5	3.257(7)	Ce9–Ce12	3.776(2)
Ce2-C1	2.39(2)	Ce9–Cl4	2.916(7)
Ce2–C3	2.62(3)	Ce9–Cl6	3.003(7)
Ce2–C4	2.66(3)	Ce9-Cl8	3.145(7)
$Ce_{2}-Co$	2.92(3) 2.68(3)	Ce9-C2	2.07(3) 2 43(3)
002 07	2.00(5)	Ce9-C10	2.69(3)
Ce3–Ce4	3.478(2)	Ce9-C11	2.65(3)
Ce3–Ce4	3.789(2)	Ce9-C13	2.70(3)
Ce3–Ce4	4.115(2)	C-10 C-11	4 100(2)
Ce3-Ce5	3.883(2) 4 160(2)	Cel0–Cel1	4.199(2) 3.832(3)
Ce3–Ce6	3.986(2)	Ce10-Ce12	4.174(3)
Ce3–Ce13	3.841(3)	Ce10-Ce13	4.238(3)
Ce3-Cl1	2.916(7)	Ce10-Ce13	4.252(3)
Ce3–Cl3	3.035(7)	Cello-Cl4	2.991(7)
Ce3-Cl3	2.164(0) 2.55(3)	Ce10-Clo	3.101(7) 3.441(8)
Ce3–C1	2.73(3)	Ce10-C5	2.64(3)
Ce3–C3	2.69(3)	Ce10-C6	2.41(3)
Ce3–C4	2.45(3)	Ce10-C11	2.34(3)
Ce3–C/	2.70(3)	Ce10-C12	2.71(3)
Ce4–Ce4	3.787(3)	Cell-Cel2	3.836(2)
Ce4–Ce5	4.181(2)	Cell-Cel2	4.122(2)
Ce4–Ce13	4.282(3)	Cell-Cl2	2.917(6)
Ce4–Cl3	2.985(7)	Cell-Cl7	3.001(7)
Ce4-CI5	3.016(7)	Cell-Cl8	3.188(7) 2.64(3)
Ce4-Cl	2.64(2)	Cell-C2	2.36(3)
Ce4–C1	2.69(2)	Ce11-C10	2.70(3)
Ce4–C3	2.43(3)	Ce11-C11	2.70(3)
Ce4–C3	2.64(3)	Ce11-C13	2.67(3)
Ce4-C/	2.76(3)	Cel2_Cel3	4 625(3)
Ce5–Ce6	3.871(3)	Ce12–Cl6	3.194(7)
Ce5–Ce6	3.876(3)	Ce12-Cl7	3.036(7)
Ce5–Ce9	4.002(2)	Ce12–Cl8	3.042(7)
Ce5-Ce10	3.707(2)	Ce12–C2	2.64(3)
Ce5-Ce13	3.793(3)	Ce12-C3 Ce12-C10	2.03(3) 2.35(3)
Ce5–Cl3	3.273(7)	Ce12-C11	2.74(3)
Ce5-Cl4	2.961(7)	Ce12-C12	2.85(3)
Ce5-C3	2.74(3)	G 10 GT	
Ce5–C4	2.72(3)	Cel3–Cll	2.977(7)
Ce5-C6	2.77(3) 2.59(3)	Ce13-Cl3	3.1/2(7) 3.637(7)
Ce5–C7	2.70(3)	Ce13–C4	2.57(3)
Ce5-C12	2.81(3)	Ce13-C6	2.72(3)
		Ce13-C7	2.36(3)

$Ce_{26}(C_2)_{13}CI_{16}$			
Ce6–Ce8	4.251(2)	Ce13-C12	2.40(3)
Ce6–Ce9	3.900(2)		
Ce6–Ce9	4.161(2)	C1–C1	1.32(5)
Ce6–Ce10	3.817(3)	C2-C11	1.32(3)
Ce6–Ce12	3.512(2)	C3–C7	1.28(4)
Ce6–Ce13	3.703(3)	C4–C6	1.24(3)
Ce6–Cl1	2.970(7)	C5-C12	1.29(4)
Ce6–Cl4	3.004(7)	C8–C9	1.34(4)
Ce6–Cl6	3.248(7)	C10–C13	1.30(4)
Ce6–C2	2.72(3)		
Ce6-C4	2.79(3)		
Ce6-C5	2.68(3)		
Ceo-Co	2.70(2)		
Ceo-C11	2.71(3) 2.60(3)		
Ce0-C12	2.00(3)		
$Ce_2(C_2)Cl$			
Ce1–Ce1	3.644(1)		
Ce1–Ce1	3.725(1)		
Ce1–Ce1	3.889(1)		
Ce1–Ce1	4.129(1)		
Ce1–Ce1	4.176(1)		
Ce1–Cl1	3.104(1)		
Ce1-Cl1	3.119(3)		
Ce1-Cl1	3.210(3)		
Cel-Cl	2.33(1)		
Cel-Cl	2.60(1)		
Cel-Cl	2.64(1)		
Cel-Cl	2.75(1)		
Cel-Cl	2.70(1)		
C1C1	1.32(2)		

sofern lassen sich die Verbindungen in ionischer Schreibweise formulieren als $(Ce^{3+})_{18}^{54+}(C_2^{4-})_9^{36-}Cl_{11}^{11-}.7e^-$, bzw $(Ce^{3+})_{26}^{78+}(C_2^{4-})_{13}^{52-}Cl_{16}^{16-}.10e^-$, wodurch metallisches Verhal-

Abbildung 1. Projektive Darstellung der Kristallstrukturen von a) $Pr_8(C_2)_4Cl_5$, b) $Pr_{14}(C_2)_7Cl_9$, c) $Ce_{18}(C_2)_9Cl_{11}$, d) $Pr_{22}(C_2)_{11}Cl_{14}$, und e) $Ce_{26}(C_2)_{13}Cl_{16}$, a), b), d), e) längs [010], c) längs [100], *Ln*: schwarz, *X*: rot, C: hellgrau.

ARTICLE

ten resultiert. Dies bestätigen exemplarisch Messungen der elektrischen Leitfähigkeit an $Ce_{18}(C_2)_9Cl_{11}$.

Gespannt darf man sein, ob sich weitere Phasen unterschiedlicher Wellenlänge und Verknüpfung bilden. Daneben muss mit interlamellaren Verwachsungen und damit lokaler Änderung der Zusammensetzung gerechnet werden. Zur strukturellen Charakterisierung werden dabei neben röntgenographischen vor allem hochauflösende elektronenmikroskopische als sich gegenseitig unterstützende Methoden notwendig sein. Der Schlüssel liegt im Finden geeigneter Wege zur Präparation.

Danksagung

Frau *C. Kamella* danken wir für die Anfertigung der Abbildungen, Herrn *R. Eger* für die Probenpräparationen und Herrn *H. Gärttling* für die Einkristallmessungen.

Literatur

 A. Simon, Hj. Mattausch, G. J. Miller, W. Bauhofer, R. K. Kremer in: *Handbook on the Physics and Chemistry of Rare Earths* (Eds.: K. A. Gscheidner Jr., L. Eyring), Vol. 15, Elsevier Science Publ., Amsterdam-London-New York-Tokio, **1991**, p. 191.

- [2] J. D. Corbett, J. Chem. Soc., Dalton Trans. 1996, 12, 556.
- [3] G. Meyer, Chem. Rev. 1988, 88, 93.
- [4] A. Simon, Hj. Mattausch, M. Ryazanov, R. K. Kremer, Z. Anorg. Allg. Chem. 2006, 632, 919.
- [5] A. Simon, C. Schwarz, W. Bauhofer, J. Less-Common Met. 1988, 137, 343.
- [6] C. Bauhofer, Hj. Mattausch, R. K. Kremer, A. Simon, Z. Anorg. Allg. Chem. 1995, 621, 1501.
- [7] Hj. Mattausch, A. Simon, L. Kienle, J. Köhler, C. Hoch, J. Nuss, Z. Anorg. Allg. Chem. 2008, 634, 2765.
- [8] G. Meyer, P. Ax, Mater. Res. Bull. 1982, 17, 1447–1455.
- [9] K. Ahn, B. J. Gibson, R. K. Kremer, Hj. Mattausch, A. Stolovits, A. Simon, J. Phys. Chem. 1999, B103, 5446–5453.
- [10] Th. B. Massalski, *Binary Alloy Phase Diagram*, 2. Ed. Vol. 1, pp. 833–835, **1990**.
- [11] A. Simon, J. Appl. Crystallogr. 1970, 3, 11-18.
- [12] X-SHAPE, Crystal Optimisation for Numerical Absorption Correction, Revision 1.03, Stoe & Cie. GmbH, Darmstadt, Germany, 1998.
- [13] R. H. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33-38.
- [14] G. M. Sheldrick, SHELXS, Program for the Solution of Crystal Structures, Universität Göttingen, Göttingen, Germany, 1997.
- [15] G. M. Sheldrick, SHELXL, Program for the Refinement of Crystal Structures, Universität Göttingen, Göttingen, Germany, 1997.

Eingegangen: 28. Januar 2011 Online veröffentlicht: 31. März 2011