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Reductive amination plays a key role in pharmaceutical and 
medicinal chemistry owing to its synthetic merits and ubiquitous 
presence of amines among biologically active compounds. 
Nitrogen-containing compounds play an important role in 
different fields of chemistry.1–3 Various reducing agents for the 
reductive amination are known.4–8 The main problem of common 
reducing agents is a balance between activity and selectivity. For 
example, one of the most selective reagents, namely, sodium 
triacetoxyborohydride, can reduce starting carbonyl compounds 
to alcohols, thus lowering the yield of the target amines.8 

New selective and active reducing agents for the reductive 
amination are of a great importance for chemists. Reductive 
amination without an external hydrogen source was developed 
recently.9,10 Carbon monoxide is typically used as an oxygen 
scavenger, allowing one to synthesize amines with a high 

functional group tolerance.11–13 The employment of carbon 
monoxide is convenient and desirable for industrial scale, but it 
is limited in laboratories because of the necessity of cylinder 
with CO. A number of compounds can serve as carbon monoxide 
surrogates14–16 or precursors for different processes, such as 
carbonylation or reduction.14,17–19 Alkyl formates are a good 
example of a CO-releasing molecules14,20–26 since they are 
nontoxic, cheap, readily available and non-corrosive compared 
with formic acid. 

In this work we have developed a convenient and available 
procedure for the reductive amination using formates as 
reducing agents. Carbon monoxide can be generated from alkyl 
and aryl formates in the presence of a base and a metal catalyst. 
Various parameters influencing the reaction outcome were 
tested, including catalyst, temperature, solvent additives, 
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Alkyl formates in the presence of basic additives can serve as 
a reagent in the direct reductive amination of carbonyl 
compounds. The developed procedure can be applied to 
various aldehydes and ketones with electron donating and 
electron withdrawing groups.
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Scheme  1  Reagents and conditions: i, 1 or 4, 2 (1 equiv. or 2.2 equiv. for 4 + 2a or 10 equiv. for 2c), RhCl3 (1 mol%), HCO2Me (10 equiv.), NaOAc 
(15 equiv.), MeOH (or EtOH for 1b), H2O, 160 °C, 24 h.



Mendeleev Commun., 2020, 30, 112–113

–  113  –

reaction atmosphere and the formate structure (HCOOBui, 
HCOOBn, HCOOMe). The detailed optimization data is 
provided in the Online Supplementary Materials. As a result, the 
combination of methyl formate in the presence of 10 equiv. 
sodium acetate or sodium hydrogen carbonate and 1 mol% of 
rhodium(iii) chloride as a catalyst at 160 °C under nitrogen 
atmosphere was found to be optimal. With these conditions in 
hands, we investigated the substrate scope (Scheme 1). Aromatic 
amines with both electron donating and electron withdrawing 
groups were benzylated in the yields around 70% (3a and 3c). 
Electron withdrawing chlorine atom in aldehyde 2b led to 
decrease in the yield of product 3b due to elevated reduction rate 
of this aldehyde into 4-chlorobenzyl alcohol. Acetone 2c could 
be used for the preparation of N-isopropylamine derivative 3d, 
however, N-isopropyl-N-methyl derivative 3'd was also formed. 
This fact reveals the possibility of N-methylation by methanol in 
the presence of the metal catalyst. Starting from diamine 4, a 
mixture of mono- and dialkylation products 5a,b was generated 
(see Scheme 1). Although yields are moderate, the developed 
procedure is tolerant to reducible functional groups such as 
sulfone. For example, aromatic chlorides can be easily reduced 
with molecular hydrogen,8,27 but the chlorine atom persists under 
the developed conditions. 

The suggested procedure was found to be suitable for 
N-methylation of amines by formaldehyde (Scheme 2). Anilines 
with electron donating groups (1a, 7a) and electron withdrawing 
groups (1b, 7b) were dimethylated in good to quantitative yields. 
When diphenylamine 9 was used as a substrate, along with 
product 10, the comparable amount of compound 10' was 
detected, whose formation can be rationalized considering the 
phenol-formaldehyde type condensation. However, no conden
sation of this type was observed for substituted anilines, which 
may be accounted for the inductive effect of methoxy group. 

In conclusion, the new procedure for the reductive amination 
comprising alkyl formates as reducing agents has been developed. 
It does not require corrosive or complex reagents. The limitations 
of the method were examined and the optimal conditions were 
found. 
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Scheme  2  Reagents and conditions: i, RhCl3 (1 mol%), CH2O  
(12–20 equiv.), HCO2Me (10 equiv.), NaOAc (15 equiv.), MeOH (or EtOH 
for 1b), H2O, 160 °C, 24 h.


