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ON EXACT ORDER OF CONVERGENCE OF RANDOM POLYNOMIALS
A. Basalykas and O. Yanushkevichiene (Vilnius, Lithuania) UDC 519.2

Estimates for the rate of convergence of a random second-order polynomial to the distribution x? in uniform and
Lévy metrics are obtained. Also, the low bounds in these metrics are constructed.

1. Introduction and Formulation of Main Results

The increased interest in random polynomials (see, e.g., [1, 2, 5-7, 9, 10]) is due to the fact that in many cases
linear models describe real situations not quite explicity. Naturally, the improvement of models by means of symmetric
polynomials requires one to investigate their rate of convergence.

Let

P®)(z) = P)(zy,...,2,), TE€R®, n=12...,

be a sequence of homogeneous symmetric kth-degree polynomials. Denote
S(m) =.’L‘;"+I’2m + o4z
This is a well-known Newton representation of symmetric polynomials that is expressed as follows:
P& (@) = {an(in,..,ix)S{y - - Sty i1 + 202 + -+ + kix = k},

where 1y, ...,1, are natural numbers.
This means that we can write a homogeneous symmetric polynomial of second degree in the following form:

P,,(‘z) ES a,.S(zl) -+ b,,S(g).

In [9), the rate of convergence of a random polynomial

n 2 n
1
w=al() -3)
i=1 i=1
to the limit distribution was considered. Here X, X,,...,X, are independent and identically distributed random
variables. It was V. M. Zolotarev who first suggested considering the rate of convergence of such polynomials. As in
{7], we also consider the second-order polynomial

n 2 n
Zn = a,‘(ZX.-) +b, Y X7
i=1 i=}
with an, = a/n, b, = b/n, a,b € R, and a- b # 0. As compared to [9], we substantially improve here the estimates in
a uniform metric. Moreover, we consider here polynomials of a more genera} kind, and lower estimates for the rate of
convergence are obtained also.
For simplicity, assume that EX; = 0 and EX? = 1. It is easy to see that Z, will converge to the polynomial
Z =aN? + b as n — co. Here N is the standard normally distributed random variable.
Denote 3, = E|X;|* and suppose that
Parzs <00, 0451 (1)

This condition will be needed to apply the estimates in the central limit theorem given in [4] to the squares of
random variables under consideration.

Recall the definitions of probability metrics that will be used in this work:

Lévy metric

L(X,Y)=L(Fx,Fy) =inf{e: Fx(z) < Fy(z+¢)+e,Fy(z) < Fx(z+¢)+¢, z€ R},

where Fz is a distribution function of the random variable Z;

Proceedings of the Seminar on Stability Problems for Stochastic Models, Vologda, Russia, 1998, Part L.

1234 1072-3374/00/9903-1234$25.00 © 2000 Kluwer Academic/Plenum Publishers



Lévy-Prokhorov metric
7(X,Y) = n(Px, Pr) = inf{e: Px(A) < Py(A®) +¢,Py(A) < Px(A) +¢, A€ B},

where B is a system of Borel sets on R and A° = {z: |z — y| < ¢, y € A} is the e-neighborhood of the set A;
Ky-Fan metric
K(X,Y)=inf{e > 0: P(IX-Y|>¢) <e};

uniform metric
p(X,Y) =sup{|Fx(z) - Fy(z)|]: z€R}.

The main results are the following propositions.
THEOREM 1. If condition (1) is fulfilled, then there exists an absolute constant ¢ > 0 such that

P(Zn;aN? +8) < C{% +"—%iﬂ4+26(1 + \/E’min<logn,ﬁ> ) }

B bl

C(T%*“\/ Jae) 8=
B /18] B

c(\/sﬁ-*- a nlt;“)’ =1

THEOREM 2. If condition (1) holds for 0 < 6 < 1, then there exist absolute constants ¢; > 0, c2 > 0 such that

In particular,

p(Zn,aN? +b) <

. logn
2 < B3 g
L(Z,,aN* +b) _cl<——\/_-+-|b|\/[34 -1 —) + 7,

Remark. Note that if 3; = 1 (or 84 = 82 = 1), then L(Z,,aN? + b) = O(n~1/2). The equality 34 = 1 means that
E(X? - 1)2 = 0 or X? = 1 with probability 1. It is easy to see that in this case the summand b7, X%/n in the
polynomial Z,, is equal to b. This shows that the order \/logn/n in Theorem 2 is conditioned by the term b3, X2 /n.

In Sec. 4, we construct an example showing that the orders of lower bounds in Theorems 1 and 2 are, respectively,
n~/4 and \/logn/n (in the case § = 1).

In [7], the rate of convergence of random polynomials was also pursued. There strict restrictions were imposed on
the class of polynomials. The results of that work were obtained in the metrics x(X,Y) = J |Fx(u) — Fy(u)|du and
7(X,Y). In the n(X,Y) metric, the order of the estimate was n~1/4.

By the method of characteristic functions the estimates of the p(X AXT,£A€T) were obtained in [1] and [5]. Here
X = (X1,...,X5), £ = (&,-..,&), & are standard normal independent random variables, whereas vectors X and £
are assumed to be independent, and A = (a;;)1<i j<n is 2 real symmetric matrix with a;; = 0. The estimates obtained
there are of orders n=1/%(logn)*/® and n~!/8, respectively. Since the metric of the quadratic form Z, has only one
eigenvalue strictly distinct from zero (as n — o), the application of these results in our case is impossible because the
conditions in (5] are not fulfilled or else it yields a trivial estimate {1] (in (1] and [5], to obtain a meaningful result it is
needed that the matrix A should have at least two eigenvalues strictly distinct from Zero).

By c,c1,c3,..., we denote positive absolute constants that may differ from line to line or from formula to formula.

where rn < E|XZ — 1243y = 1)7' " 2n%/2 0 <6 <1,Ba#1; 7 =0if By = 1.

2. Proof of Theorem 1. Estimation of the Rate of Convergence in the Uniform Metric

Denote
Q(e,N?) = supP{N% € [u,u+¢]}, £>0.
uER

It is easy to show that

Q(e, N?) < ¢eve. (2)
Denoting S, = (z; + - - - + z,)/+/7. by the triangle inequality, we obtain

P(Zn,aN? +b) < p(Zn,0S2 +b) + p(aS? +b,aN? + b). 3)
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By I, and I, respectively, denote the first and second terms of the right-hand side of (3).
Since the metric p is invariant with respect to a shift by a constant, we have I, = p(S2, N?). Then

p(S2,N?) = sup [P{S? < u} - P{N? < u}| S sup [P{S, < V&} - (V&)
u>0 u>0

\/_

where d, = sup,cg P{S. = u}. To estimate d,, we make use of Lemma 6 (see {4, p. 59]). This implies that for each
u>0

d, <u”? / |EetSn| dt.

[tj<u

Since [EetSn| < e=t'/4 for |t| < 3v/n/(2/%), assuming u = 3/n/(2/33), we obtain
dn < cfis/V/n. (5)

Hence it follows that

I, < cfs/v/n. (6)

Let us now proceed to the estimation of the term ;. It is easy to see that
b n
2+b) = 52 4+ — z2_ 2
o(Z,,,aS2 + b) p(a nt s iél(X, 1),aS )

By Lemma 7 (see [4, p. 30]), for any £ > 0

P(Zn,aS2 +b) < Iy + S:EIIZ(I)’ (7N

where

I = P{,%;(Xf - 1)] > s[b|‘1},

I2(z) = max(P(aS? < z +¢) — P(aS? < z),P(aS? < z) — P(aS? < z — £)).

P<N2 <Tar)-r(v< 11;|E)
co(2) B )

Estimate (8) follows from (2), (4), and (5). It now remains to estimate the term I;;. For this we decompose the
random variables X? in the following way:

Since max(u,v) < u+ v for u,v > 0, we have

sup Ia(x) < sup |P{|a|S2 <z +¢€} —P{la|S2 <z —¢}| < sug
z€

X2=U!+U!', i=1,2,...,n,
where
=XI1{|Xi| < ¥n}, U/ =X1{X:|> ¥n}.
It is easy to see that EU + EU/' = 1. Then for any € > 0

P{l
n

n

S -1)|2 b} =p{2

i=1

SO0~ BV + S (U~ E BU)| > ]

ie=] i=1
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sp{l
n

According to the Chebyshev inequality,

(U - EUY)

ZH:(U' EU)l 2lbl}+P{% :1 >%bl} )

i=1

S 20b - * o ()7 B s’
P U/I UII < U/; _ EU!I < (L Y2 i
6 2 > gmp < (2 ) n 20RO < e BT BV < vy (10)
Again, by the Chebyshev inequality and Theorem 19 (see [4, p. 86]), for all p > 2 we have
1< / 2|b] /
- <
p{afaei-m0| > g} < (3F) el - meof
20b| _wur s (S EU - BUe)
_( . ) (n) {ZE]U —EU/)P + (Z;E(Ui—EU,-)
2p|b| pm2 , g2\ <o bV
Ul - U - .
< () { v ZE( EU;)? ZE( - EU)? A (1)
Combining estimates (6)~(11), we obtain that for all e >0 and p > 2
B Ba+ash® e <4P|b|\/7£)P}
Z,.,aN2+b <c{ + et =+ | —— ) - 12
A V= vm T wvmeE Vi T\ Tevm (2
Assuming in (12) p = Gmin{logn,1/(1 — 8)}, € = 4p/Baelbjn~14+%)/10 we obtain
2(Zn,aN? +b) < 0{5—% + n~(6+4)/20 ﬁ:;/i& |' l B4 mm log n) ) }

_ . 1 /3 Pa+as
+exp{—6(1 + logn(1=9)/10) mln(logn,m)} < C{\;— n(éi:)z/zo 1+ \/| min logn, _5> )}

Theorem 1 is proved.

3. Proof of Theorem 2. Upper Estimates of the Rate of Convergence in the Lévy Metric
According to the triangle inequality,

L(Z,,aN? + b) < L(Z,,a5% + b) + L{aS2 + b,aN? + b) = I; + 5, (13)

where I; and I, are, respectively, the first and second summands on the right-hand side of (13), Sn = (z1+---+zn)/V7.
Since the Lévy metric is invariant to a shift by a constant,

Iy = L(aS?%,aN?).
By the inequality L(X,Y) < p(X,Y),
Iy < p(aS2,aN?) = p(82,N?) < cfis/v/n. (14)
Let us estimate !;. According to [3, p. 111],
Iy = L(Z,,a52 + b) € 7(Z,,aS% +b).
On the other hand, the Lévy-Prokhorov metric is minimal with respect to the Ky-Fan metric (see [3, p. 59]); therefore

i(X? - 1)1 > s) < 5}.

i=1

7(Zn,aS% +b) < K(Z,,aS5% +b) = inf{e > 0: P(I%
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From this it is easy to see that
S X2
7(Zn,a52 +b) < 2L(b%,b). (15)

Making use of the invariance property of the Lévy metric and by the triangle inequality, we obtain

() s ) o B M) (1)

where §; = X2 — 1. In [9], for Ly = L(eN,0) as £ — 0 the following expression was obtained:

Lo = V2le|/log(1/le]) + ¢ + o(1) = v2lelv/log(1/le]) + o(le|v/log(1/e]))-

(16)

Thus

L(b”":/;m ,o)=V2(ﬁ:/;”"" log(/A/ (1 + o{1)) = b1y = Ty/ B2 (1 + o(1)).

Let us now consider the first summand on the right-hand side of (16). Since L(X,Y) < p(X,Y), we have

B

where rn, < cEJX? —12*5(3, - 1)(=2+9/2(\/n)7%,0< 6 <1, B4 #1,and r, =0for 3y = 1.
Now (13)-(16) yield the proof of Theorem 2.

4. On Lower Bounds for the Estimates in Theorems 1 and 2

Let a =1 and b = —1. Then
7. = (Xt X\ N XE
o Jvn pary n’
Denote

—-_X1+"'+Xn 2_1 i 2 =2
X="2r—=2 s —nZX,-—X.

It is easy to see that
2

Zo=nX =82 -X'=(n-1)X° - 52

When X; £ N(0,1) it is well known that the random variables X and S? are independent and nS? 2 y2(n - 1).
Therefore, we can write Z,n/(n — 1) as the sum of two independent random variables N2 and —~x2(n —1)/{n — 1):

7 - n2_XM@-1
n-1"" n-1 "'

Let us investigate the distribution function H(x) of the random variable N2 — x2(n—1)/(n —1) (briefly N2 —x2_,):

H(z)=Fyaja_ (2) = / Frn2(z —2)dP(-x2_, < 2)

- / Fya(z +2) dP(—x2_; < —2) / Fya(z +2)dP(2_, < 2). (a7)
max(0,~x)
As Fya2_y(—1) = 0, it is obvious that
sup [H(@) = Fya-1(s)] 2 B (~1) = Fwaa(~1)] = H(-1) = / Fya(z = 1)dP(3_, < 2). (18)
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Since

dP(xi_, <z2)= B __emmam—l g, (here m = (n — 1)/2),
" I'(m) (19)
I%F) =coe™Vm(l+em),  co=(eV2T)!,  em=O(1/m),
we have
H(-1)=co(l1+¢&m) / Frn2(z = 1)e™™E 0 /m2m"1dz = ¢o(1 + Em)\/ﬁ/FNz (z)e ™ (z +1)""1d2
1 0
1/2 1/2
—mz m—1 FNZ(Z) —z m
=cym | Fpya(z)e ™ (z+ 1) tdz = cvm T+—z(e (z+ 1)) d=.
0 0
For0<z<1/2,
Fp2(z) 1 e~u/2 2 / 1
1+z  Vor(l+2)) Vu u‘3\/ﬂel/40 Jadem e
Thus
1/2
H(-1)> cmf Vz{e *(z + 1))™ da. (20)
0
The inequality e=*(1+ z) > e~*"/2(0 < z < 1/2) yields
1/2 Vm/2
1) > ~m/2 g, = S / —2g, .
H( 1)_c\/r;/\/§e z P Vze dz 7
0 0

Since m = (n — 1)/2, we have H(—1) > ¢/¥/n. Note that the passage from the random variable Z,n/(n —1) to Z,
does not change the order n=1/4 (see (30)).
Let us deal with the Lévy distance. By the definition,
L(N?*—1,N? —x2_,) =inf{6: H(z~6) -6 < Fya_,(z) < H(z +6) + 6, Vz € R}.
Since for z < —1, Fyz_,(z) = 0, we have

inf{8: Fyee (=8)=6<0< Fyaja (2+6)+6, ¢ < -1} =&,

where dg is the solution of the following equation:

H(-1-§6) =FN2_X3‘_1(—1‘6)=6. (21)
For z > —1, we have
oo 1480
He-s)= [ FnE-s+9dP0d <dsFre+) [ dPOAL<2)
max(0,—z+8p) max(0,~x+do)
(=] (o]
+ / Fn2(z — 80+ 2)dP(xi_; < 2) = Fy2(z +1) + / (Fna(z — 8o + 2) = Fy2(z + 1)) dP (x5, < 2).
1+6¢ 144,
Since
FNz(I—5o+z)SFN2(1+1)+FN2(—1—(50+Z), (22)
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relation (22) yields
H(z—éo) SFNz_l(.‘L‘)'i'(so, x> -1, (23)

as §g = f:;‘so Fy2(—1— 8o + z) dP(x2_; < z). Note that Fy2(z+ 1) = Fyz2_1(z). For =1 < z £ —dp, we have

oo 1-4p o
H(z+6o) = / Fy2(z+2+60)dP(x2_, < 2) 2 / Fna(z+2+00)dP(x2_; < 2)+ Fnz(z+1) / dP(x2_; <€ 2)
—z-8p ~z =00 1—do
—z=4g 1-do
=Fpy2(z+1) - / Fna2(z+1)dP(x5-1) — / (Fna(z +1) = Fyz(z + 2 + 80)) dP(x5-1 < 2).
0 —z—=3g
The inequalities (for -1 < 2 < —&p)
FN2(I+Z+60)+FN2(1—Z—(50), —1—503231-—50,
<
F”’(”l)-{FNza—z-ao), 0<z<—z—26
yield that for -1 < z < —§p we have
—z-49 1—-4g
H(z + 8p) > Fy2(z+1) — / Fpn2(1—2—080)dP(x%_, <z) - / Fyn2(1—2—68)dP(x3_, € 2)
0 -z~
1-6o
= Fyoa(@) = [ Faall =26 PG, < 2) (24)

For —dp < £ < o0, we have

oo 1-680 oo
H(z+6) = / Fya(z+2+80) dP(x3_; < 2) = / Fye(z+2+6)dP(2_, < 2)+ / Fya(z+2+6) dP(C_; < 2)
h) 0 1-ég

1-6g
> Fyz(z+ 1)+ / (Fnz2(z + z+ 6g) — Fye(z + 1))dP(x;‘:_1 < z).
0

FN2(1:+1)SFN2($+Z+50)+FN2(1—Z—50), 0<2<1 -4,

thus
1-6p

H(z + 80) > Fya_y(z) - / Frn2(l =z =80)dP(x2_, < 2).

Therefore, for all z > —1

1-68¢
H(z +60) 2 Fya_y(2) - f Fya(l— 2 — 8) dP(X2_, < 2).

‘We will show that
1-do

I= / FN2(1 —z—éo)dP(X2_1 SZ) <50.
0
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It is easy to see that

1-34¢ 1-46o
I= / Fpne2(1 -2 —8)dP(X2_) + / Frn2(1 -2z —680)dP(X2_; < 2)
4] 1-340
1-38, 1-6o
SFa(1-8) [ 4RO <5+ Finh) [ dPO,<2)
0 1-34p
1-3é¢
<Fn-t) [ PO, <)+l (25)
0

because Fyz(28s) < ¢v/3a. Now let us evaluate the integral

1-36¢
r- [ dpxi,<a).
0
By (19),
) 1-368¢ 1—350d( )
' _ m —-mz _ m-—1 — e’"_co _ﬂ
I = co(l +e)e™vm / e~z dz—\/m(l-i-sm) / T2
V]
1-38¢ .
e™co(l + &m) / demr )™ = cp At Em)(eX(1 — 350))™
= T 3ym - 3d0y/m '
)]

Since €3*(1 — 3u) < e™%(1 + u), 0 < u < 1/3, we have

; 27 1 co(l + 5,,,)(e 6°(1 + 60))”'
< —Z
I 51 (1 e>c° dov/m '

Together with (25) this yields

(e7%(1+ 50))m_

I§c68/2+§—;{FN2(1+60)<1— é)co(l +em)——s T
o}

Later we shall show that (see (29))

(1-1/e)(e=%(1 +6)™ <
Sov/m

Co(l + Em)FN2(1 + 50) do-

Thus o7
I<csd + 7% < bo.

This means that for z > —1
H(I + (50) > FNz_l(I) - 4.

Therefore,
L(N?*-1,N? = x2_)) =&,

where 4y is solution of Eq. (21). Let us solve this equation. Using (19), we write (21) in the form

§ = coe™vm(l +¢,,) / Fy:(=1=68+2)e ™2™ dz, ¢o=
145
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Denote

o
J= / Fia(=1—6 + z)e=™ ™1 dz. (26)
144
If is not difficult to obtain that
7 ) T ey T (1-z)emszm14d; d(S(z)™
/FNz(—l—-5+z)e mzgm dz</e z dz=/ TS =m/ T,
148 146 146 1+6

where S(z) = e~ *z. Integrating by parts, we obtain

1 [ dSE@)" _ 1@ 0a+)m 1 [ S™E) 1t a)m

m 1-z m ) T m (1—z)2dz<m 5
146 144
Therefore,
J< L0y e
Let us estimate J below. By the Taylor formula,
Fna(=1=0+2) = Fya(2) + ¢, 5 f Z —)* (1+6)khk(z), (28)

where ¢, hy(2)e™%/2/\/Z = F})(2), 1 = 1/VZ. Since |hy(2)| L 0, z = o0, and h(z) < 0 for k = 2p, and hy(z) > 0 for
k =2p—-1(p € N), all terms in the second summand on the right-hand side of (28) are negative. As 1/(1-2) > 1/(-4),
putting (28) into (26) we obtain

J= /FNz(z)e‘"‘" ™=l dz +¢; Zg__l_)(l_'*_é): / h (z) e /2 e—™Zm1 4,
146 144
1 [ Faa(2) m (- 1)k(1+5>‘= T he(2) d(S(z))m+3/?
-1 /6 228 A(S @)™ + +3/22 / e
1+ 13

—Fus k k 3
> Hinll ) / 4(s(2) )"*+clz L ‘5}) d(S ()02
144

—(1+448) 1+ 8™ ( l)k 1+4 k —(1+44) 1_+_5))3/2
=L6(m+—)){p,v,(1+a)+ 13/22 - ) h(1+6)(e (115)2 }

Since
cre=(1+8)/2 Z(_1)R(1 + 8)khe (1 + 8)

1
\/1 + 6 k=1 kl

= Fyn2(0) — Fn2(1 +8) = —Fp2(1 +6),

we finally obtain

(e~ (+9(1 4 &)™ _m s (e"+9( + o)™ _1
JZ——gm—FNz(l-%&) 1 ——Yo > - Fya(1+68){1-— .

Therefore,
1) (e~ (*9(1 + &)™ (=91 4+ 8)™
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or
-8 m —-é m
coFNz(l)(l -~ %)(1 +s,,,)(e—((51\/im—6-))— <& <co(l+ sm)%\/—%&i. (29)

If § < 1, then e7%(1 + &) > exp{—42/2}. On the other hand, (e~%(1 + 8))™ < exp{-62m/2} exp{6°m/3} <

cz exp{—d°m/2} (we know (Theorem 2) the solution of Eq. (21) should not exceed c,(logn/n)!/2). Solving the equation

2
656—5 m/2

S=—57m

1
) coFyz2(1) <1 - ;) < ¢5 < 2¢,

we obtain (see [8, p. 57])
§2m

- = log(v/m cs) — loglog(csv/m ) + -+ - .

b0 = ,/li’-f;’ﬁ(uoa))

50 = V3 @"—’11—)(1 +o(1)).

T —

Hence,
or(asm=(n-1)/2)

Note that the passage from the random variable N? — x2_, to the random variable ((n — 1)/n)(N? — x2_,) cannot
change the order /log n/n, because
zn
H (n i 1) - H(z)

This estimate follows, for example, from the Esseen lemma and

<c/va. (30)

sup
x

[Eeit((n=1/m)(N?=x_1) _ Beit(N"=xi1)| =

1 2it) ~(n~1/2
(i)
V1 — 2§t n

y 1 _< 1+ 2it/n )‘"“)/2 < oslt
Vil — 2it/(n(1 = 2it)) 1+ 2it/(n—1) = (1 + 2)/3

Estimate (30) may also be checked by straightforward calculation, using representation (17).

|t| S crn.
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