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ABSTRACT: We report that (TMP)Ru(NH3)2 (TMP = 

tetramesitylporphryin) is a molecular catalyst for 

oxidation of ammonia to dinitrogen. An aryloxy radical, 

tri-tert-butylphenoxyl (ArO•), abstracts H atoms from a 

bound ammonia ligand of (TMP)Ru(NH3)2, leading to the 

discovery of a new catalytic C-N coupling to the para 

position of ArO•, forming 4-amino-2,4,6-tri-tert-

butylcyclohexa-2,5-dien-1-one. Modification of the 

aryloxy radical to contain a trityl group at the para 

position, 2,6-di-tert-butyl-4-tritylphenoxyl radical, 

prevents C-N coupling and diverts the reaction to 

catalytic oxidation of NH3 to give N2. We achieve 

125(±5) turnovers at 22 °C for oxidation of NH3, the 

highest reported to date for a molecular catalyst. 

Carbon-free fuels are attractive to meet 

worldwide demands for sustainable energy.1 Ammonia is 

produced on a huge scale by the Haber-Bosch process;2 it 

has a high energy density, and is readily transported as a 

liquid using a well-established infrastructure.3 Direct 

ammonia fuel cells, where electricity is generated through 

oxidation of ammonia to N2, offers appealing attributes 

compared to carbon-based fuels.4-7 Ammonia has also 

been used as an H2 storage medium.8-11 However, the 

study of molecular ammonia oxidation catalysts has 

lagged behind studies of its microscopic reverse, nitrogen 

reduction.  

The first N-H bond dissociation free energy 

(BDFE) of ammonia is 99.4 kcal/mol,12 but the energy is 

decreased by coordination to a metal. Several approaches 

in transition metal systems have overcome the high bond 

strength to cleave N-H bonds, including N-H oxidative 

addition,13 metal-ligand cooperativity,14-15 1,2 addition 

across a metal-metal bond,16 and H atom abstraction.17-20 

Formation of an N-N bond is a requisite step in oxidation 

of NH3 to N2, so understanding the factors that control 

that reaction are crucial in the design of metal catalysts 

for oxidation of NH3.21-26 To the best of our knowledge, 

only four molecular systems have been reported to 

catalytically oxidize NH3 to N2 (Figure 1, top);27-30 all 

have turnovers less than 20. 

 

Figure 1:  Stoichiometric and catalytic ammonia 

oxidation by molecular catalysts. 

Molecular mediators to abstract or donate H 

atoms have been increasingly beneficial in the catalytic 

reduction of O2,31-32 using a variety of mediators that span 

a range of bond strengths.12 We have recently shown that 

tri-tert-butylphenoxyl (ArO•)12, 33 accomplishes H atom 

abstraction (HAA) from ammonia ligands: triple HAA 

from Mn diphosphine complexes resulting in 

cyclophosphazeniums,34 triple HAA from a Mo(NH3) 

complex, generating a metal imido formed by C-N 

coupling,35 sub-stoichiometric ammonia oxidation from a 

Mo polypyridyl complex,36 and ammonia oxidation 

catalyzed by a Cp*Ru complex.27  

Collman and co-workers reported elegant studies 

on stoichiometric ammonia oxidation to dinitrogen 

(Figure 1), using cofacial diruthenium porphryins.37-38 

Starting from a [Ru(NH3)]2 complex, bridging hydrazine, 

diazene, and dinitrogen complexes were synthesized 

through double oxidation and deprotonation reactions. 

Inspired by their results, we investigated the reactivity of 

a Ru complex with a more readily accessible ligand.39  

Treatment of (TMP)Ru(CO) (TMP = 

tetramesitylporphyrin) with NH3 (1 atm) results in 

formation of (TMP)Ru(CO)(NH3). Photolysis of a 

solution of (TMP)Ru(CO)(NH3) with excess NH3 leads to 

(TMP)Ru(NH3)2 in 96% yield (Scheme 1). The 1H NMR 

spectrum of (TMP)Ru(NH3)2 exhibits an upfield shifted 

ammonia resonance at -6.88 ppm due to porphyrin ring 

currents.40 Single crystals of (TMP)Ru(NH3)2 were grown 
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from slow evaporation of a concentrated THF solution, 

and the structure was determined by X-ray diffraction 

(Figure 2).  

 

Scheme 1.  Synthesis of (TMP)Ru(NH3)2 

 

Figure 2: 50% thermal ellipsoid drawing of 

(TMP)Ru(NH3)2. Solvent and H atoms, except N-H 

bonds, are not shown. Bond distances (Å): Ru-N1: 

2.108(3), Ru-N2: 2.037(2), and Ru-N3: 2.031(2). 

No reaction was observed when 

(TMP)Ru(CO)(NH3) was treated with ArO• and excess 

ammonia. In contrast, in the presence of NH3 and ArO• 

at room temperature, (TMP)Ru(NH3)2 quenched the blue 

color of ArO•. 1H NMR spectroscopic analysis showed 

formation of ArOH and 4-amino-2,4,6-tri-tert-

butylcyclohexa-2,5-dien-1-one (RNH2) that results from 

C-N bond formation with NH3
41-42

 (Scheme 2). Small 

amounts (<4%) of isobutylene are also observed by 1H 

NMR spectroscopy; it was previously reported from 

decomposition of ArO•.43 The catalytic reaction was 

optimized with as low as 0.05 mole % loading of Ru, 

resulting in 610±20 turnovers RNH2, which can be 

isolated as a white solid (65% yield). Control reactions 

with ArO• and 15NH3 in C6D6 (no Ru) show no coupling 

product or 15N2 as measured by 15N NMR spectroscopy.  

 

Scheme 2.  C-N coupling catalyzed by (TMP)Ru(NH3)2.  

RNH2 is proposed to result from C-N coupling 

between the para position of the aryl radical and a Ru-

NHx (x = 0, 1, 2) species that has significant radical 

character on the nitrogen atom.44 Mayer and co-workers 

noted that the predominant resonance structure of ArO• 

has significant radical character on the para carbon.33 

Similar C-N coupling was observed in a CpMo system, 

where H atom abstractions from an ammonia ligand led 

to the formation of a Mo-NHx (x = 0, 1, 2) species that 

couples with the aryloxy radical.35 Oxidation at the 2- or 

4- positions has been observed,45-46 and coupling between 

anilido radicals and ArO• resulting in C-N bond 

formation at the para position has also been reported.43 

Attempts to use TEMPO or ABNO,47 which form weaker 

O-H bonds,12 did not lead to product formation in our 

system.  

 

Scheme 3.  Oxidation of ammonia to N2 catalyzed by 

(TMP)Ru(NH3)2.  

Recognizing the possibility of thwarting the C-N 

coupling by increasing the steric bulk at the para position 

of ArO•, we prepared an aryloxy radical with a trityl 

substituent in the para position, the previously reported 

2,6-di-tert-butyl-4-tritylphenoxyl radical (Ph3C-ArO•) 

(Figure 3).48 Ph3C-ArO• was isolated as dark green 

crystals; it shows good stability over months when stored 

as a solid at -35ºC.49 

 

Figure 3. Structural drawings (50% thermal ellipsoids) of 

Ph3C-ArO• (top left) and Ph3C-ArOH (top right).  

Solvent of crystallization is not shown. Bond distance (Å) 

comparisons (bottom) are consistent with a radical 

centered on the para carbon: a dienone-like structure.33 

 

When (TMP)Ru(NH3)2 was treated with Ph3C-

ArO• and excess 15NH3, the intense green color of the 

radical dissipated over the course of a day. A 15N NMR 

spectrum in C6D6 revealed a sharp singlet at -71.7 ppm 

(vs. CH3
15NO2 = 0 ppm), consistent with the formation of 

free 15N2 (Scheme 3). The 1H NMR spectrum showed 

conversion of Ph3C-ArO• to Ph3C-ArOH. Importantly, 

no C-N coupling product is observed, although, minor 

amounts of isobutylene are again observed. In a control 

experiment, we observed no resonance for 15N2 after 

treating Ph3C-ArO• with 15NH3 in C6D6 for one month at 

22 °C, as judged by an overnight 15N NMR spectrum. 

Catalytic turnover was determined by 

quantifying the liberated N2 gas in the headspace by GC 

(Figure S19, SI).27,36 Treatment of a 1.0 mM solution of 

(TMP)Ru(NH3)2 with Ph3C-ArO• (450 equiv.), then 
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saturated with NH3, produces ~3.3  10-5 moles of N2, 

giving 40(±0.5) turnovers of N2 over the course of one 

day. Decreasing the catalyst concentrations to 0.5 mM or 

0.25 mM gives increased turnovers, reaching 125(±5) per 

Ru (Table S1, SI). Recharging a spent 0.5 mM reaction 

with 540 more equivalents of Ph3C-ArO• and NH3 

produces ~20 more turnovers of N2, showing that the 

ruthenium porphyrin catalyst is still active. The current 

system is limited by the amount and stability of Ph3C-

ArO• in solution, as Ph3C-ArO• has a half-life of ~ 1 day 

in C6D6, as shown by UV-Vis spectroscopy. Analysis of 

the reaction solution by 1H NMR spectroscopy after 

catalysis shows only two main organic products: Ph3C-

ArOH (~90%) and isobutylene (~2%) (Table S2, SI).  

We propose that the dramatically divergent 

catalysis mediated by Ph3C-ArO• relative to ArO• is 

caused by steric differences. While the mesityl groups on 

the porphyrin ring were initially chosen to prevent 

dimerization, the added steric bulk appears to have a 

cooperative effect with Ph3C-ArO• to prevent C-N 

coupling. From the crystal structure of (TMP)Ru(NH3)2, 

the porphyrin pocket, from ortho-methyl to ortho-methyl, 

is approximately ~8.5 Å across and ~3.5 Å deep. 

Comparing the crystal structures of ArO• and Ph3C-

ArO• lends insight. The height (oriented as in Figure 3) 

of ArO• is ~7.4 Å. Replacement of the tert-butyl by a 

trityl group increases the length to ~9.1 Å and the depth 

from ~4.1 to ~8.4 Å in Ph3C-ArO•, making it too big to 

easily fit in the porphyrin pocket (see Figure S22, SI, for 

additional explanation and drawings). We suggest that 

this increase in size impedes the relative rate of C-N 

coupling compared to that of N2 formation, such that 

oxidation to give N2 predominates.   

 

Figure 4. Computed free energies in benzene solvent.  

DFT calculations provide further understanding 

of the observed reactivity (Figure 4). The first two N-H 

BDFEs were computed to be 81.7 and 92.9 kcal/mol, 

which are thermodynamically uphill by 5.0 and 16.2 

kcal/mol, respectively, for hydrogen atom abstraction by 

ArO• (ArO-H BDFE = 77 kcal/mol).12 The third BDFE 

is lower (74.8 kcal/mol). While the second BDFE is 

uphill, previous studies have also found this trend; when 

coupled to a more favorable step (C-N, N-N coupling or 

CO loss), thermodynamically unfavorable HAAs can 

occur.34-35  

Computations show that C-N coupling is 

favorable from both the amido and imido complexes, by 

0.9 and 18.5 kcal/mol (Fig. 4). These favorable steps 

appear to drive the reaction, leading to formation of 

RNH2. Release of the RNH2 product and binding a fresh 

ammonia molecule is exergonic by 10.9 kcal/mol. While 

C-N coupling is more favorable from a RuIV=NH 

intermediate, generation of this species necessitates a 

second, more uphill HAA. Additionally, in order for 

product formation to occur via RuIV=NH, an additional H 

atom would have to be donated (not shown in Figure 4) 

from either previously formed ArOH, or possibly another 

Ru(NH)x (x = 2 or 3) species. Therefore, we favor the 

simplest and lowest energy route for C-N bond formation: 

C-N coupling from RuIII-NH2.  

 

Figure 5.  Possible mechanism for ammonia oxidation 

catalyzed by (TMP)Ru(NH3)2. L = NH3 or vacant site. 

Two types of mechanisms have been invoked for 

N-N bond formation in ammonia oxidation by molecular 

complexes: bimetallic N-N coupling, or nucleophilic 

attack of ammonia on an electrophilic M(NH)x (x = 0, 1, 

or 2) intermediate.21-24, 27-30, 50-54 Multiple mechanistic 

possibilities should be considered, since bimetallic N-N 

coupling could occur at any of the possible intermediates: 

amide, imide, or nitride ligand on the metal. Using 

cofacial Ru porphryins, Collman and co-workers reported 

stoichiometric N-N coupling through a cofacial 

[RuIII(NH2)]2 intermediate.37-38 Their proposal, in 

conjunction with our observed C-N coupling from a 

RuIII(NH2) intermediate, leads us to favor N-N bond 

formation by a bimetallic coupling route of two Ru 

amides, forming a bridging hydrazine ligand (Figure 5). 

We are not aware, however, of additional precedents for 

coupling of two metal amides. Subsequent HAAs could 

then proceed from the bridged, bimetallic complex, akin 

to that proposed by Collman, or dissociation of a Ru 

center could lead to a terminal Ru hydrazine species. 
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HAA from both possible hydrazine intermediates should 

be facile compared to their NH3 analogues. HAAs from 

the terminal hydrazine species would access higher 

oxidation states of Ru, which are well-documented for 

ruthenium porphryins bearing nitrogen-based axial 

ligands.40, 55-58 

In conclusion, we report a new catalyst, 

(TMP)Ru(NH3)2, that catalyzes the oxidation of NH3 to 

N2 under mild conditions using Ph3C-ArO•. The 

scalability (>10 g) and ease of preparation of Ph3C-ArO• 

make it an attractive alternative to ArO•. This catalytic 

system achieves 125(±5) turnovers for oxidation of NH3, 

a significant improvement compared to previously 

reported molecular catalysts. Ongoing work is focusing 

on investigating the mechanism of N-N coupling, 

translating this system to work with earth-abundant 

metals, and converting this system to work under 

mediated electrocatalytic conditions wherein the 

phenoxyl radical can be regenerated.  
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