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Efficient Organocatalytic Hetero-Diels–Alder Reactions of Activated Ketones 
under High Pressure for Direct Access to d-Lactones1
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Abstract: A general and efficient protocol for the high-pressure-
promoted hetero-Diels–Alder reactions of activated ketones has
been developed. The reactions are successfully achieved by thio-
urea-derived organocatalysts, and the desired adducts, convenient
precursors of d-lactones, are obtained in good to high yields.
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d-Lactones and related compounds are an important fam-
ily of molecules that are present in many biologically ac-
tive synthetic and naturally occurring products. d-
Lactones, as well as their open-chain homologues, are key
components of the world’s best-selling drugs, such as
Lipitor and Zocor.2 Hence, a variety of methods for the
synthesis of d-lactones have been developed to date.3

These can be simply classified into four categories: (a) in-
tramolecular lactonization of w-hydroxy acids or their
synthons,4 (b) Baeyer–Villiger oxidation of cyclopen-
tanone derivatives,5 (c) ring-closing metathesis of acrylic
esters,6 and (d) hetero-Diels–Alder (HDA) reaction of car-
bonyl compounds.7 Among these, the latter is particularly
attractive, since the adducts can be easily transformed into
the corresponding d-lactones by simple oxidation.8

However, this synthetic protocol still has some significant
limitations; that is, there are few known examples that in-
volve the use of metal-free organocatalysis, and the reac-
tions are mostly limited to aldehyde dienophiles.8d,9 In
fact, extension of this method to ketone dienophiles would
provide an effective tool for the construction of a highly
congested quaternary carbon center in a single step.10

We thought that the first issue might be solved by taking
advantage of organocatalysts that can activate carbonyl

dienophiles by using multiple hydrogen-bonding interac-
tions, and the second limitation could be overcome by ap-
plying a high-pressure technique to accelerate sluggish
Diels–Alder reactions under normal conditions
(Scheme 1).

Recently, it has been recognized that hydrogen-bonding
activation plays a critical role in organocatalytic DA reac-
tions, and for this purpose thiourea-type catalysts
(Figure 1)11 have attracted considerable attention from
synthetic chemists since the first report by Schreiner and
Wittkopp.12 In addition, high pressure can serve as an ele-
gant means to not only promote DA reactions but also to
stabilize hydrogen-bond scaffolds.13

Figure 1 Structures of thiourea-based organocatalysts 1

Against this background, we started our investigation by
using the reaction between 1-methoxybutadiene (2a) and
methyl benzoylformate (3a) in the presence of thiourea
catalyst 1 in toluene as a model system.14 The results are
summarized in Table 1.15
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Increased pressure dramatically accelerated the rate of the
reaction: at atmospheric pressure only a trace amount of
4a was obtained even in the presence of 30 mol% of 1a,
whereas at 1.0 GPa, the reaction proceeded efficiently to
give 4a in 91% as a 3.4:1 diastereomeric mixture (Table 1,
entries 1 and 2). As expected, the yields decreased at low-
er pressures (Table 1, entries 3 and 4).

The profound effect of catalyst activity is evident: in the
absence of 1a essentially no reaction was observed, and at
lower loadings of the catalyst the product yields gradually
decreased (Table 1, entries 5–7). Among the catalysts
screened, 1a was the best in terms of efficiency, which
indicated that the presence of a 3,5-bis(trifluoro-
methyl)phenyl moiety on both sides of a thiourea frame-
work was essential (Table 1, entry 2 vs. entries 11 and 12).

We also briefly examined the solvent effect in this HDA
reaction: in dichloromethane or in dichloromethane–
toluene mixture a similar result was obtained (71–80%),
while THF led to insufficient conversion, suggesting that
the polar coordinating solvent inhibits the formation of an
effective hydrogen-bonding network between 1a and 3a
(Table 1, entry 2 vs. entries 8–10).

With these optimized conditions in hand for a-keto ester
3a, we then investigated the general scope of this method
by using various combinations of dienes and activated ke-
tones (Table 2).15 In all of these examples, parallel exper-
iments were performed in toluene and dichloromethane.
For ethyl pyruvate (3b) and its trifluoro analogue 3c,
toluene appeared to be a better solvent than dichlo-
romethane, and the adducts 4b and 4c were obtained in
respective yields of 63% and 89% (Table 2, entries 1 and
2).16

Table 1 Effects of Pressure, Catalyst, and Solventa

Entry Catalyst (mol%) Conditions Yield (%)b (dr)

1 1a (30) 0.1 MPa, r.t., 72 h trace

2 1a (30) 1.0 GPa, r.t., 10 h 91 (3.4:1)

3 1a (30) 0.8 GPa, r.t., 72 h 82 (4.9:1)

4 1a (30) 0.4 GPa, r.t., 72 h 58 (3.6:1)

5 – 1.0 GPa, r.t., 10 h 8 (1:2.1)

6 1a (20) 1.0 GPa, r.t., 10 h 86 (4.3:1)

7 1a (10) 1.0 GPa, r.t., 10 h 72 (4.9:1)

8c 1a (30) 1.0 GPa, r.t., 10 h 80 (2.6:1)

9d 1a (30) 1.0 GPa, r.t., 10 h 71 (3.4:1)

10e 1a (30) 1.0 GPa, r.t., 10 h trace

11 1b (30) 1.0 GPa, r.t., 10 h 58 (2.6:1)

12 1c (30) 1.0 GPa, r.t., 10 h 40 (2.4:1)

a Unless otherwise noted, all reactions were carried out using 2a (1.0 
mmol) and 3a (0.25 mmol) in the presence of catalyst 1 in toluene (ca. 
2.5 mL). 
b Isolated yield; dr was determined by 1H NMR.
c In CH2Cl2.
d In CH2Cl2–toluene (1:1).
e In THF.
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Although 1,1,1-trichloroacetone (3d) gave only a com-
plex mixture of products, ketones 3e–h produced the cor-
responding adducts 4e–h in yields of 56–91% in either
solvent (Table 2, entries 3–6). Finally, Danishefsky’s

diene 2b was quite reactive, and, even in the absence of
the catalyst, the reaction with 3a or 3g afforded the re-
spective dihydropyrone derivatives 4i and 4j in good to
high yields after conventional workup (TFA in Et2O).

3 2a

3d

4d

complex complex

4 2a

3e

4e

64
(dr 1:0)

79
(dr 1:1)

5c 2a

3f

4f

76
(dr 2.2:1)

91
(dr 2.3:1)

6 2a

3g

4g

91 71

7 2a

3h

4h

78
(dr 4.8:0)

56
(dr 3.4:1)

8d 2b 3a

4i

86 81

9d,e 2b 3g

4j

38 62

a Unless otherwise noted, all reactions were carried out using 2 (1.0 mmol) and 3 (0.25 mmol) in the presence of 30 mol% of 1a in toluene or 
CH2Cl2 (ca. 2.5 mL).
b Isolated yield; dr was determined by 1H NMR.
c The amount of 1a used was 10 mol%.
d In the absence of catalyst 1a.
e At 0.8 GPa for 12 h.
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Encouraged by these results, we further examined the ap-
plication of the present method to cyclic ketone systems
such as benzofuran-2,3-dione (3i) and N-Boc-isatin (3j)
as an unprecedented carbonyl-dienophile component
(Table 3).

Interestingly, 3i and 3j were sufficiently reactive even at
atmospheric pressure and under 1a-catalyzed conditions
the corresponding spirocyclic adducts 4k and 4l were ob-
tained, albeit slowly, while the uncatalyzed systems were
again useless (Table 3, entries 1, 2, 5, 6).17 On the other
hand, at 0.8–1.0 GPa, the reactions proceeded quite
smoothly for both substrates regardless of the use of cata-
lyst 1a (Table 3, entries 3, 4, 7, 8).

In summary, we have developed a new efficient method
for the HDA reaction of a variety of activated ketones
with dienes in the presence of 1a as an organocatalyst un-
der high pressure. Notably, since HDA products 4 can be
easily oxidized to the corresponding d-lactone deriva-
tives,18 the overall process constitutes a rapid means for
preparing this important family of compounds. Further-
more, it may be easy to extend the present method to
asymmetric versions using chiral thiourea catalysts,11 and
further studies along these lines are now in progress in our
laboratory.
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