SOME REACTIONS OF SILYL– AND GERMYL–SULPHUR COMPOUNDS WITH THE S $^{\text{II}}$ –N BOND

D. A. ARMITAGE AND M. J. CLARK

Department of Chemistry, Queen Elizabeth College, Atkins Building, Campden Hill, Kensington, London, W.8 (Great Britain)

(Received May 8th, 1970)

SUMMARY

Though the reaction of S^{II} -N compounds with thiosilanes is of little use in synthesising disulphides, it does provide a convenient preparative route to silyl- and germylsulphinylamines, R_3M -NSO.

(Ethylthio)trimethylsilane reacts with primary and secondary amines on warming, yielding the aminosilane and ethanethiol¹. This reaction is a specific case

$$Me_3SiSEt + BuNH_2 \rightarrow Me_3SiNHBu + EtSH$$
 (1)

of a more general metathetical reaction involving the Si-S and N-X bonds and this paper considers the case where X is bivalent sulphur.

$$Si-S+N-X \rightarrow Si-N+S-X \tag{2}$$

We have found that N,N-dimethylbenzenesulphenamide reacts with (phenylthio)trimethylsilane on heating to give good yields of diphenyl disulphide and the aminosilane. The (ethylthio)silane gave only a 19% yield of ethyl phenyl disulphide however, so the reaction seems of little use as a synthetic method for unsymmetrical disulphides.

$$Me_3SiSR + PhSNMe_2 \rightarrow Me_3SiNMe_2 + PhSSR$$
 (R = Et or Ph)

Sulphinylamine derivatives of silicon and germanium have been successfully prepared using reaction (2). The starting material for this work, N-(phenylthio)sulphinylamine PhSNSO, (I), has been synthesised by the method of Scherer², and also from N-(trimethylsilyl)suphinylamine (II) and benzenesulphenyl chloride. (I) is an

PhSCl+Me₃SiNSO
$$\rightarrow$$
 PhSNSO \leftarrow SOCl₂+(Me₃Si)₂NSPh
(II) (I)

orange liquid characterised by strong infrared absorptions at 1000 and 1195 cm⁻¹ ascribed to $v_{\text{sym}}(\text{NSO})$ and $v_{\text{asym}}(\text{NSO})$. It reacts exothermically with (phenylthio)trimethylsilane giving (II) in high yield. Both N-(triethylsilyl)sulphinylamine and

$$PhSNSO + Me_3SiSPh \rightarrow Me_3SiNSO + Ph_2S_2$$

N-(trimethylgermyl)sulphinylamine can be prepared by the same method, though the reactants had to be heated. The products show strong infrared absorptions at

 $PhSNSO + Et_3SiSPh \rightarrow Et_3SiNSO + Ph_2S_2$ $PhSNSO + Me_3GeSPh \rightarrow Me_3GeNSO + Ph_2S_2$

about 1100 and 1300 cm⁻¹, as does (II)³, while N-(trimethylgermyl)sulphinylamine also shows a single peak in its PMR spectrum at τ value 9.40.

EXPERIMENTAL

The thiotrimethylsilanes and the thiogermane⁴, benzenesulphenyl chloride and N,N-dimethylbenzenesulphenamide⁵, N-(trimethylsilyl)sulphinylamine³ and N-(phenylthio)hexamethyldisilazane⁶ were all prepared by standard methods. (Phenylthio)triethylsilane was prepared from Et₃SiBr and NaSPh in 42% yield, b.p. 80°/0.1 mm, n_D^{5} 1.5320. (Found: C, 65.3; H, 8.88; S, 14.1. $C_{12}H_{20}SSi$ calcd.: C, 65.3; H, 8.93; S, 14.3%.)

Reaction of N,N-dimethylbenzenesulphenamide with (phenylthio)trimethylsilane

The sulphenamide (3.7 g, 1 mol.) and thiosilane (4.4 g, 1 mol.) were heated to 190°. (Dimethylamino)trimethylsilane (1.9 g, 67%), b.p. 84°, $n_{\rm D}^{25}$ 1.3943, was slowly evolved and recrystallisation of the residue from ethanol gave diphenyl disulphide (3.3 g, 63%), m.p. 62-63°. (Found: C, 66.0; H, 5.1; S, 29.6. $C_{12}H_{10}S_2$ calcd.: C, 66.1; H, 4.6; S, 29.3%.) No depression of the mixture m.p. was observed.

Reaction of N,N-dimethylbenzenesulphenamide with (ethylthio)trimethylsilane

The procedure of the last experiment was employed, yielding (dimethylamino)-trimethylsilane (1.0 g, 35%), b.p. 83°, n_D^{25} 1.3945, and ethyl phenyl disulphide (0.8 g, 19%), b.p., 82°/1.5 mm, n_D^{25} 1.5973. (Found: C, 56.1; H, 5.9; S, 37.8. $C_8H_{10}S_2$ calcd.: C, 56.5; H, 5.9; S, 37.6%)

Reaction of benzenesulphenyl chloride with N-(trimethylsilyl)sulphinylamine

The chloride (5.13 g, 1 mol.) was slowly added to the sulphinylamine (4.80 g, 1 mol.) with cooling and the mixture heated to 130°. Trimethylchlorosilane (3.2 g, 84%), b.p. 58° , n_D^{25} 1.3863, was isolated and vacuum distillation of the residual red oil gave N-(phenylthio)sulphinylamine (5.17 g, 85%), b.p. 80° /0.2 mm, as an orange distillate. (Found: C, 42.1; H, 2.8; N, 8.2. $C_6H_5NS_2O$ calcd.: C, 42.0; H, 2.9; N, 8.2%.)

Reaction of N-(phenylthio)sulphinylamine and (phenylthio)trimethylsilane

The thiosilane (3.82 g, 1 mol.) was added to the sulphinylamine (3.6 g, 1 mol.). The liquids were immiscible but warming occurred at the interface and thorough shaking, with cooling produced discoloration. Warming at 100° for 1 h followed by distillation gave N-(trimethylsilyl)sulphinylamine (2.7 g, 96%), b.p. 106°, n_D^{25} 1.4258. (Found: C, 26.7; H, 6.6; N, 10.6; S, 23.5. C_3H_9SiNSO calcd.: C, 26.7; H, 6.7; N, 10.4; S, 23.7%.) The peaks in the infrared and PMR spectra corresponded with those previously reported³.

Reaction of N-(phenylthio)sulphinylamine and (phenylthio)triethylsilane
Mixing the thiosilane (5.75 g, 1 mol.) and sulphinylamine (4.4 g, 1 mol.)

produced discoloration and after heating at 170° for 2 days, vacuum distillation gave N-(triethylsilyl)sulphinylamine (2.0 g, 44%), b.p. 40°/0.2 mm, n_D^{25} 1.4540. (Found: C, 40.3; H, 8.3; N, 7.4; S, 18.0. $C_6H_{15}SiNSO$ calcd.: C, 40.6; H, 8.5; N, 7.9; S, 18.1%.) $v_{asym}(NSO)$ and $v_{sym}(NSO)$ at 1300 and 1125 cm⁻¹. Recrystallisation of the residue gave diphenyl disulphide (3.0 g, 52%), m.p. 62–63°.

Reaction of N-(phenylthio)sulphinylamine with (phenylthio)trimethylgermane

The germane (7.6 g, 1 mol.) and sulphinylamine (5.6 g, 1 mol.) were heated at 90° till the mixture no longer smelled of phenylthio compounds. Subsequent distillation yielded N-(trimethylgermyl)sulphinylamine (4.9 g, 83%), b.p. 131°, n_D^{25} 1.4555. (Found: C, 20.3; H, 5.2; N, 8.4. C₃H₉GeNSO calcd.: C, 20.1; H, 5.0; N, 7.9%.) $v_{\rm asym}$ (NSO) and $v_{\rm sym}$ (NSO) at 1270 and 1100 cm⁻¹ and a singlet in the PMR spectrum at τ value 9.40.

ACKNOWLEDGEMENT

We thank the College for financial support (M.J.C.).

REFERENCES

- 1 E. W. ABEL, J. Chem. Soc., (1961) 4933.
- 2 O. J. SCHERER AND R. SCHMITT, Chem. Ber., 101 (1968) 3302.
- 3 O. J. SCHERER AND P. HORNIG, Angew. Chem. Int. Ed. Engl., 5 (1966) 729.
- 4 E. W. ABEL AND D. A. ARMITAGE, Advan. Organometal. Chem., 5 (1967) 1.
- 5 E. E. Reid, Organic Chemistry of Bivalent Sulphur, Vol. 1, Chemical Publishing Co., New York, 1958, p. 266.
- 6 O. J. SCHERER AND M. SCHMIDT, Angew. Chem. Int. Ed. Engl., 3 (1964) 150.

J. Organometal. Chem., 24 (1970) 629-631