Hossein Eshghi*, Mehdi Bakavoli, Javad Abedini-Torghabeh, Mohammad Rahimizadeh and Amir Keykha

Synthesis of heterocyclic compounds by reaction of dialkyl acetylenedicarboxylates with thiourea derivatives

Abstract: Phosphorus ylides have been prepared in excellent yields by the three-component reaction of activated electron-deficient acetylenic esters (dimethyl and diethyl acetylenedicarboxylate) and thiourea derivatives in the presence of triphenylphosphine. In some cases, these ylides were cyclized to dihydropyrimidothiazine, thioxoimidazolidine, and thioxotetrahydropyrimidine derivatives.

Keywords: DEAD; DMAD; thiourea derivatives; triphenylphosphine.

and anti-herpes simplex virus HSV-1 agents [8]. An earlier report has indicated that the reaction of dimethyl acetylenedicarboxylate (DMAD) with thienopyrimidine derivatives produces thienopyrimidothiazine derivatives. Some thienopyrimidothiazines are promising antitumor agents against Hep-G2 cells with IC₅₀ <20 μ M [9]. This study aimed to test the reactivity of dialkyl acetylenedicarboxylates towards thiourea derivatives in the presence of triphenylphosphine [10–13] (Schemes 1 and 2).

Results and discussion

The structures of products **3a–c** and **4a–c** were deduced from their IR, ¹H NMR, and ¹³C NMR spectral data. The ¹H

Introduction

Electron-deficient acetylenic esters are versatile reagents for the preparation of stable phosphorus ylides [1, 2]. The reactions of dialkyl acetylenedicarboxylates with 2-mercaptopyrimidine and 2-mercapto-4,6-dimethylpyrimidine in the presence of triphenylphosphine leads to stable phosphorus ylides [3]. Recently, a simple synthesis of stable phosphorus ylides derived from imidazolidine-2-thione [4], one-pot synthesis of α -amino esters with β -phosphorus substituents [5], chemoselective synthesis of sulfur containing organic compounds, and threecomponent reaction among triphenylphosphine, dialkyl acetylenedicarboxylate, and 4-amino-5-alkyl-2,4-dihydro-1,2,4-triazole-3-thiones have been reported [6]. Several heterocyclic compounds possessing a bridgehead thiazole or thiazine moiety play a vital role in many biological activities [7]. Such heterocyclic systems have found broad application in drug development as the anti-HIV-1

^{*}Corresponding author: Hossein Eshghi, Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran, e-mail: heshghi@um.ac.ir Mehdi Bakavoli, Javad Abedini-Torghabeh, Mohammad Rahimizadeh and Amir Keykha: Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

4b-(Z): 55%,4b-(E): 45%

Scheme 2

NMR and ¹³C NMR spectra of phosphorus ylides **3a-c** are consistent with a mixture of two rotational isomers. The ylide moiety of these compounds is strongly conjugated with the adjacent carbonyl group, and rotation about the partial double bond in 3-(E) and 3-(Z) geometrical isomers is low on the NMR timescale at ambient temperature (Scheme 3).

Stable rotamers of phosphoranes have been previously reported in the literature [14–16]. However, in cyclized products 4a-c, only in 4b two isomers which correlate with E and Z isomers of exo double bonds are observed. We suggest that in the intermediate product 3d a nucleophilic attack of secondary amine is restricted and only thione attack is possible to give 4a (Scheme 4).

Scheme 3

In other cases, nucleophilic attack of primary amine competes with thione attacks. In the case of methyl esters, the formation of a five-membered ring is favored but with ethyl esters a six-membered ring is formed by attack on the reactive carboxyl group.

The ¹H NMR spectrum of **3a** is consistent with the given structure. The ¹³C NMR spectrum of **3a** displays 34 distinct resonances in agreement with the presence of a mixture of two rotamer structures. Although the presence of the ³¹P nucleus complicates both the ¹H NMR and ¹³C NMR spectra of 3a, it helps in the assignment of signals by long-range spin-spin couplings with ¹H and ¹³C nuclei. The ¹H NMR and ¹³C NMR spectra of **3b** and **3c** are similar to those of **3a**, except for the signals from the ester groups. The structural assignments made for phosphoranes **3a-c** on the basis of the ¹H NMR and ¹³C NMR spectra are also supported by their IR spectra.

Conclusion

The procedure described herein provides an acceptable method for preparation of highly stable phosphorus ylides. In some cases, these ylides can be cyclized to dihydropyrimidothiazine, thioxoimidazolidine, and thioxotetrahydropyrimidine derivatives.

Experimental

General

Melting points were measured on an Electrothermal 9100 melting point apparatus and are uncorrected. IR spectra were measured on an AVATAR 370 FT-IR Thermo Nicolet Infrared spectrophotometer. ¹H

and ¹³C NMR spectra were recorded on a BRUKER DRX-400 AVANCE spectrometer at 400 MHz and 100 MHz, respectively.

General procedure for the preparation of phosphorus ylides 3a–f and compounds 4a–c

At ambient temperature, dimethyl acetylenedicarboxylate (0.24 mL, 2 mmol) was added dropwise to a stirred solution of triphenylphosphine (0.53 g, 2 mmol) and a thiourea derivative (2 mmol) in toluene (7 mL). After the addition was complete (approximately 10 min), the mixture was heated under reflux for an additional 2 h. The solvent was removed under reduced pressure and the residue was crystal-lized from ethyl acetate and then from ethanol.

Diethyl 2-(2-thioxotetrahydropyrimidin-1(2H)-yl)-3-(triphenylphosphoranylidene) succinate (3a) Yellowish powder; yield 96% for the mixture, 71% for major isomer (Z)-3a; mp 191–193°C; ¹H NMR (DMSO- d_6) for (**Z**)-**3a**: δ 0.33 (t, ${}^{3}J_{HH} =$ 7.2 Hz, CH₃), 1.33 (t, ${}^{3}J_{HH} =$ 7.2 Hz, CH₃), 1.81-1.90 (m, 2CH₂), 3.01-3.10 (m, 4CH₂), 3.45-4.13 (m, 4CH₂), 5.79 (d, ${}^{3}J_{PH} = 18.8$ Hz, P=C-CH), 7.53–7.66 (m, 30H, arom); ${}^{13}C$ NMR (DMSO- d_{λ}) for (**Z**)-3a: δ 14.2 and 14.7 (2CH₃), 21.4 (2CH₂), 57.3, and 60.4 (20CH₂), 41.9 (d, ${}^{1}J_{PC}$ = 126.4 Hz, P=C), 63.5 (d, ${}^{2}J_{PC}$ = 18.0 Hz, P=C-CH), 126.7 (d, ${}^{1}J_{PC} = 90.0$ Hz, C_{ipso}), 129.4 (d, ${}^{3}J_{PC} = 12.0$ Hz, C_{meta}), 132.6 (d, ${}^{4}J_{PC} = 2.0$ Hz, C_{para}), 133.6 (d, ${}^{2}J_{PC} = 9.0$ Hz, C_{ortho}), 169.0 (d, ${}^{3}J_{PC} = 13.0$ Hz, 2C=O), 171.8 (d, ${}^{3}J_{PC} = 15.0$ Hz, 2C=O), 177.4 (1C=S); yield 25% for minor isomer (E)-3a; ¹H NMR (DMSO- d_{s}) for (E)-3a: δ 0.98 (t, ${}^{3}J_{HH} = 7.2$ Hz, CH₃), 1.28 (t, ${}^{3}J_{HH} = 7.1$ Hz, CH₃), 5.83 (d, ${}^{3}J_{PH} =$ 20.4 Hz, P=C-CH) ppm; ¹³C NMR (DMSO-*d*₆) for (*E*)-3a: δ 14.6 and 15.1 $(2CH_3)$, 58.0 and 60.4 $(2OCH_2)$, 41.5 (d, ${}^1J_{PC} = 128.4$ Hz, P=C), 62.8 (d, ${}^{2}J_{PC} = 17.9 \text{ Hz}, P=C-CH), 126.0 \text{ (d, } {}^{1}J_{PC} = 91.0 \text{ Hz}, C_{inso}), 177.8 \text{ (1C=S); IR:}$ v 3444, 1743, 1732 cm⁻¹. Anal. Calcd for C₂₀H₂₂N₂O₄PS: C, 65.68; H, 6.06; N, 5.11; S, 5.84. Found: C, 65.65; H, 6.04; N, 5.08; S, 5.81. (Data for two rotamers.)

Dimethyl 2-(2-thioxoimidazolidin-1-yl)-3-(triphenylphosphoranylidene) succinate (3b) White powder; yield 95% for the mixture, 58% for major isomer (**Z**)-3b; mp 267–271°C (dec.); ¹H NMR (CDCl₃) for (**Z**)-3b: δ 3.75 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 3.81–4.10 (m, 8H, 2CH₂), 5.01 (d, ³*J*_{PH} = 18.8 Hz, P=C-CH), 7.25–7.76 (m, 30H, arom), 7.65 (s, 1H, NH); ¹³C NMR (CDCl₃) for: δ 39.51 and 39.86 (2CH₃), 43.75 and 44.03 (2CH₂), 49.0 (d, ¹*J*_{PC} = 125.4 Hz, P=C), 51.8 (d, ²*J*_{PC} = 17.5 Hz, P=C-CH), 126.5 (d, ¹*J*_{PC} = 90.0 Hz, *C*_{ipso}), 129.0 (d, ³*J*_{PC} = 11.5 Hz, *C*_{meta}), 133.4 (d, ⁴*J*_{PC} = 2.0 Hz, *C*_{para}), 132.5 (d, ²*J*_{PC} = 8.5 Hz, *C*_{ortho}), 181.3 (d, ²*J*_{PC} = 12.5 Hz, 2C=O); yield 37% for minor isomer (**E**)-3b; ¹H NMR (CDCl₃) for (**E**)-3b: δ 3.55 (s, 3H, CH₃), 3.76 (s, 3H, CH₃), 5.15 (d, ³*J*_{PH} = 20.4 Hz, P=C-CH), 7.78 (s, 1H, NH); ¹³C NMR (CDCl₃) for (**E**)-3b: δ 41.1 and 41.2 (2CH₃), 43.8 and 44.1 (2CH₂), 49.9 (d, ¹*J*_{PC} = 127.3 Hz, P=C), 51.9 (d, ²*J*_{PC} = 17.5 Hz, P=C-CH), 125.3 (d, ¹*J*_{PC} = 92.5

References

 Hassanabadi, A.; Hosseini-Tabatabaei, M. R.; Shahraki, M.; Anary-Abbasinejad, M.; Ghoroghchian, S. An efficient one-pot Hz, C_{ipso} ; IR: v 3464, 1742, 1631 cm⁻¹. Anal. Calcd for $C_{27}H_{27}N_2O_4PS$: C, 64.02; H, 5.37; N, 5.53; S, 6.33. Found: C, 63.95; H, 5.34; N, 5.51; S, 6.35. (Data for two rotamers.)

Diethyl 2-(2-thioxoimidazolidin-1-yl)-3-(triphenylphosphoranylidene) succinate (3c) White powder; yield 89% for the mixture, 65% for major isomer (**Z**)-**3c**; mp 184–186°C; ¹H NMR (DMSO- d_{e}) for (**Z**)-**3c**: δ 0.35 (t, ³ $J_{\rm HH}$ = 7.2 Hz, CH₃), 1.25 (t, ³ $J_{\rm HH}$ = 7.2 Hz, CH₃), 2.40–2.60 (m, 8H, 4CH₂), 3.41–4.35 (m, 8H, 4CH₂), 4.85 (d, ³ $J_{\rm PH}$ = 18.5 Hz, P=C-CH), 7.34–7.71 (m, 30H, arom) 7.9 (s, 1H, NH); yield 35% for minor isomer (**E**)-**3c**; ¹H NMR (DMSO- d_{e}): δ 1.25 (t, ³ $J_{\rm HH}$ = 7.2 Hz, CH₃), 1.34 (t, ³ $J_{\rm HH}$ = 7.1 Hz, CH₃), 5.21(d, ³ $J_{\rm PH}$ =20.4 Hz, P=C-CH), 7.82 (s, 1H, NH); IR v 3431, 1743, 1633. Anal. Calcd for C₂₉H₃₁N₂O₄PS: C, 65.15; H, 5.84; N, 5.24; S, 6.00. Found: C, 65.12; H, 5.81; N, 5.22; S, 5.97. (Data for two rotamers.)

Methyl 2-oxo-2,6,7,8-tetrahydropyrimido[**2,1-b**][**1,3**]**thiazine-4-carboxylate (4a)** Yellowish powder; yield 86%; mp 173–175°C; 'H NMR (CDCl₃): δ 2.05 (m, 2H, CH₂), 3.61–3.92 (m, 4H, CH₂), 3.90 (s, 3H, CH₃), 6.90 (s, 1H, CH); ¹³C NMR (CDCl₃): δ 19.5, 40.5, 46.8, 52.5, 115.2, 142.2, 150.3, 163.6, 166.5; IR: v 1720, 1689. Anal. Calcd for $C_9H_{10}N_2O_3S$: C, 47.78; H, 4.45; N, 12.38; S, 14.17. Found: C, 47.80; H, 4.43; N, 12.37; S, 14.15.

Methyl 2-(5-oxo-3-phenyl-2-thioxoimidazolidin-4-ylidene) acetate (4b) Yellow powder; yield 84% for the mixture, 55% for major isomer (**Z**)-4b; mp 246–249°C ¹H NMR (DMSO-*d*₆) for (**Z**)-4b: δ 3.95 (s, 3H, CH₃), 6.75 (s, 1H, C=CH), 12.2 (2H, broad, NH); yield 29% for minor isomer (**E**)-4b; ¹H NMR (CDCl₃) for (**E**)-4b: δ 3.81 (s, 3H, CH₃), 6.65 (s, 1H, C=CH); ¹³C NMR (CDCl₃) for (**E**)-4b: δ 52.0, 107.0, 128.4, 129.0, 133.0, 152.7, 164.7, 165.6, 166.4; IR: v 3280, 1711, 1681. Anal. Calcd for C₁₂H₁₀N₂O₃S: C, 54.95; H, 3.84; N, 10.68; S, 12.23. Found: C, 54.94; H, 3.81; N, 10.64; S, 12.19. (Data for two isomers.)

Ethyl 6-oxo-3-phenyl-2-thioxo-1,2,3,6-tetrahydropyrimidine-4carboxylate (4c) Yellow powder; yield 85%; mp 182–185°C; ¹H NMR (CDCl₃): δ 1.31 (t, ${}^{3}J_{\rm HH} = 7.2$ Hz, CH₃), 4.25 (q, ${}^{3}J_{\rm HH} = 7.5$ Hz, CH₂), 6.9 (s, 1H, C=CH), 7.17–7.45 (m, 5H, arom), 8.57 (s, 1H, NH); ¹³C NMR (CDCl₃): δ 14.1, 61.9, 117.6, 122.6, 125.1, 126.7, 127.8, 129.6, 130.2, 142.4, 166.1, 169.6, 181.2; IR: v 3422–3272, 1685, 1708. Anal. Calcd for C₁₃H₁₂N₂O₃S: C, 56.51; H, 4.38; N, 10.14; S, 11.60. Found: C, 56.47; H, 4.34; N, 10.12; S, 11.57.

Acknowledgment: We are grateful to the Department of Chemistry, Ferdowsi University of Mashhad, Iran for financial support (grant no. 49-P-24–01–89).

Received March 13, 2013; accepted April 16, 2013; previously published online July 6, 2013

synthesis of 1,3,5-substituted-1H-pyrazoles derivatives. *J. Chem. Res. Syn.* **2011**, *35*, 11–14.

- [2] Charati, F. R.; Moghimi, M.; Maghsoodlou, M. T.; Habibi-Khorasani, S. M.; Hossaini, Z.; Maleki, N.; Skelton, B.
 W.; Makha, M. Synthesis and dynamic NMR study of a functionalized sulfonamide phosphonate diester. *Phosphorus Sulfur Silicon Relat. Elem.* 2011, 186, 1428–1435.
- [3] Saghatforoush, L.; Maghsoodlou, M. T.; Aminkhani, A.; Marandi, G.; Kabiri, R. One-pot synthesis of stable phosphonium ylides using 2-mercaptopyrimidine derivatives. *J. Sulfur Chem.* 2006, *27*, 583–588.
- [4] Mosslemin, M. H.; Anary-Abbasinejad, M.; Hassanabadi, A.; Bagheri, M. A. Three-component reaction between triphenylphosphine, dialkyl acetylenedicarboxylate and 4-amino-5-alkyl-2,4-dihydro-1,2,4-triazole-3-thiones: an efficient one-pot synthesis of stable phosphorus ylides. J. Sulfur Chem. 2010, 31,135–139.
- [5] Adib, M. Simple synthesis of stable phosphorus ylides derived from imidazolidine-2-thione. *Phosphorus Sulfur Silicon Relat. Elem.* 2005, 180, 2701–2707.
- [6] Yavari, I.; Sanaeishoar, T.; Ghazvini, M.; Iravani, N. Solvent-free synthesis of functionalized 2,3-dihydrothiazoles from isothiocyanates, primary alkylamines, and 2-chloro-1,3-dicarbonyl compounds. J. Sulfur Chem. 2010, 31, 169–176.
- [7] Swarnkar, P. K.; Kriplani, P.; Gupta, G. N.; Ojha, K. G. Synthesis and antibacterial activity of some new phenothiazine derivatives. J. Chem. 2007, 4, 14–20.
- [8] Hassan, N. A. Novel synthesis of S-glycosides derived from 5,6-di-substituted thieno[2,3-d]pyrimidin-4-one-2-thiones. J. Sulfur Chem. 2005, 26, 343–352.
- [9] Ashraf, A. A. Thieno[2,3-d]pyrimidines in the synthesis of antitumor and antioxidant agents. *Arch. Pharm. Chem. Life Sci.* 2010, 343, 301–309.

- [10] Anary-Abbasinejad, M.; Khaksari, Z.; Hassanabadi, A. Cheminform abstract: three-component reaction of triphenylphosphine, dialkyl acetylenedicarboxylates, and heterocyclic rings and the related iminophosphoranes. Synth. Comm. 2012, 42, 204–212.
- [11] Caesar, J.; Griffiths, D. V.; Griffiths, P. A.; Tebby, T. J. Reactions of ylides formed from trialkyl phosphites with dialkyl acetylenedicarboxylates in the presence of carbon dioxide. *J. Chem. Soc. Perkin Trans.* 1, **1990**, *24*, 2329–2333.
- [12] Islami, M. R.; Abedini-Torghabeh, J.; Fatemi, S. J.; Hassani, Z.; Amiry, A. An efficient and novel protocol for the synthesis of pyrazolo[5,1-*a*]isoindole derivatives. *Synlett* 2004, 10, 1707–1710.
- [13] Mansouri, A.; Hassani, Z.; Islami, M. R. Synthesis of oxo-phosphoranylidene aminobenzoic acid derivatives by a multicomponent reaction. *Phosphorus Sulfur Silicon Relat. Elem.* 2010, 185, 1753–1758.
- [14] Ahn, S.; Langenhahn, V.; Sperber, W.; Beck, W.;
 Fehlhammer, W. Reactions of "in-situ" generated
 Cr(CO)5CN-C(Cl)-PR3 (R = Ph, NMe₂) with potential dipolarophiles. New examples of [3 + 2] cycloadditions with
 concomitant interligand C-C bond formation. *Zeitschr. Anorg.*Allgem. Chem. 2010, 636, 492–498.
- [15] Asghari, S.; Salimi, A.; Taghipour, V. An efficient one-pot synthesis of 2,3-dialkyl-1,1-diethyl-1-(acetylamino)-3-(1,1,1-triphenylphosphanilidene)-1,1,2,3-ropanetetracarboxylates and their temperature-dependent NMR spectra. *Phosphorus Sulfur Silicon Relat. Elem.* 2012, 187, 669–676.
- [16] Yavari, I.; Azad, L.; Sanaeishoar, T. Triphenylphosphinemediated chemoselective synthesis of functionalized thiazol-2(5*H*)-ones. *Monatsh. Chem.* 2011, 142, 177–182.