Phytochemistry 1974 Vol 13 pp 284 to 285 Pergamon Press Printed in England

FLAVONOID AND TERPENOID CONSTITUENTS OF EUPATORIUM ODORATUM

SUNIL K TALAPATRA, DURGA S BHAR and BANI TALAPATRA

Department of Chemistry University College of Science Calcutta 700009 India

(Received 14 June 1973 Accepted 9 July 1973)

Key Word Index--Eupatorium odoratum, Compositae flavone salvigenin triterpenoids lupcol β -amyrin

Eupatorium odoratum (Compositae, Subfam Corymbiferoe), distributed in temperate Himalayas, belongs to the tribe Eupatorieae ¹ The plant is used in the country as fish poison ² Isolation of a number of flavonoid compounds ³ from several Eupatorium species, ⁴ and a host of sesquiterpenoids from different Compositae plants prompted us to investigate the constituents of Eupatorium odoratum Earlier workers reported a sesquiterpene alcohol eupatol, ⁵ in its essential oil, and a trihydric alcohol, $C_{25}H_{34}O_5$ (m.p. 278-280) along with anisic acid ⁶ The present study has revealed the occurrence of two common triterpene alcohols, lupeol and β -amyrin, and a rarely occurring flavone, salvigenin (1) (first natural occurrence in Compositae) reported recently from Salvia triloha (Labiatae) and Alnus japonica (Betulaceae)

The cold light petrol (b p 60–80) extract of the whole plant (3 kg) upon concentration yielded an oily residue (free from basic component). The latter was chromatographed over silica gel (660 g). Elution with CHCl₃ gave a solid crystallizing from CHCl₃-light petrol in pale yellow needles (yield 0.01°_{0}), m.p. 185–186°, R_f 0.4 (TLC on silica gel, CHCl₃), analyzed for $C_{18}H_{16}O_6$ (M⁺ 328). A pink coloration in Shinoda test and the UV spectrum [\mathcal{I}_{max}^{110H} 274 nm (ϵ 18 700) and 330 nm (ϵ 26 500)] are characteristic of a flavonoid. The compound gave an intense green colour with FeCl₃ but no IR band for OH indicating the probable presence of a 5-OH. This was supported by the appropriately deshielded phenolic proton (1H, ϵ 12 76 ppm exchangeable with D₂O) and IR bands at 1635.

¹ Bentham G (1865) Hand Book of British Flora Vol 1 p 413 Lovell Reeve London

² CHOPRA R N NAYER S L and CHOPRA I C (1956) Glossary of Indian Medicinal Plants p 113 Publications and Information Directorate CSIR New Delhi

³ HARBORNI J B (1967) Comparative Biochemistry of Flavonoids Academic Press London

⁴ Kupchan, S. M. Sigil, C. W. Himingway, R. J. Knox, J. R. and Udayamurthi, M. S. (1969) *Tetrahedron* **25**, 1603. Wagner, H., Jyenger, M. A. Horhammer, L. and Herz, W. (1972) *Phytochemistry* **10**, 1504.

⁵ CHOPRA R N CHOPRA I C and VARMA B S (1969) Supplement to the Glossaix of Indian Medicinal Plants p 28 Publications and Information Directorate CSIR New Delhi

⁶ AHMAD M (1969) Sci Res (Dacca Pak) 6, 37

⁷ ULUBILIN A OZTURK S and ISH DATICES (1968) J. Phaim. Sci. 57, 1037

⁸ WOLLINWEBER E and Wassum M (1972) Tetrahedron Letters 797

(chelated CO) and 830 cm⁻¹ (*p*-substituted phenyl ring) The 100 MHz PMR spectrum (CDCl₃, δ) displayed the following signals in addition to the signal at 12 76 ppm which fit in well with structure (1) 3 90, 3 94, 3 98 (3H, *s* each, three OMe's), 6 54 and 6 58 (1H, *s* each, H-3 and H-8), 7 84* (2H, *d*, H-2' and H-6'), 7 02* ppm (2H, *d*, H-3' and H-5', $J_{2',3'}$ or $J_{5',6'}$ 9 Hz) All the above data suggested its identity with salvigenin (1), which was confirmed by the preparation of the corresponding acetate, (Ac₂O-Py, R_t 24 hr), mp 166–167° (lit ⁸ 169–172°) and the fully methylated product (MeI-K₂CO₃ in refluxing acetone, 6 hr), mp 159–160° (lit ⁹ 162–163°) The MS measured in a Hitachi Perkin Elmer Spectrometer at 70 eV [m/e 328 (M⁺), 313, 299, 285, 282, 269, 253, 214, 181, 167, 153, 135, 133, 132] is in full agreement with the assigned structure and is similar† to that reported earlier ⁸

From the main chromatogram, C_6H_6 eluted in poor yield (0 005%) a solid containing mainly lupeol (R_f 0 38) mixed with small amount (estimated to be 3–5% from relative intensities of the spots) of β -amyrin (R_f 0 42) as evident from TLC comparison on silica gel plates impregnated with 12 5% AgNO₃ (C_6H_6 –50% CHCl₃, spots developed by spraying with EtOH–5% Ac₂O–5% conc H_2 SO₄ followed by heating at 120° for 15 min) with authentic materials and their respective acetates (lupeol acetate 0 35, β -amyrin acetate 0 54–light petrol –50% C_6H_6) and benzoates (lupeol benzoate 0 86, β -amyrin benzoate 0 92–light petrol –50% C_6H_6) Several successive chromatographies of the crude acetate over Brockmann alumna afforded pure lupeol acetate, mp 215°, [hydrolysis product, mp 213° (CHCl₃–MeOH), [α]_D +26°, identified (m mp, IR) as lupeol] The other fractions contained lupeol acetate enriched with β -amyrin acetate which, however, could not be isolated in pure state due to paucity of material

The cold CHCl₃ extract of the marc, when processed in a similar way, yielded the same compounds in low yields, (salvigenin 0.006%, lupeol and β -amyrin mixture 0.0014%) A voucher specimen No T/E o /3/72 has been preserved in this laboratory

Acknowledgements—We thank Dr R S Kapil, C D R I, Lucknow, Professor A Chakrabarti, I I T, Kanpur and Dr S Balasubrahmanyam, I I S, Bangalore for spectral measurements, and U G C (India) for the award of a Research Fellowship to one of us (D S B)

^{*} Ulubelen et al 7 erroneously assigned H-2', H-3', H-5 and H-6' as singlets at 7 93, 7 1, 6 93 and 7 68 ppm respectively

[†] The intensities of the peaks at m/e 167 (4 4%) and 135 (8 8%) were much less than those reported earlier (51 and 19% respectively)

⁹ GEISSMAN, T A (1962) The Chemistry of Flavonoid Compounds, p 421, Pergamon Press, Oxford