

MOLECULAR CRYSTALS AND LIQUID CRYSTALS	
LETTERS SECTION THE ADDRESS SECTION THE ADDRESS SECTION ADDRES	
C and a set and the set of the set	1000

Molecular Crystals and Liquid Crystals

ISSN: 1542-1406 (Print) 1563-5287 (Online) Journal homepage: http://www.tandfonline.com/loi/gmcl20

Synthesis, Characterization, and Structural Investigations of 1-(3-morpholinopropyl)-3-(4chlorobenzoyl)thiourea monohydrate and 1-(3morpholinopropyl)-3-(4-methylbenzoyl)thiourea monohydrate

Ibrahim Abdul Razak, Suhana Arshad, Kaliyaperumal Thanigaimani, Mohd Sukeri Mohd Yusof, Sharifah Sakinah Abdullah & Azhar Abdul Rahman

To cite this article: Ibrahim Abdul Razak, Suhana Arshad, Kaliyaperumal Thanigaimani, Mohd Sukeri Mohd Yusof, Sharifah Sakinah Abdullah & Azhar Abdul Rahman (2015) Synthesis, Characterization, and Structural Investigations of 1-(3-morpholinopropyl)-3-(4chlorobenzoyl)thiourea monohydrate and 1-(3-morpholinopropyl)-3-(4-methylbenzoyl)thiourea monohydrate, Molecular Crystals and Liquid Crystals, 616:1, 151-175, DOI: 10.1080/15421406.2014.990786

To link to this article: http://dx.doi.org/10.1080/15421406.2014.990786

.

Published online: 25 Sep 2015.

Submit your article to this journal

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gmcl20 Mol. Cryst. Liq. Cryst., Vol. 616: pp. 151–175, 2015 Copyright © Taylor & Francis Group, LLC ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421406.2014.990786

Synthesis, Characterization, and Structural Investigations of 1-(3-morpholinopropyl)-3-(4-chlorobenzoyl)thiourea monohydrate and 1-(3-morpholinopropyl)-3-(4methylbenzoyl)thiourea monohydrate

IBRAHIM ABDUL RAZAK,^{1,*} SUHANA ARSHAD,¹ KALIYAPERUMAL THANIGAIMANI,¹ MOHD SUKERI MOHD YUSOF,² SHARIFAH SAKINAH ABDULLAH,² AND AZHAR ABDUL RAHMAN¹

¹School of Physics, Universiti Sains Malaysia, USM, Penang, Malaysia
²Faculty of Science and Technology, Department of Chemical Sciences, Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Terengganu, Malaysia

Two new compounds, 1-(3-morpholinopropyl)-3-(4-chlorobenzoyl)thiourea monohydrate (**I**) and 1-(3-morpholinopropyl)-3-(4-methylbenzoyl)thiourea monohydrate (**II**) have been synthesized and characterized by FT-IR, ¹H NMR, ¹³C NMR, and Single-Crystal X-Ray Diffraction analyses. Theoretical investigations have been calculated by using DFT method of B3LYP/6-31G + (2d,p) and B3LYP/6-311G + (2d,p) basis sets. Each compound contains a water molecule, forming intra and intermolecular hydrogen bonds with other molecules and further stabilizes the crystal structure. Theoretical calculations of bond parameters, harmonic vibration frequencies, and isotropic chemical shifts are in good agreement with the experimental results. The observed intermolecular interactions in the crystal packing are the main cause of the calculated torsion angles, molecular vibrations, and chemical shifts. The calculated molecular vibrations show good correlation values ranging from 0.995, 0.996, and 0.997 with the experimental data, where the higher basis set fits the experimental results better.

Keywords Crystal Structure; DFT Studies; Spectroscopy; Thiourea

1. Introduction

Studies on benzoylthiourea derivatives have become one of the interesting subjects due to its potential as neutral ligands. The sulphur, nitrogen, and oxygen donor atoms provide a multitude of bonding possibilities [1, 2]. These compounds are able to coordinate the

^{*}Address correspondence to Ibrahim Abdul Razak, X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia 1800, USM, Penang, Malaysia; E-mail: arazaki@usm.my

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gmcl.

Figure 1. The ORTEP diagram of compound I with 50% probability displacement ellipsoid.

metal ion where the ligands typically bond as monoanions through S, N, or O [3, 4] atom. Substituted thiourea derivatives, however, show more diverse coordination chemistry due to their conformational isomerism, steric effects, and presence of donor sites on the substituent groups and intramolecular interactions [5–8]. Thiourea derivatives can be regarded as model compounds for different intra and intermolecular interactions involving S atoms [9, 10]. The coordination chemistry of substituted thioureas has been applied to many interesting fields such as corrosion inhibitor [11–14], agricultural sector [15, 16], pharmaceutical sector [17], catalyst [18–20], and biological sector [21–25].

In the present, computational studies have been widely used because it helps to simulate chemical structures and reactions numerically, based in full or in part on the fundamental law of physics [26]. In order to produce accurate results, choosing the suitable method and the basis set is indeed an important procedure. Studies [2, 27, 28] have shown that the use of DFT (Density Functional Theory)/B3LYP (Becke's three-parameter hybrid method, Lee, Yang and Parr) method is in a good agreement with the observed data compared to the HF (Harthree Fock) method. DFT study includes the effect of electron correlation in the calculation, whereas HF only considers what each electron sees and reacts to an average electron density [26]. In addition, the use of larger basis sets imposes fewer constraints on electrons and more accurately approximate exact molecular orbitals [26].

In continuation of our previous studies [29–32], 1-(3-morpholinopropyl)-3-(4chlorobenzoyl)thiourea monohydrate and 1-(3-morpholinopropyl)-3-(4-methylbenzoyl) thiourea monohydrate, namely compound I and compound II, have been synthesized and characterized using FTIR, ¹H NMR, and ¹³C NMR. In order to study their intra- and intermolecular hydrogen bond interactions, the three-dimensional structures of the studied crystal structures were examined by X-Ray crystallography technique. DFT method of B3LYP had been employed to optimize the structure of compounds I and II at 6-31G + (2d,p) and 6-311G + (2d,p) levels. Herein, we reported the results of geometrical parameters, fundamental frequencies, and GIAO ¹H and ¹³C NMR chemical shift for both basis sets. In combination of the experimental results and quantum chemical calculations, we would like to explore the effect of intra- and intermolecular hydrogen bonds of I and II at two different basis sets, and to compare predictions made from calculated results with the experimental data that correlates well to which basis set.

Figure 2. The ORTEP diagram of compound II with 50% probability displacement ellipsoid.

2. Results and Discussion

2.1. X-Ray Crystal Structures

The molecular structure of 1-(3-morpholinopropyl)-3-(4-chlorobenzoyl)thiourea monohydrate (**I**) and 1-(3-morpholinopropyl)-3-(4-methylbenzoyl)thiourea monohydrate (**II**) were confirmed by the result of a single crystal X-ray structure diffraction study. Fig. 1 and 2 show the ORTEP diagram of the molecular structure with 50% probability displacement ellipsoids of compounds **I** and **II** respectively. Water molecules (O1W) are trapped in the asymmetric unit of the title compounds, **I** and **II**. The compounds had different parasubstituted atoms of the phenyl ring, which were chlorine atom in **I** and methyl group in **II**. The selected bond lengths and angles are listed in Table 1 and the hydrogen bonding parameters are listed in Table 2.

All bond lengths and angles were in the normal range and comparable to the related structures [29–32]. The bond lengths of N1–C7 [1.3762(16) Å for compound I and 1.386(2) Å for compound II], N1 C8 [1.3959(16) Å for compound I and 1.393(2) Å for compound II] and N2–C8 [1.3246(17) Å for compound I and 1.321(2) Å for compound II] were shorter than the normal bond length of N–C, which was 1.472 Å. Shorter bond length indicated a partial double bond character along with resonance interactions within the carbonylthiourea group. The same resonance interaction was observed for S–C bond [normal S–C single bond = 1.82 Å and normal S=C double bond = 1.56 Å], where the bond lengths of S1–C8 for compounds I and II were 1.6755(14) Å and 1.6880(18) Å, respectively.

Both compounds adopted *trans-cis* configurations with respect to the position of 4-chlorobenzoyl and 4-propylmorpholine for compound **I** and 4-methylbenzoyl and 4-propylmorpholine for compound **II** relative to the S1 atom across their C8-N1 and C8-N2 bonds, which were comparable to the previously reported structures [33,34]. It was found that the intramolecular hydrogen bond between the oxygen atom in the C=O group and the hydrogen atom of the thiourea moiety was favored by the formation of a six-membered ring. In each compound **I** and **II**, an intramolecular N2-H1N2... O2 hydrogen bond was observed with nonbonding distances of N... O and the angles of N-H... O at 2.6257(15) Å/139.5 (18)° and 2.638(2) Å/135(3)°, respectively. The dashed line in the ORTEP diagram presented in Fig. 1 and Fig. 2 shows the intramolecular hydrogen bond of the compound. The slight differences in bond lengths and angles for both compounds were due to the

Tab	le 1. Selected expe	rimental and calculated	geometrical parameters	(values in Å and de	sgrees) for compounds]	I and II
		Compound I			Compound II	
Parameters	Experimental	Calculated B3LYP/ 6-31G +(2d,p)	Calculated B3LYP/ 6-311G +(2d,p)	Experimental	Calculated B3LYP/ 6-31G + (2d,p)	Calculated B3LYP/ 6-311G + (2d,p)
			Bond lengths (Å)	1		
S1-C8	1.6755(14)	1.68929	1.68835	1.6880(18)	1.69321	1.69229
01-C14	1.4251(16)	1.42038	1.42142	1.427(3)	1.42087	1.42205
01-C13	1.4305(19)	1.42125	1.42214	1.423(2)	1.42113	1.42233
02-C7	1.2287(16)	1.23011	1.22811	1.226(2)	1.23084	1.22874
N1-C7	1.3762(16)	1.38120	1.38044	1.386(2)	1.38492	1.38418
N1-C8	1.3959(16)	1.39887	1.39854	1.393(2)	1.39686	1.39623
NIH-INI	0.85(2)	1.01968	1.01777	0.83(3)	1.01911	1.01763
N2-C8	1.3246(17)	1.33187	1.32914	1.321(2)	1.33287	1.33027
N2-C9	1.4599(16)	1.45694	1.45715	1.460(2)	1.45648	1.45643
N2-H1N2	0.84(2)	1.02116	1.02019	0.82(3)	1.02184	1.02068
N3-C11	1.4705(17)	1.45994	1.46094	1.473(2)	1.46094	1.46100
N3-C15	1.4733(18)	1.46391	1.46381	1.475(2)	1.46285	1.46307
N3-C12	1.4746(16)	1.46361	1.46396	1.473(2)	1.46406	1.46433
01W-H2W1	0.96(3)	0.98215	0.98181	0.83(3)	0.98183	0.98143
01W-H1W1	0.87(3)	0.96402	0.96365	0.78(4)	0.96400	0.96358
CI1-C3	1.7400(13)	1.75094	1.75188			
C3-C16				1.507(2)	1.50809	1.50590
			Bond angles (°)			
C7-N1-C8	126.53(11)	127.74246	127.78300	126.43(15)	127.87931	127.90065
C8-N2-C9 02-C7-N1	123.37(12) 122.76(12)	123.93063 122.43199	124.13538 122.45658	123.62(15) 122.69(16)	124.95872 122.10944	124.96240 122.20480

0-

02-C7-C6	121 09(12)	120 79358	120 71921	121 63(15)	121 02706	120 98963
N1-C7-C6	116.15(11)	116.77377	116.82407	115.68(15)	116.86340	116.80549
N2-C8-N1	117.21(12)	116.70699	116.62105	117.65(15)	116.42191	116.38863
N2-C8-S1	123.72(10)	123.52910	123.65554	124.32(13)	124.15898	124.20842
N1-C8-S1	119.07(10)	119.76346	119.72317	118.03(13)	119.41910	119.40294
N2-C9-C10	109.03(11)	110.33815	110.20244	111.53(14)	112.83292	112.88889
C11-C10-C9	110.51(11)	110.95174	111.27462	110.31(14)	111.11647	111.15541
N3-C11-C10	113.34(11)	113.62765	113.38293	114.07(14)	113.58425	113.52865
H2W1-O1W-H1W1	109(2)	105.53993	105.60530	103(3)	105.42664	105.52847
C2-C3-C11	119.33(11)	119.38522	119.41016			
C4-C3-C11	118.66(11)	119.41127	119.44306			
C2-C3-C16 C4-C3-C16				120.84(17) 121.22(17)	120.70659 121.28362	120.80977 121.17170
		Torsic	on angles (°)			
C4-C5-C6-C7	176.94(12)	178.68700	178.83211	-177.67(16)	-178.77022	-178.77796
C2-C1-C6-C7	-178.50(12)	-179.24165	-179.28233	178.73(16)	179.27531	179.28552
C8-N1-C7-O2	3.8(2)	3.45658	3.54008	2.3(3)	-3.18633	-3.38259
C8-N1-C7-C6	-175.76(13)	-176.83750	-176.59337	-177.27(15)	176.93010	176.72108
C5-C6-C7-02	-154.84(13)	-164.01073	-166.99832	144.49(18)	165.79549	166.27404
C1-C6-C7-02	22.14(19)	14.44255	11.57928	-33.7(2)	-12.83230	-12.39004
C5-C6-C7-N1	24.71(18)	16.27821	13.13267	-35.9(2)	-14.31960	-13.82829
C1-C6-C7-N1	-158.31(12)	-165.26851	-168.28974	145.83(16)	167.05261	167.50763
C9-N2-C8-N1	-176.41(12)	179.03173	179.06395	-176.64(15)	-179.03358	-178.88747
C9-N2-C8-S1	4.1(2)	-0.72359	-0.75483	3.0(2)	0.99088	1.13448
C7-N1-C8-N2	-7.9(2)	-1.10914	-2.32159	-8.6(3)	1.52809	1.77196
C7-N1-C8-S1	171.57(11)	178.65589	177.50472	171.72(14)	-178.49514	-178.24888
C8-N2-C9-C10	175.76(13)	-177.64325	175.74817	77.8(2)	89.29362	89.66319
N2-C9-C10-C11	-171.75(11)	-178.88679	179.75164	-174.16(15)	-179.55090	-179.35508
C15-N3-C11-C10	-62.37(15)	-70.50694	-72.16202	175.92(15)	165.54660	165.21718
C12-N3-C11-C10	177.00(11)	164.98218	163.77132	-64.8(2)	-70.01432	-70.59221
C9-C10-C11-N3	-171.80(11)	-172.33513	-177.07847	176.67(15)	-172.54504	-173.25547
C11-N3-C12-C13	179.32(12)	-177.16143	-177.79692	-174.49(15)	178.36789	178.53316
C1-C2-C3-C11	179.54(11)	179.79308	179.80983			
C11-C3-C4-C5	179.08(11)	179.77592	179.85530			
C1-C2-C3-C16				179.73(17)	-178.89731	-178.50236
C16-C3-C4-C5				-178.75(17)	179.29960	178.91035

		Bond length	, (Å)	
Bond				Angle
D—H A	D—H	H A	D A	$D - H \dots A$, (°)
	Co	mpound I		
N2—H1N2 O2	0.84(2)	1.929(19)	2.6257(15)	139.5(18)
N1—H1N1 O1W	0.85(2)	2.012(19)	2.8447(16)	168.5(17)
O1W—H2W1 N3 #1 ^(a)	0.96(3)	1.87(3)	2.8222(16)	176(2)
O1W—H1W1 S1 #2 ^(a)	0.88(3)	2.57(3)	3.4393(12)	172(2)
C4—H4A S1 #2 ^(a)	0.95	2.80	3.4468(15)	126
C15—H15B O2 #3 ^(a)	0.99	2.49	3.4690(16)	169
C14—H14A $Cg1^{(b)}$ #4 ^(a)	0.99	2.57	3.4828(16)	154
	Co	mpound II		
N2—H1N2 O2	0.81(3)	2.01(3)	2.638(2)	135(3)
N1—H1N1 O1W	0.84(3)	2.12(3)	2.955(2)	176(2)
O1W—H1W1 S1 #5 ^(a)	0.83(3)	2.57(3)	3.3742(16)	164(3)
O1W—H2W1 N3 #6 ^(a)	0.77(4)	2.12(4)	2.888(2)	171(4)
N2—H1N2 O2 #7 ^(a)	0.81(3)	2.46(3)	3.050(2)	131(3)
C16—H16B $Cg2^{(b)}$ #8 ^(a)	0.98	2.76	3.667(2)	155

Table 2. Hydrogen bonding distances (Å) and angles (°) in compounds I and II

^a Symmetry transformations used to generate equivalent atoms: #1 x-1/2, y+1/2, z; #2 -x+1/2, -y+1/2, -z; #3 -x+1, y, -z+1/2; #4 x+1/2, -y-1/2, z+1/2; #5 -x, -y+1, -z; #6 x, y-1, z; #7 -x, -y+2, -z+1; #8 -x-1, -y+1, -z+1.

^b Cg1 and Cg2 are the centroids of the benzene ring for compound I and II.

different substituents attached to the benzene ring, which contributed to the electron withdrawing effect. Saeed et al. [35] reported that an intramolecular hydrogen bond between the thiourea group and the oxygen atom of the amidic group stabilizes the planar six-membered ring structure. Formation of this (pseudo) ring is important for the molecular conformations because it prevents free rotation within the central carbonyl thiourea moiety and locks its atoms in a nearly planar arrangement [36].

The carbonyl thiourea group (-C(O)NHC(S)NH-) was essentially planar for both compounds I [maximum deviation of 0.0756 (11) Å at atom N1] and II [maximum deviation of 0.0846 (14) Å at atom O2] where the dihedral angles of O2-C7-N1, N2-C8-S1 and N1-C8-S1 within the carbonylthiourea group were $122.78(12)^\circ$, $123.72(10)^\circ$, and $119.07(10)^\circ$ for compound I and $122.69(16)^\circ$, $124.32(13)^\circ$, and $118.03(13)^\circ$ for compound II. In addition, the dihedral angles of C7–N1–C8 were $126.53(11)^{\circ}$ (compound I) and $126.43(15)^{\circ}$ (compound **II**) and C8–N2–C9 were 123.37(12)° (compound **I**) and 123.62(15)° (compound II) where these angles show a sp^2 hybridization on the N1 and N2 atoms. The benzene rings (C1/C2/C3/C4/C5/C6) were essential planar with maximum deviations of 0.010(1) Å at atom C1 and 0.009(2) Å at atom C4, respectively to compound I and compound II. Meanwhile, the morpholine ring (01/N3/C12/C13/C14/C15) in both compounds adopted chair conformations [37] with puckering parameters of Q = 0.5799 (14) Å, $\Theta =$ $178.46(15)^{\circ}$, and $\Phi = 74(5)^{\circ}$ for compound I and Q = 0.573(2) Å, $\Theta = 178.61(19)^{\circ}$, and Φ $= 202 (10)^{\circ}$ for compound **II**. The same ring conformations were also reported in the related compounds that consisted of morpholine ring moiety [38-40]. In compound I, the whole molecule was almost planar except at the terminal chloro-substituted benzene ring where it

Figure 3. Hydrogen bonding interactions in Compound I: (a). Interaction with the water solvent; (b). C—H... π interaction; (c). The crystal packing of the compound connected into a three-dimensional network.

slightly twisted at C6–C7 bond with the C1–C6–C7–N1 torsion angle of $-158.31(12)^{\circ}$. In compound **II**, the methyl-substituted benzene ring (C1/C2/C3/C4/C5/C6/C16) and the 4-propylmorpholine ring (O1/N3/C9/C10/C11/C12/C13/C14/C15) were twisted away from the carbonylthiourea moiety (–C(O)NHC(S)NH–) at C6–C7 bond [C1–C6–C7–N1 torsion angle of 145.83(16)°] and C9–C10 bond [C8–N2–C9–C10 torsion angle of 77.8(2)°].

The crystal structure of compounds **I** and **II** is shown in the Figs 3 and 4, respectively. Figures 3(a) and 4(a) show the intermolecular hydrogen interactions between the main molecules with the water molecules. The same intermolecular N1—H1N1... O1W, O1W—H2W1... N3, and O1W—H1W1... S1 hydrogen bonds (Table 2) were involved between the molecules and water solvents in both compounds but displayed different types

Figure 4. Hydrogen bonding interactions in Compound **II:** (a). Interaction with the water solvent; (b). C—H... π interaction; (c). The crystal packing of the compound connected into a three-dimensional network.

of crystal packing arrangement. In compound **I**, the molecules were linked into a centrosymmetric dimer and generate R_4^4 (12) ring motif [41]. Meanwhile in compound **II**, the intermolecular interaction between water molecules and the sulphur atoms formed R_4^4 (12) ring motifs [41] and further connected into infinite one-dimensional column by intermolecular O1W—H2W1... N3 hydrogen bonds (Table 2). The molecules in compound **I** were connected into a three-dimensional network as shown in Fig. 3(c) by C4—H4A... S1 and C15—H15B... O2 hydrogen bonds (Table 2) and stabilized by C—H... π interactions, generated by symmetry transformation of x+1/2, -y-1/2, z+1/2where π (*Cg*1) was the centroid of the terminal benzene ring (C1/C2/C3/C4/C5/C6), Fig. 3(b). Different crystal packing was formed by molecules in compound **II**, which is shown in Fig. 4(a)–(c). Intermolecular N2—H1N2... O2 hydrogen bonds (Table 2) connected the molecules into a two-dimensional sheet parallel to *bc*-axis. These intermolecular

Figure 5. Optimized structure of Compound I at (a) DFT B3LYP/6-31G+(2d,p); (b) DFT B3LYP/6-311G+(2d,p).

N—H... O hydrogen bonds further formed R_2^2 (12) graph-set motifs [41]. C—H... π interactions (symmetry code: -x-1, -y+1, -z+1) involving the centroid of the benzene ring (Cg2 = C1/C2/C3/C4/C5/C6) were also observed. The carbonyl thiourea group (—C(O)NHC(S)NH—) and the nitrogen atom within the morpholine ring played an important role in generating supramolecular hydrogen bond with the water molecules. In addition, the carbonyl thiourea moieties which contained three potential donor atoms (N, O, and S) became the utility among organic reagents as potential donor ligands for transition metal ions.

The molecular structures obtained from X-Ray crystallography analysis were performed a full geometry optimization for the purpose of theoretical and experimental data comparison. The structures were calculated by DFT method with two different basis sets of B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p). Fig. 5 and Fig. 6 show the optimized structures of both compounds and Table 1 lists out the selected bond lengths and angles of the optimized structures where the calculated bond lengths and angles were in a good agreement with the experimental results. The calculated bond lengths and angles for basis set of B3LYP/6-311G+(2d,p) indicated the best agreement with the experimental values in both compounds.

The optimized structures for basis set of B3LYP/6-31G+ (2d,p) and B3LYP/6-311G+ (2d,p) for compound **I** is shown in Fig. 5(a) and (b), respectively. The bond lengths for N1-C7 [1.38120 and 1.38044 Å], N1-C8 [1.39887 and 1.39854 Å], and N2-C8 [1.33187 and 1.32914 Å] were in a good agreement with the X-ray diffraction results indicating that

Figure 6. Optimized structure of Compound **II** at (a) DFT B3LYP/6-31G+(2d,p); (b) DFT B3LYP/6-311G+(2d,p).

the partial double bond character existed within the optimized thiourea moiety. These bond characters were the results of the intramolecular N-H... O hydrogen bond that locked the molecule to form a six-membered ring motif. In addition, the similar trend of C-Nbond lengths has been obtained from these species [N2-C8 < N1-C7 < N1-C8] and this trend also reproduced by the quantum chemical calculations suggesting intramolecular are responsible for the observed N-C bond lengths values rather than the crystal packing effects [7,35,42]. However, compound II showed the same bond length values for N1-C7 [1.38492]and 1.38418 Å], N1-C8 [1.39686 and 1.39623 Å], and N2-C8 [1.33287 and 1.33027 Å] but the observed simulated bond length of N1-C7 shown in Fig. 6(a) and (b) possessed a single bond criteria. The different substituent atom attached to the benzene ring may have affected the criteria of the optimized C–N bond length, where the substituted-methyl group (compound **II**) was the electron donating group as compared to the substituted-chlorine atom (compound I), which was the electron withdrawing group. Various electron-donating or -withdrawing substituents affected the hydrogen-bonding ability of the thiourea, which depended on the acidity of the thioureido -NH protons that provided additional bonding site [35].

From Table 1, the nonhydrogen bonding atoms provide a good result with the experimental data compared to the hydrogen-attached atoms; examples in this compound are N–H and O–H bonds. The calculated N–H bond lengths in both compounds for both basis sets showed higher values than the experimental results [0.82 to 0.85 Å], where the values varied between 1.01763 to 1.02116 Å. The bond angles of the water molecules (H2W1–O1W–H1W1) were slightly different from the experimental results, where the

angle differences ranged between 2 to 4° . The differences between the experimental and theoretical values were due to the environment factor where the theoretical calculations were performed in gaseous state, whereas the experimental data belonged to the solid phase.

From the optimized structure of **I**, the dihedral angle between the carbonyl thiourea ring made up by the intramolecular N2–H1N2... O2 and the benzene ring is shown by the torsion angle C1–C6–C7–O2 value of 14.44255° [B3LYP/6-31G+(2d,p)] and 11.57928° [B3LYP/6-311G+(2d,p)]. The corresponding torsion angle values in **II** are -12.83230° [B3LYP/6-31G+(2d,p)] and -12.39004° [B3LYP/6-311G+(2d,p)]. The differences between this values compared to the corresponding experimental values [Table 1] are due to the intermolecular C15–H15B... O2^{#3} (compound **I**) and N2–H1N2... O2^{#7} (compound **II**) interactions affecting the molecular structure and the intramolecular N–H... O hydrogen bond interaction [6]. The significant difference between the experimental and theoretical values can also be seen with the C15–N3–C11–C10 and C8–N2–C9–C10 torsion angles of compound **II** which are due to O1W–H2W1... N3 and N2–H1N2... O2 intermolecular hydrogen bonds (symmetry code in Table 2), respectively.

2.2. Vibrational Analysis

The harmonic vibrational frequencies calculated at DFT level with the diffused and polarization functions, B3LYP/6-31+(2d,p) and B3LYP/6-311G+(2d,p) along with the experimental frequencies, relative intensities and probable assignments are summarized in Tables 3 and 4. The experimental and calculated FT-IR spectra for both compounds are shown in Fig. 7. The calculated frequencies were performed for a free molecule in vacuum, while the experimental frequencies are in the solid state. Comparison of the calculated and the experimental frequencies revealed the overestimation of the calculated wavenumbers corresponding to observed results because of the combination of electron correlation effects and basis set deficiencies. Furthermore, the slight disagreement between theory and experiment could be due to neglect of the anharmonicity in the real system. Therefore, in order to improve the agreement with the experiment data, it is customary to scale down the calculated harmonic wavenumbers. In our study, we have used a scaling factor of 0.9613 and the vibrational wavenumbers suited well with experimental data.

The stretching frequencies of O–H bonds of the water molecule can be observed at 3487.61 and 3467.70 cm⁻¹ in compounds I and II, respectively. Meanwhile, the stretching N–H group was clearly observed in the range of 3100 cm⁻¹ to 3400 cm⁻¹. The calculated frequencies of B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p) gave the values of wavenumbers at 3365.51 (O–H)/3284.28 (N–H) cm⁻¹ and 3365.41 (O–H)/3274.21 (N–H) cm⁻¹ in compound I, respectively. Meanwhile, the corresponding values were 3373.57 (O-H)/3268.95 (N–H) cm⁻¹ for B3LYP/6-31G+(2d,p) and 3372.51 (O–H) /3262.85 cm⁻¹ (N–H) for compound II. These assignments were due to the formation of intra- and intermolecular hydrogen bonds formed by the N–H and O–H bonds.

The strong carbonyl bands were clearly observed at 1666.63 and 1663.09 cm⁻¹ in compounds **I** and **II**, respectively. These values were decreasing compared to the vibration of carbonyl group (1710 cm⁻¹). Meanwhile, the calculated carbonyl frequencies were 1643.02 cm⁻¹ [B3LYP/6-31G+(2d,p)] and 1634.85 cm⁻¹ [B3LYP/6-311G+(2d,p)] for compound **I** and 1614.77 cm⁻¹ [B3LYP/6-31G+(2d,p)] and 1633.71 cm⁻¹ [B3LYP/6-311G+(2d,p)] for compound **II**. Perhaps the strong C=O stretching bands were related to the effect of conjugated resonance with the phenyl ring and the formation of intramolecular N-H... O hydrogen bond within the molecules.

		Ca	alculated I	R (km mol ⁻¹)		
Experimental	B3LY	P 6-31G + (2)	2d,p)	B3LYF	P 6-311G + (2d,p)	
(cm^{-1})	Unscaled	Scaled	IR _{int}	Unscaled	Scaled	IR _{int}	Assignments (a)
	3862.41	3712.935	85.73	3860.84	3711.425	81.14	$\nu_{as}OH$
3487.61	3501.00	3365.511	799.43	3500.90	3365.415	814.08	$\nu_s OH, \nu_s NH$
	3427.89	3295.231	179.51	3434.17	3301.268	111.85	$\nu_s OH, \nu_s NH$
3161.84	3416.50	3284.281	195.86	3406.02	3274.207	249.22	$\nu_s OH, \nu_s NH$
	3221.51	3096.838	2.86	3209.27	3085.071	2.74	$\nu_s CH$
	3216.87	3092.377	2.35	3203.24	3079.275	2.38	$\nu_s CH$
	3207.75	3083.610	0.53	3196.05	3072.363	0.41	ν_{as} CH
3034.64	3201.37	3077.477	4.61	3186.60	3063.279	7.50	v_{as} CH
	3098.22	2978.319	26.20	3091.17	2971.542	23.78	$v_{as}CH_2$
2961.22	3097.22	2977.358	44.98	3089.52	2969.956	45.31	$v_{as}CH_2$
2939.85	3087.37	2967.889	37.64	3080.19	2960.987	39.26	$v_{as}CH_2$
	3077.72	2958.612	31.70	3070.52	2951.691	30.48	$v_{as}CH_2$
	3060.80	2942.347	35.73	3053.66	2935.483	29.33	$v_{as}CH_2$
	3058.27	2939.915	2.42	3051.60	2933.503	7.37	$v_{as}CH_2$
	3046.53	2928.629	17.50	3040.17	2922.515	13.11	$v_{as}CH_2$
	3034.55	2917.113	13.16	3030.97	2913.671	11.77	$\nu_s CH_2$
2876.24	3028.20	2911.009	2.51	3022.57	2905.597	4.43	$\nu_s CH_2$
2854.63	2987.24	2871.634	94.48	2984.83	2869.317	92.00	$\nu_s CH_2$
	2982.64	2867.212	22.12	2980.70	2865.347	19.99	$\nu_s CH_2$
2829.49	2917.83	2804.910	140.82	2916.24	2803.382	129.70	$\nu_s CH_2$
2778.82	2906.69	2794.201	36.90	2904.16	2791.769	40.47	$\nu_s CH_2$
	2898.93	2786.741	34.84	2898.95	2786.761	28.50	$\nu_s CH_2$
1666.63	1709.16	1643.016	181.50	1700.66	1634.844	173.67	ν CO, δΝΗ
	1648.39	1584.597	19.43	1648.18	1584.395	16.14	δΟΗ, δΝΗ
	1634.93	1571.658	106.89	1631.92	1568.765	110.74	ν CC, δNH
1592.25	1609.13	1546.857	214.33	1603.66	1541.598	197.58	ν CC, ν CN, δΟΗ, δΝΗ
1559.04	1604.81	1542.704	215.74	1600.15	1538.224	249.76	ν CC, ν CN, δΟΗ, δΝΗ
1528.24	1580.06	1518.912	851.41	1578.22	1517.143	811.71	ρ CN, δNH
1486.87	1525.39	1466.357	62.12	1528.71	1469.549	78.09	ν CC, ρ CH, δ NH
1404.02	1517.82	1459.080	17.87	1507.98	1449.621	19.68	δCH_2
	1505.84	1447.564	11.32	1500.14	1442.085	12.70	δCH_2
	1498.02	1440.047	14.20	1496.98	1439.047	8.28	δCH_2
	1494.67	1436.826	8.71	1491.57	1433.846	9.60	δCH_2
	1488.77	1431.155	10.17	1487.30	1429.741	1.08	δCH_2
	1483.61	1426.194	0.58	1483.07	1425.675	0.33	δCH_2
	1479.34	1422.090	0.54	1436.64	1381.042	5.32	δCH_2
	1437.47	1381.840	17.93	1435.27	1379.725	29.53	ωCH_2
	1433.52	1378.043	23.58	1420.00	1365.046	3.53	$\rho CH, \omega CH_2, \nu CN$
	1416.92	1362.085	12.13	1413.37	1358.673	11.52	ωCH_2 νCN , δNH
	1416.12	1361.316	5.29	1404.14	1349.800	30.73	ωCH_2 , ν CN, δNH
1378.08	1405.77	1351.367	35.36	1389.20	1335.438	49.81	ωCH_{2} , νCN , δNH
1360.74	1388.31	1334.582	57.98	1370.42	1317.385	114.30	ωCH_2 , νCN , δNH
1307.68	1373.50	1320.346	94.83	1365.84	1312.982	8.83	$\omega CH_2 \nu CN, \delta NH, \nu CS$
	1364.59	1311.780	0.84	1346.01	1293.919	17.51	ωCH_2
	1342.20	1290.257	11.80	1340.98	1289.084	12.94	tCH ₂
	1340.26	1288.392	8.40	1335.30	1283.624	3.70	$\nu CC, \rho CH$
	1338.35	1286.556	28.91	1322.75	1271.560	10.62	ν CC, ρ CH, ν CN, δ NH
	1333.81	1282.192	5.30	1320.61	1269.502	28.12	tCH ₂
	1320.60	1269.493	9.15	1308.70	1258.053	17.65	tCH ₂
	1308.82	1258.169	21.49	1302.25	1251.853	14.02	tCH ₂ wCH ₂
1292.14	1302.77	1252.353	13.89	1286.92	1237.116	16.12	tCH ₂
1265.92	1289.97	1240.048	366.72	1281.06	1231.483	415.14	ν CN, δΝΗ, ν CC
1212.18	1243.58	1195.453	1.26	1244.27	1196.117	1.93	$tCH_2 \omega CH_2$
	1232.94	1185.225	3.22	1233.80	1186.052	2.26	tCH2
	1217.94	1170 806	36.90	1219.06	1171.882	25.59	oCH
1175.88	1206.22	1159.539	166.10	1195.22	1148.965	154.31	ν CN. δNH

 Table 3. Comparison of the theoretical and experimental vibrational spectra and proposal assignment for compound I

		Cal	culated I	R (km mol-	-1)		
Experimental	B3LY	P 6-31G+(2	d,p)	B3LY	P 6-311G+(2	2d,p)	
(cm^{-1})	Unscaled	Scaled	IR _{int}	Unscaled	Scaled	IRint	Assignments (a)
1146.96	1193.95	1147.744	43.71	1189.58	1143.543	97.66	ν CN, δ NH, t CH ₂
	1169.42	1124.163	56.34	1164.27	1119.213	29.07	ν CN, ρ CH
	1153.92	1109.263	14.83	1151.65	1107.081	29.58	ν CN, ρ CH, δ CH ₂
	1140.49	1096.353	12.65	1141.02	1096.863	25.48	ρCH
	1135.62	1091.672	28.31	1132.49	1088.663	42.76	ν CN, ν CC, ρ CH
1115.09	1133.71	1089.835	96.57	1130.36	1086.615	70.33	ν CN, ν CC, ν CO
	1115.30	1072.138	4.36	1112.18	1069.139	9.99	ωCH_2
1091.63	1109.26	1066.332	99.53	1106.86	1064.025	112.34	v CN, v CC, v CCl
1071.47	1096.98	1054.527	14.85	1092.40	1050.124	14.61	v CN, v CC, v CCl
1052.30	1093.10	1050.797	7.54	1092.02	1049.759	4.91	ρCH_2
1040.93	1062.88	1021.747	12.86	1059.42	1018.420	15.42	ν CC, ν CS, ν CN
1010.53	1051.71	1011.009	15.61	1048.58	1008.000	18.14	v CC, v CS
	1043.98	1003.578	2.23	1039.86	999.6174	1.32	ν CC, ν CO, ν CN
	1027.93	988.1491	44.93	1033.20	993.2152	45.37	ν CC. ρ CH
	1016.76	977.4114	26.42	1012.96	973.7584	29.77	ν CC. ν CO. ν CN
917.96	995.51	956,9838	1.27	997.07	958,4834	0.63	tCH
900.18	990.40	952.0715	0.27	991.87	953.4846	0.21	tCH
880.98	927.28	891.3943	7.24	925.52	889,7024	6.55	ν CC, ν CO, ν CN, ρ CH ₂
861.71	911.92	876.6287	35.02	912.19	876.8882	30.41	ν CC. ν CN
850.87	883.53	849.3374	18.26	885.16	850.9043	15.52	ρ CH ₂ tCH ₂
000107	871.89	838,1479	31.02	870.73	837.0327	34.83	$\rho CH_2, \nu CH_2$
	871.06	837,3500	12.09	870.23	836.5521	11.40	$\rho CH_2, \omega CH$
	861.54	828 1984	0.82	860.75	827 4390	0.93	oCH2
	849 95	817 0569	1 19	846 81	814 0385	1.01	wCH
788 60	810.37	779.0087	11.82	808.08	776 8073	10.69	v CC v CO v CN v CS
764.76	795 54	764 7526	43.99	794 30	763 5606	44 78	
101.10	777 49	747 4011	67.10	777 02	746 9493	65 20	wCH
	762.60	733 0874	1 13	762.90	733 3758	1.83	oCHa
	737.88	709 3240	48 99	732.14	703 8062	61.94	wNH
709 24	725 55	697 4712	4 29	726 75	698 6248	5 73	
109.24	698.02	671.0066	2.03	697.13	670 1511	1 41	tOH
626.21	662.93	637 2746	255.08	659.22	633 7082	246.94	» CC
020.21	641 54	616 7124	1 52	645.45	620 4711	1.85	WCH2 WCS
	636.46	611 8290	17.02	637.19	612 5307	16.87	$\omega CH_2, \omega CS$
	635 57	610 9734	2 70	634.85	610 2813	5.64	
5/18 81	609.95	586 3//9	1.28	609 52	585 9316	1 35	μ CC μ CC
540.01	546.69	525 5331	32 35	545.91	524 7833	31.81	$\nu CC, \nu CO, \nu CN$
189.62	/100 56	480 2270	1 73	107 74	178 1775	2 70	
477.23	497.68	478 4198	2 97	497.12	477 8815	5 28	ω CC ω CN ω CS ω CO
177.25	490.98	471 9791	7.85	491 78	472 7481	5.85	$\omega CC, \omega CN, \omega CS, \omega CO$
	468 57	450 4363	2 73	466.95	448 8790	2 76	$\omega CC, \omega CN, \omega CS, \omega CO$
418 64	431.50	414 8010	1 31	431.26	414 5702	1.65	acc acN accl aco
410.04	418 70	402 5828	0.37	410 22	402 9962	0.48	rCH
	416.85	400 7179	0.37	414.06	308 0350	0.40	
	375.66	361 1220	4.40	377.81	363 1888	1 50	$\rho CO \nu CN \nu CS \delta NH$
	355 35	341 5980	60.01	362.24	3/18 2213	63.00	0H
	341.36	328 1/0/	21.12	342.27	329 0242	20.75	ACC ACN ACCL ACO ACS
	333 73	320.8146	7 50	333 55	320.6416	6.83	$\rho cc, \rho cn, \rho cci, \rho co, \rho cs$
	300 /1	207 1250	0 10	300.81	207 8204	10.03	
	209.41	271.4330	9.42 5 / 2	209.01	291.0204	5 09	$\omega \subset \Pi_2$
	278 57	219.1900	20.87	270.52	219.2109	J.08 1 51	tCC tCN wOH
	270.37	201.1093	20.07	277.40	200.1223	4.54	$tCC, tCN, \omega OH$
	274.10	203.4923	0.52	209.02	239.3760	0.00	$\alpha C H_{2}$
	230.41	240.4009	3.79	230.11	240.1903	4 20	$\rho \subset \Pi_2$
	233.27	224.2423	5.70	234.10	223.0960	4.20	$\rho CC, \rho CCI, \rho CS$
	220.60	104 0004	0.01	210.32	209.0710	0.01	$\rho CH_2, \rho OH$
	201.02	174.0090	0.05	202.09	174.2091	0.22	$\rho c n_2, \rho c s$

 Table 3. Comparison of the theoretical and experimental vibrational spectra and proposal assignment for compound I (*Continued*)

		Cal	culated I	$R (km mol^{-1})$			
Experimental	B3LY	'P 6-31G+(2d,	p)	B3LY	P 6-311G+(2d	.p)	
(cm^{-1})	Unscaled	Scaled	IR _{int}	Unscaled	Scaled	IRint	Assignments (a)
	175.70	168.9004	8.66	175.17	168.3909	8.65	Skeletal vibration
	137.97	132.6306	8.22	138.37	133.0151	8.09	Skeletal vibration
	130.64	125.5842	1.81	132.04	126.9301	1.88	Skeletal vibration
	129.37	124.3634	0.34	129.56	124.5460	0.33	Skeletal vibration
	110.89	106.5986	0.08	112.47	108.1174	0.61	Skeletal vibration
	109.57	105.3296	4.15	107.81	103.6378	3.77	Skeletal vibration
	89.16	85.70951	0.28	85.31	82.00850	0.19	Skeletal vibration
	82.89	79.68216	0.52	77.27	74.27965	0.60	Skeletal vibration
	74.21	71.33807	0.72	75.22	72.30899	0.84	Skeletal vibration
	48.69	46.80570	1.86	48.15	46.28660	1.65	Skeletal vibration
	36.41	35.00093	0.15	35.51	34.13576	0.11	Skeletal vibration
	32.59	31.32877	0.10	33.21	31.92477	0.19	Skeletal vibration
	24.51	23.56146	0.03	24.50	23.55185	0.01	Skeletal vibration
	21.48	20.64872	0.04	17.07	16.40939	0.03	Skeletal vibration
	14.53	13.96769	0.14	11.05	10.62237	0.20	Skeletal vibration

 Table 3. Comparison of the theoretical and experimental vibrational spectra and proposal assignment for compound I (*Continued*)

^a Vibrational assignment: ν , stretching; δ , scissoring; ω , wagging; ρ , rocking; t, twisting.

The C-N vibration bands were observed at 1551, 1265, and 1171 cm⁻¹, respectively, to δ_{CN-H} , $\nu_{C(O)-N}$, and $\nu_{C(S)-N}$ as reported in the related structure of thiourea [33]. The same vibrational bands of $\delta_{CN-H}/\nu_{C(O)-N}/\nu_{C(S)-N}$ at 1528.24/1265.92/1175.88 cm⁻¹ and 1554.37/1261.08/1174.80 cm⁻¹ can be clearly seen in compounds I and II, respectively. The wavenumbers of 1528.24 and 1554.37 cm^{-1} showed the bending vibration of CN-H and revealed the existence of intramolecular N-H... O hydrogen bond. Meanwhile, the determinations of the other two vibrational bands were by the help of DFT method calculations, where the stretching C-N vibrations were assigned within the same range with the experimental values. The calculated bending and stretching C-N bands appeared at $1518.91/1240.05/1159.54 \text{ cm}^{-1}$ [B3LYP/6-31G+(2d,p)] and $1517.14/1231.48/1148.97 \text{ cm}^{-1}$ [B3LYP/6-311G+(2d,p)] for compound I, whereas in compound **II** the values were 1528.31/1240.69/1137.82 cm⁻¹ [B3LYP/6-31G+(2d,p)] and $1527.24/1232.87/1131.38 \text{ cm}^{-1}$ [B3LYP/6-311G+(2d,p)]. The high value of C-N absorption observed in the experimental and theoretical analysis maybe related to $\delta(C-H)$ contribution from the substituent group [5]. The lower vibration frequency of $\nu C-N$, which normally is around 1300 $\rm cm^{-1}$ could be due to the mass effect around the nitrogen atom [43].

The IR absorptions of C=S band were observed at 764.76 and 756.76 cm⁻¹ for compounds I and II, respectively and the values were in a good agreement with the calculated values. The calculated B3LYP/6-31G+(2d,p)/B3LYP/6-311G+(2d,p) showed the values of 679.47/698.62 cm⁻¹ and 731.62/720.35 cm⁻¹, respectively. The formation of the intermolecular hydrogen bond interactions between the water molecule and the sulphur atoms may have affected the values ν (C=S), where the presence of intermolecular hydrogen bonds were confirmed by the X-Ray analysis.

The frequency values computed at B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p) level contained known systematic error. By plotting the calculated values against experimental frequency, linearity between the experimental and calculated vibrational frequency can be determined, which has been presented in Fig. 8. Different basis sets somehow would

		Ca	lculated I	R (km mol	-1)		
Experimental	B3LY	ZP 6-31G+(2	d,p)	B3LY	P 6-311G+(2	2d,p)	
(cm^{-1})	Unscaled	Scaled	IR _{int}	Unscaled	Scaled	IR _{int}	Assignments ^(a)
	3863.29	3713.7807	85.69	3862.38	3712.9059	81.20	$v_{as}OH$
3467.70	3509.38	3373.5670	786.01	3508.28	3372.5096	795.66	$\nu_s OH, \nu_s NH$
	3440.84	3307.6795	102.15	3440.28	3307.1412	92.67	$v_s OH$, $v_s NH$
3436.19	3400.55	3268.9487	338.59	3394.20	3262.8445	337.55	$\nu_s NH$
	3214.24	3089.8489	3.03	3202.24	3078.3133	2.86	$\nu_s CH$
	3208.77	3084.5906	5.06	3195.46	3071.7957	5.82	$\nu_s CH$
	3176.42	3053.4925	12.19	3164.95	3042.4664	11.05	ν_{as} CH
	3172.10	3049.3397	15.10	3161.69	3039.3326	13.98	ν_{as} CH
3144.83	3114.82	2994.2765	13.70	3104.59	2984.4424	12.72	$\nu_a CH_3$
	3111.48	2991.0657	17.30	3101.99	2981.9430	15.83	$\nu_{as} CH_2$
	3098.77	2978.8476	26.50	3090.78	2971.1668	24.90	$\nu_s CH_2$
2957.67	3095.97	2976.1560	46.11	3088.11	2968.6001	44.77	$\nu_{as} CH_2$
2940.02	3093.48	2973.7623	12.97	3084.40	2965.0337	17.30	$v_{as}CH_2$
	3084.72	2965.3413	12.86	3076.25	2957.1991	15.18	$\nu_{as}CH_3$
	3081.30	2962.0537	19.53	3073.38	2954.4402	16.16	$\nu_{as} CH_2$
2857.98	3056.51	2938.2231	43.45	3050.12	2932.0804	42.02	$v_{as}CH_2$
	3048.24	2930.2731	40.70	3043.88	2926.0818	37.12	$\nu_s CH_2$
	3041.44	2923.7363	11.23	3036.16	2918.6606	10.20	$\nu_s CH_2$
	3033.77	2916.3631	13.77	3029.02	2911.7969	13.05	$v_{as}CH_2$
	3029.20	2911.9700	27.24	3024.33	2907.2884	22.49	$\nu_s CH_3$
	2986.28	2870.7110	95.62	2983.73	2868.2596	93.10	$\nu_s CH_2$
	2981.66	2866.2698	23.59	2979.51	2864.2030	21.63	$\nu_s CH_2$
2829.28	2918.76	2805.8040	134.37	2916.48	2803.6122	126.07	$\nu_s CH_2$
2777.22	2908.81	2796.2391	39.66	2907.28	2794.7683	38.30	$\nu_s CH_2$
2215.73	2902.29	2789.9714	29.66	2900.69	2788.4333	28.73	$\nu_s CH_2$
1663.09	1707.86	1641.7658	171.49	1699.48	1633.7101	164.81	ν CO, ρ NH, ν CC
1608.55	1654.13	1590.1152	60.64	1650.48	1586.6064	52.53	ν CC, ρ NH
1564.17	1646.62	1582.8958	28.02	1645.48	1581.7999	32.82	$\delta OH, \rho NH$
	1611.41	1549.0484	204.35	1606.38	1544.2131	106.64	ν CN, ρ NH, ν CC
	1607.98	1545.7512	131.52	1603.18	1541.1369	245.84	ν CN, ρ NH, ν CC, δ OH, ν CO
1554.37	1589.83	1528.3036	851.30	1588.72	1527.2365	815.40	$\rho CN, \delta NH$
1530.60	1547.25	1487.3714	30.46	1549.22	1489.2652	41.80	ν CC, ρ CH, ρ NH
	1509.84	1451.4092	9.24	1512.50	1453.9663	9.95	δCH ₂
	1497.53	1439.5756	1.51	1500.51	1442.4403	1.08	δCH ₂
	1492.82	1435.0479	5.81	1492.54	1434.//8/	12.86	OCH ₂ , OCH ₃
	1488.08	1430.4913	10.21	1491.54	1433.8174	10.30	aCH ₂
	1486.42	1428.8955	6.21	1488.54	1430.9335	6.30	aCH3
	1483.44	1426.0309	9.09	1486.88	1429.3377	1.81	aCH ₂
	1482.83	1425.4445	1.91	1485.68	1428.1842	9.37	aCH ₂
	14/7.86	1420.0008	1.22	1481.67	1424.3294	1.03	OCH2
	1441.43	1385.040/	3.03	1443.92	1388.0403	3.11	$\nu CC, \rho CH, \delta CH_3$
	1454.25	13/3.0414	2.96	1454.21	13/8./001	15.00	
	1417.43	1302.3947	2.60	1417.00	1305.0080	0.72	ωCH_2
	1413.08	1300.3104	0.38	1415.57	1300.3932	1.01	$\omega CH_2, \omega CH_3$
1402 22	1414.20	1359.4705	17.65	1413.23	1251 2055	12.54	$\omega CH_2, \omega CH_3$
1405.52	1287 70	1331.0973	51 73	1287.22	1331.3933	24.12	wCH.
1350.07	1370 10	1325 7288	84.80	1375.68	1322 4412	84.08	$\alpha CH \alpha NH \nu CN \alpha CH$
1309.60	1365 22	1312 3860	6.18	1366.07	1322.4412	04.90 1 17	ρCH_2
1509.09	1354.07	1302 5327	10.10	1350.57	1306 4548	20.56	$p \in \Pi_2$
	1346.21	1204 1117	30.67	1344 27	1202 2468	40.10	vcc, pen
	1336.61	1284 8832	33 44	1333 79	1292.2408	11 54	tCH_2
	1310.00	1259 3030	28.58	1311 25	1260 5046	66 34	tCHa
	1309.02	1259.5050	20.30 46.66	1308 31	1257 6784	10.34	tCH ₂
1261.08	1290.64	1240 6922	400.63	1282 50	1232 8673	234 10	VCC VCN oCH WCH-
1213 71	1261 17	1212 3627	66 47	1260.51	1211 7283	69.00	tCH ₂
1.0.11	1236.94	1189 0704	0.74	1235.08	1187 2824	3.81	
	1233 57	1185 8308	4 91	1233.62	1185 8789	97.02	oCH ₂
	1222.56	1175 2469	90.78	1221 41	1174 1414	92.80	VCC oCH
	1214.06	1167 0759	81 51	1209 98	1163 1538	104 93	VCC. VCN. VCO oCH2 oCH oNI
							,

 Table 4. Comparison of the theoretical and experimental vibrational spectra and proposal assignment for compound II

		Cal	culated I	R (km mol	-1)		
Experimental	B3LM	7P 6-31G+(2	d,p)	B3LY	P 6-311G+(2	d,p)	
(cm^{-1})	Unscaled	Scaled	IR	Unscaled	Scaled	IR	Assignments ^(a)
1174.80	1182.62	1137 8235	78.25	1176.03	1121 2828	104.02	VCC VCN VCO oCH, oCH oNH
1146.41	1171.09	1125 7688	36.24	1165 74	1120 6259	30.39	vCC vCN vCO oCH ₂ , pcn, pNn
1140.41	1153 23	1108 6000	23 53	1151 20	1120.0257	20.48	$\nu CC, \nu CN, \nu CO, \rho CH_2, \rho CH$
	1150.16	1105.6488	30.58	1150.57	1106.0429	39.43	vCC oCH
1117 69	1133.86	1089 9796	107 58	1130.20	1086 4613	97.08	$\nu CC \nu CN \nu CO \delta CH_2$
1079.85	1123 52	1080 0398	26.28	1121 57	1078 1652	38.21	$\nu CC, \nu CN, \nu CO, \rho CH_2$
1041 91	1100.23	1057 6511	23 57	1095 57	1053 1714	28.64	νCC νCN νCO ρNH
	1092.57	1050.2875	7.09	1091.91	1049.6531	6.92	oCH ₂
1015.62	1082.62	1040.7226	36.97	1080.25	1039.4056	41.00	ν CC, ν CN, ν CS, ρ NH
	1065.87	1024.6208	9.66	1063.42	1022.2656	10.51	ν CC, ν CN, ν CS, ρ NH
1004.05	1062.96	1021.8234	10.40	1063.33	1022.1791	15.67	tCH ₃
	1049.82	1009.1920	5.52	1047.83	1007.2790	7.43	ν CC, ν CN, ν CO, ω CH ₂
	1034.70	994.65711	11.01	1039.67	999.43477	9.70	$\nu CC, \rho CH_2, \rho CH_3$
	1013.34	974.12374	24.68	1032.50	992.54225	7.88	ν CC, ν CN, ν CO, ω CH ₂
	1008.24	969.22111	0.66	1009.61	970.53809	4.96	ωCH_3
	996.24	957.68551	0.78	996.79	958.21423	0.85	tCH
968.95	987.97	949.73556	1.32	988.58	950.32195	1.01	tCH
916.47	925.60	889.77928	12.73	924.77	888.98140	11.84	ν CC, ν CN, ν CO, ω CH ₂
881.43	905.96	870.89935	13.85	906.45	871.37039	11.02	νCC, νCN, νCO
861.68	882.88	848.71254	42.80	882.41	848.26073	41.85	ν CC, ν CN, ν CO, t CH ₂
841.74	867.47	833.89891	6.21	867.98	834.38917	7.07	ν CC, ν CN, ν CO, t CH ₂
810.03	860.47	827.16981	2.82	860.34	827.04484	5.14	ν CC, ν CN, ν CO, ρ CH ₂
	859.04	825.79515	9.61	856.05	822.92087	9.30	$\omega CH_{,} \omega NH, tCH_{3}$
	819.04	787.34315	2.26	820.19	788.44865	2.39	ν CC, ν CN, ν CS
	804.08	772.96210	5.08	800.35	769.37646	3.84	ν CC, ν CN, ν CO, ω NH
504.50	799.59	768.64587	5.10	795.03	764.26234	7.30	ωNH
794.59	7/5.07	745.07479	118.09	7/1.58	741.71985	118.10	ωNH
/56./6	/61.0/	/31.61659	15.37	762.28	/32.//9/6	14.91	$\nu CS, \rho CH_2$
/14.1/	740.40	725.69498	23.46	/51.58	722.49385	19.34	ωNH CSCCCU
69166	749.40	120.39822	17.87	749.55	720.33010	27.03	$\nu CS, \nu CC, \rho CH_2$
620.10	705.05	620.09195	222.11	660.99	625 20204	2.28	VCC, WNH
618 68	650.36	625 10107	252.11	654.68	620 34388	1 73	wOH wCC
010.00	642.30	617 44200	14.68	6/3 30	618 40420	17.68	WCS WNH
	632.65	608 16645	4 12	633.69	609 16620	4 50	oCH2
591.01	617 78	593 87191	28.16	618 24	594 31411	28.22	$\nu CC \nu CS \rho CH_2$
571.01	582.45	559 90919	2.02	582.12	559 59196	1.87	$\nu CC, \nu CS, \rho CH_2$
	523.37	503.11558	6.43	522.98	502.74067	6.10	$\nu CC, \omega CS, \omega CH_2$
	501.48	482.07272	1.10	500.91	481.52478	0.85	νCC , νCO , νCN , ωCH_2
	494.70	475.55511	0.81	495.55	476.37222	0.68	νCC, νCO, νCN
476.73	485.70	466.90341	5.15	482.95	464.25984	5.67	$tCC, \nu CC, \nu CO, \nu CN$
449.76	448.62	431.25841	3.96	449.09	431.71022	4.01	νCC, νCO, νCN
	421.37	405.06298	0.37	421.10	404.80343	0.44	tCC,
	415.38	399.30479	0.06	415.20	399.13176	0.16	$\rho CO, \rho CC$
	387.01	372.03271	9.91	388.81	373.76305	9.89	ρ CO, ρ CC
	357.16	343.33791	15.26	358.76	344.87599	26.40	ρ CO, ρ CC
	347.91	334.44588	56.94	355.46	341.70370	44.96	ρOH
	336.91	323.87158	10.10	336.37	323.35248	9.80	ρCH_2
	328.68	315.96008	7.62	328.30	315.59479	7.68	$ ho CH_2$
	308.95	296.99364	9.42	308.84	296.88789	9.84	$\rho CH_2, \rho CH_3$
	288.68	277.50808	4.11	286.30	275.22019	4.10	tOH
	277.30	266.56849	97.85	276.25	265.55913	99.88	ρCN, ρCC
	262.23	252.08170	3.03	262.11	251.96634	2.97	ρCH_2
	256.31	240.39080	0.37	256.53	240.00229	0.25	$\rho CN, \rho CS$
	208 27	244.27594	1.27	207.92	243.05460	1.82	$\rho \cup , \rho \cup S, \rho \cup H$
	208.27	200.20995	1.33	207.81	199./0//3	1.5/	ρ_{CH_2}
	162.20	156,00020	1.01	162.12	101./0909	2.07	Skeletal vibration
	154 53	148 54969	3 90	152.15	146 76167	3.76	Skeletal vibration
	129 56	124.54603	4 77	131.76	126.66089	5 34	Skeletal vibration

 Table 4. Comparison of the theoretical and experimental vibrational spectra and proposal assignment for compound II (*Continued*)

		Ca	lculated I	$R (km mol^{-1})$			
Experimental	B3L	YP 6-31G+(2d,p)	B3LY	7P 6-311G+(2d,p)	
(cm^{-1})	Unscaled	Scaled	IR _{int}	Unscaled	Scaled	IR _{int}	Assignments ^(a)
	115.57	111.09744	2.00	114.82	110.37647	0.90	Skeletal vibration
	111.18	106.87733	0.52	111.57	107.25224	1.57	Skeletal vibration
	104.39	100.35011	0.76	102.78	98.802414	0.71	Skeletal vibration
	87.61	84.219493	1.26	88.35	84.930855	1.15	Skeletal vibration
	64.05	61.571265	0.56	64.19	61.705847	0.58	Skeletal vibration
	52.76	50.718188	2.33	51.79	49.785727	2.45	Skeletal vibration
	19.27	18.524251	0.08	25.28	24.301664	0.13	ρCH_3
	15.03	14.448339	0.32	14.96	14.381048	0.20	Skeletal vibration

 Table 4. Comparison of the theoretical and experimental vibrational spectra and proposal assignment for compound II (*Continued*)

Figure 7. The IR spectrum of Compound I: (a) Experimental; (b) B3LYP/6-31G + (2d,p); (c) B3LYP/6-311G + (2d,p) and Compound II: (d) Experimental; (e) B3LYP/6-31G + (2d,p); (f) B3LYP/6-311G + (2d,p).

Figure 8. The linear corrected between the calculation and FT-IR spectrum of compound I and II.

provide different values of correlation coefficient, where a good linearity between the calculated and experimental frequencies were obtained from higher basis sets. As can be seen from the correlation graphic [Fig. 8], obtained correlations were 0.996 and 0.997 for compound I and 0.995 for compound II. The use of higher extended basis set has correlated the experimental and theoretical data well.

2.3. NMR Analysis

Both compounds were characterized by using ¹H and ¹³C NMR. The ¹H 400.11 MHz and ¹³C 100.61 MHz NMR spectra were recorded in solvent of CDCl₃ at room temperature by Bruker Avance III 400 Spectrometer. Theoretically, the compounds were calculated by using DFT method with basis sets of B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p). The results of the calculated values shifted to higher values of chemical shift and further corrected with the TMS isotropic chemical shift values. All the experimental and calculated results are tabulated in Table 5. As can be seen from the table, the experimental and theoretical values were in a good agreement where the values had the same range of chemical shift.

In ¹H NMR, the NH resonance can be clearly seen where two single peaks were observed at the most downfield area (10.867 and 8.977 ppm in compound I and 10.947 and 9.010 ppm in compound II). Meanwhile, the calculated chemical shifts showed higher values for about 1 to 2 ppm differences but the use of basis set B3LYP/6-311G+(2d,p) gave a better agreement with the experimental results. The high shifted values were due to the presence of strong intra and intermolecular N—H... O hydrogen bonds in the molecules. The hydrogen atoms of the aromatic ring, morpholine ring, and the methylene group were generally in the same range as the previously reported studies [3,9,33,36]. These results were also confirmed by the calculated values, where the values did not deviate higher than the experimental results (Table 5). The presence of the methyl group in compound II gave single peaks at δ values of 2.455 ppm and the values of the calculated chemical shift of methyl group were also in same range of 2.0856–2.7125 ppm for B3LYP/6-31G+(2d,p)

		Compound I		(Compound II	
Chemical		B3LYP	B3LYP		B3LYP	B3LYP
Shift, δ		6-31G +	6-311G +		6-31G +	6-311G +
(ppm) ^a	Experimental	(2d,p) ^b	(2d,p) ^c	Experimental	(2d,p) ^b	(2d,p) ^c
¹ H NMR						
N1-H1N1	10.867	11.3438	11.0203	10.947	11.2099	11.0196
N2-H1N2	8.977	11.2097	10.9460	9.010	11.7561	11.4272
Aromatic	7.816, 7.518	8.7768,	8.9947,	7.758, 7.328	8.6511,	8.6804,
Proton	,	8.3515,	8.5393,	,	8.5817,	8.5982,
		7.6150,	7.7711,		7.4506,	7.5257,
		7.5960.	7.6654.		7.3907	7.4027.
Proton of	3.775, 2.494,	3.7561,	3.8083,	3.771, 2.488	3.7220,	3.7225,
Morpholine		3.7247,	3.7728,		3.6799,	3.6723,
moiety		3.6701,	3.7501,		3.6253,	3.6226,
-		3.6114,	3.7220,		3.5612,	3.5330,
		2.6598,	2.7800,		2.6621,	2.7090,
		2.3614,	2.4526,		2.3000,	2.4193,
		2.2896,	2.4157,		2.2626,	2.3713,
		1.9317.	2.0030.		1.9335.	2.0912.
Methylene	3.827, 1.916,	3.4277,	3.5353,	3.823, 1.916,	4.1952,	4.1442,
	1.710	3.3609,	3.3432,	1.765	2.9423,	2.9224,
		2.3538,	2.5210,		2.3863,	2.4193,
		2.1948,	2.2601,		2.1838,	2.3625,
		2.0308,	2.0410,		2.1082,	2.2082,
		1.7763.	1.8194.		1.3327.	2.1677.
Methyl group				2.455	2.7125,	2.7475,
					2.4085,	2.3868,
12					2.0856.	2.1680.
¹³ C NMR			100.001			
C8	179.39	179.503	189.981	179.72	179.382	191.037
C9	165.30	164.159	171.521	166.40	163.744	172.188
C3	140.12	145.292	154.291	144.53	140.674	150.231
C6	130.23	127.265	134.735	129.81	126.806	133.494
CI & C5	129.50	129.309,	136.519,	128.95	127.614,	135.879,
	120.04	126.611	133.689	107.47	125.277	132.694
C2 & C4	128.84	126.133,	133.154,	127.47	126.577,	133.165,
C14 & C12	((70	125.501	132.515	((01	126.431	132.319
C14 & C13	00.79	08.8281,	70.307,	00.81	09.0033,	70.2985,
C15 & C12	52 05	08.4852 57 7278	70.1251	52.00	08.8338	70.1022
C15 & C12	33.83	51.7578,	54.7602	35.82	57.0923,	54.725
C11	56 76	58 6000	34.7093 60.1520	56 60	J2.03/3 59.129/	34./33 50.4288
	30.70	J8.0090 46 7850	47.0626	30.09	J0.1304 45 1407	J9.4200 15.0286
C9	44.94	40.7039	47.0030	44.72	43.1407	43.0380
C10 C16	24.00	30.3144	29.3700	24.72 21.65	29.1034	29.0140
C10				21.05	23.3704	22.0210

Table 5. The experimental and calculated NMR chemical shift of compounds I and II

^aThe atoms numbering are referred to the X-ray molecular diagram in Fig. 1.

^bThe isotropic chemical shift with respect to Tetramethysilane (TMS) in B3LYP 6-31G + (2d,p) are 31.6143 ppm for ¹H NMR and 191.2113 ppm for ¹³C NMR. ^bThe isotropic chemical shift with respect to Tetramethysilane (TMS) in B3LYP 6-311G + (2d,p)

are 31.8821 ppm for ¹H NMR and 182.4656 ppm for ¹³C NMR.

and 2.7475–2.1680 ppm for B3LYP/6-311G+(2d,p). In addition, the different substituent atom or group did not affect the values of the chemical shift.

In ¹³CNMR, the highest δ values were from the thione (C = S) and carbonyl groups (C = O). These groups were at the most deshielded area compared to other carbon atoms because of the environmental factor and the increase of electronegativity from sulphur and oxygen atoms. Aydin et al. [9] in their report stated that the carbon atoms of thiocarbonyl showed that the highest value (180.41 ppm) was due to the lower excitation energy $n-\pi^*$ and the possibility of a very strong electron-withdrawing neighbors reduced the nucleophilic character of the thione group. From Table 5, δ values of thione group and carbonyl group were 179.39 ($\delta_{C=S}$) and 165.30 ($\delta_{C=O}$) ppm (compound I) and 179.72 ($\delta_{C=S}$) and 166.40 ($\delta_{C=O}$) ppm (compound II), whereas theoretical values gave higher values of C = S and C = O chemical shift from B3LYP/6-311G+(2d,p) basis set where the difference was almost 10 to 11 ppm. Meanwhile, the B3LYP/6-31G+(2d,p) showed a very good agreement with the experimental values. Other carbon atoms were located in the same range as the previously reported structures [3,9,33,36] and calculated δ values were in a good agreement with the experimental results especially from the B3LYP 6-31G+(2d,p) basis set.

As seen from Table 5, the results of the ¹H and ¹³C NMR calculated from two different basis sets were not systematic in relation with the experimental results and it was difficult to decide which basis sets showed the best agreement with the experimental values. Even though in the same basis set, there were some values in a very good agreement and there were some that showed big differences with experimental values.

3. Experimental

3.1. Physical Measurement

Infrared spectra of the compounds were recorded from KBr discs in the spectral range of $400-4000 \text{ cm}^{-1}$ by using FTIR Pelkin-Elmer System 100 Spectrometer. The ¹H NMR (400.11 MHz) and ¹³C NMR (100.61 MHz) spectra were recorded on Bruker Avance III 400 Spectrometer in solution of deuterated chloroform (CDCl₃) as solvents at room temperature in the range of 0–15 ppm and 0–200 ppm. The chemical shifts were also referenced to the trimethylsilyl (TMS) as internal standard.

3.2. Synthesis

The reaction process of compounds **I** and **II** is shown in Scheme 1. The reactions were done under ambient temperature. All the chemicals used were purchased from suppliers and used without further purifications.

3.2.1. Compound **I**. A solution of 4-chlorobenzoyl chloride (1.0 g, 6 mmol) was added dropwise to ammonium thiocyanate in acetone (50 ml). The resulting solution was refluxed with constant stirring for 1 h. The product was cooled down at room temperature and 3-morpholinopropyl amine (1.0 g, 6 mmol) in 50 ml acetone was added dropwise. The solution mixture was refluxed with stirring for 4 h. The solution was filtered and the solution was poured into ice. The solid product was recrystallized to obtain yellow crystal product (1.21g, 59%). FT-IR (KBr, cm⁻¹): 3487.61 (ν_{OH}), 3161.84 (ν_{NH}), 2961.22, 2939.85, 2854.63, 2829.49 (ν_{CH} , ν_{CH2}), 1666.63 ($\nu_{C=O}$), 1528.24, 1265.92, 1175.88 (ν_{CN}), 764.76 ($\nu_{C=S}$). ¹H NMR (CDCl₃; δ , ppm): 10.867, 8.977 (2 × *s*, 1H, NH), 7.816 (d, *J* = 3.4 Hz, 2H, Ar), 7.518 (d, *J* = 2.4 Hz, 2H, Ar), 3.775 (t, *J* = 4.8 Hz, 4H, proton of morpholine

Scheme 1. The reaction process for compound I and II.

ring), 2.494 (t, J = 6.6 Hz, 4H, proton of morpholine ring), 3.827 (q, J = 18.8 Hz, 2H, CH₂), 1.916 (t, J = 6.8 Hz, 2H, CH₂), 1.710 (m, 2H, CH₂). ¹³C NMR (CDCl₃; δ , ppm): 179.39 (C = S), 165.30 (C = O), 140.12, 130.23, 129.50, 128.84 (aromatic ring), 66.79, 53.85 (morpholine ring), 56.85, 44.94, 24.60 (methylene).

3.2.2. Compound **II**. Compound **II** was synthesized with a similar procedure as described in compound **I** but solution of 4-methylbenzoyl chloride (1.0 g, 6 mmol) was used. Colourless crystals were obtained (1.19 g, 62%). FT-IR (KBr, cm⁻¹): 3467.70 (ν_{OH}), 3436.19, 3144.83 (ν_{NH}), 2957.67, 2940.02, 2857.98, 2829.28 (ν_{CH} , ν_{CH2}), 1663.09 ($\nu_{C=0}$), 1554.37, 1261.08, 1174.80 (ν_{CN}), 756.76 ($\nu_{C=S}$). ¹H NMR (CDCl₃; δ , ppm): 10.947, 9.010 (2 × *s*, 1H, NH), 7.758 (d, *J*=8.4 Hz, 2H, Ar), 7.328 (d, *J* = 8 Hz, 2H, Ar), 3.771 (t, *J* = 4.8 Hz, 4H, proton of morpholine ring), 2.488 (t, *J* = 6.4 Hz, 4H, proton of morpholine ring), 3.823 (q, *J* = 18 Hz, 2H, CH₂), 1.916 (t, *J* = 6.8 Hz, 2H, CH₂), 1.765 (m, 2H, CH₂), 2.455 (s, 3H, methyl). ¹³C NMR (CDCl₃; δ , ppm): 179.72 (C=S), 166.40 (C=O), 144.53, 129.81, 128.95, 127.47 (aromatic ring), 66.81, 53.82 (morpholine ring), 56.69, 44.72, 24.72 (methylene), 21.65 (methyl).

Compound	Ι	П
CCDC deposition numbers	944766	944767
Molecular formula	$C_{15}H_{20}ClN_3O_2S.H_2O$	C ₁₆ H ₂₃ N ₃ O ₂ S.H ₂ O
Molecular weight	359.87	339.45
Crystal system	Monoclinic	Triclinic
Space group	C2/c	<i>P</i> -1
a/Å	16.4318	9.3319(3)
b/Å	13.0017	9.6187(3)
c/Å	16.2908	10.3072(3)
αI°	90.000	112.734(1)
β /°	97.394	90.143(2)
γI°	90.000	93.455(2)
<i>V</i> / Å ³	3451.45(5)	851.42(5)
Ζ	8	2
$D_{\text{calc}} (\text{g cm}^{-3})$	1.385	1.324
Crystal Dimensions (mm)	$0.35 \times 0.29 \times 0.19$	$0.28\times0.17\times0.15$
μ/mm^{-1}	0.36	0.21
Radiation λ (Å)	0.71073	0.71073
$T_{\rm min}/T_{\rm max}$	0.884/0.936	0.944/0.969
Reflections measured	26263	4887
Ranges/indices (h, k, l)	$23 \le h \le 22;$	$13 \le h \le 13;$
	$18 \le k \le 18;$	$13 \le k \le 12;$
	$23 \le l \le 18.$	$24 \le l \le 14.$
θ limit (°)	2.0-30.2	2.1-30.0
Unique reflections	5105	4887
Observed reflections $(I > 2\sigma(I))$	4342	4031
Parameters	218	226
Goodness of fit on F^2	1.04	1.06
$R_1, wR_2 [I \ge 2\sigma(I)]$	0.040, 0.096	0.047, 0.134
Largest diff. peak and hole, $e/Å^{-3}$	0.60 and -0.58	0.45 and -0.29

Table 6. Crystallographic data for compound I and II

3.3. X-Ray Crystallography Studies

The single crystal of compounds I and II was mounted on the glass fiber. The crystal structures were determined by single crystal X-ray diffraction from data collected at low temperature (100K) using the Oxford Cryosystem Cobra low-temperature attachment [45]. The data were collected using a Bruker APEX2 CCD diffractometer with the graphite monochromated MoK α ($\lambda = 0.71073$ Å) radiation and with APEX2 software [46]. The collected data were reduced using SAINT program [46]. The empirical absorption corrections were performed by the SADABS program [46]. The structure was solved by direct methods and refined by full matrix least-squares using the SHELXTL software package [47]. The nonhydrogen atoms were refined anisotropically. The hydrogen atoms which bounded to the nitrogen atom and the oxygen of the water molecule were found from the difference fourier maps and refined freely. All the other hydrogen atoms were positioned

geometrically and refined using riding model. A rotating group model was applied to the methyl group of compound **II**. Besides, the studied structure of compound **II** was an inversion twin with a domain ratio of 0.81387 (22): 0.18613 (22). In the final refinement, the same U^{ij} parameter (EADP constraint) was used to the atom pair S1 and C8 of compound **I** and ten outliers (-1 - 1 2, 7 - 2 4, 8 0 1, 5 0 1, -4 0 1, -1 0 1, -5 - 2 4, 0 0 1, -1 - 2 4, and 6 - 2 4) were omitted from compound **II**. The structure analysis and presentation of the results were made using PLATON [47]. Table 6 shows the main crystal data and structure refinement for compounds **I** and **II**.

3.4. Computational Calculation

The molecular geometries were optimized to standard convergence criteria and harmonic frequencies calculated by using DFT hybrid method with Becke's nonlocal three parameter exchange and the Lee, Young and Parr correction (B3LYP) using the 6-31G+(2d,p) and 6-311G+(2d,p) basis sets as implemented in the GAUSSIAN 09 program package [49]. The optimized structural parameters were used to calculate the vibrational wavenumbers and isotropic chemical shifts. The calculated vibrational frequencies corresponded to potential energy minima in which no imaginary frequency was found. The gauge-invariant atomic orbital (GIAO) method was used to calculate the ¹H and ¹³C NMR chemical shifts in ppm relative to TMS as internal standard. The GIAO approach allows the computation of the absolute chemical shielding due to the electronic environment of the individual nuclei and this method is often more accurate than those calculated with other approaches for the same basis set [1]. Gauss View molecular visualization program has been used for the animation of vibrational band assignments and preparation of the spectrum [50].

4. Conclusion

The crystal structure of compounds I and II were successfully synthesized and characterized by X-Ray Crystallography analysis, FT-IR, and NMR spectroscopy. In the crystal, the main molecules with the water molecules were connected into a centrosymmetry dimer in compound I, whereas in compound II, the molecules were linked into one-dimensional column. The C—H... π interactions were also observed in both molecules. The ground state geometries of the structure were optimized using DFT/B3LYP6-31G+(2d,p) and DFT/B3LYP6-311G+(2d,p) basis sets and further used to calculate the vibrational frequencies and the isotropic chemical shift. All the calculated values were in a good agreement with the experimental results. The calculated values from the DFT/B3LYP6-311G+(2d,p)basis set gave better agreement as compared to the DFT/B3LYP6-31G+(2d,p) basis set. The observed intermolecular interactions in the crystal packing are the main cause of the torsion angles differences where these interactions are not taken into consideration during the optimization process. The differences are also observed in the calculated molecular vibrations and chemical shifts. In theoretical FTIR and NMR analysis, the atoms involved in the intermolecular hydrogen bond show a significant difference in the wavenumber and chemical shift values, respectively, compared with the observed data. The correlation values of 0.995, 0.996, and 0.997 were obtained from the vibrational frequency studies. We hope that the proposed results can assist others in the experimental and theoretical studies that are related to the title compounds I and II, where both compounds have been calculated in the presence of water molecules.

Supplementary Material

Crystallographic data (excluding the structure factors file) have been deposited with the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB221EZ, UK (fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk) as supplementary publication no. CCDC 944766 for compound I and 944767 for compound II.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant, No. 304/PFIZIK/6312078 and FRGS Grant 59178 to conduct this work. SA thanks the Malaysian government and USM for the Academic Staff Training Scheme Fellowship (ASTS).

References

- [1] Atiş, M., Karipchi, F., Sariboğa, B., Taş, M., & Çelik, H. (2012). Spectrochim. Acta A, 98, 290.
- [2] Arslan, H., Mansuroglu, D. S., VanDerveer, D., & Binzet, G. (2009). Spectrochim. Acta A, 72, 561.
- [3] Arslan, N.B., Kazak, C., & Aydin, F. (2012). Spectrochim. Acta A, 89, 30.
- [4] Arslan, H., Külcü, N., & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065.
- [5] Estévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodríguez, I., & Ruguera, E. (2005). Spectrochim. Acta A, 62, 964.
- [6] Yang, W., Zhu, W., Zhou, W., Liu, H., & Fan, J. (2012). J. Flourine Chem., 144, 38.
- [7] Saeed, A., Erben, M. F., Shaheen, U., & Flörke, U. (2011). J. Mol. Struct., 1000, 49.
- [8] Zhu, W., Yang, W., Zhou, W., Liu, H., Wei, S., & Jianfen, F. (2001). J. Mol. Struct., 1004, 74.
- [9] Aydin, F., Aykaç, D., Ünver, H., & İskeleli, N. O. J. (2012). Chem. Crystallogr., 42, 381.
- [10] Arslan, H., Külcü, N., & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065.
- [11] Loto, R. T., Loto, C. A., & Popoola, A. P. I. (2012). J. Mater. Environ. Sci., 3, 885.
- [12] Yaro, A. S., & Abdulaaima, D. A. (2012). Iraqi J. Chem. Petroleum Eng., 13, 1.
- [13] Shetty, S. D., Shetty, P., & Sudhaker Nayak, H. V. (2006). J. Serb. Chem, Soc., 71, 1073.
- [14] Tripathi, R., Chaturvedi, A., & Upadhayay, R. K. (2012). Res. J. Chem. Sci., 2, 18.
- [15] Anitha, S., Sreenivasan, E., & Puroshothaman, S. M. (2004). J. Trop. Agric., 42, 53.
- [16] Anitha, S., Puroshothaman, S. M., & Sreenivasan, E. (2006). Legume Res., 29, 146.
- [17] Saeed, S., Rashid, N., Ali, M., Hussain, R., & Jones, P. (2010). Eur. J. Chem., 1, 221.
- [18] El-Hamdouni, N., Companyó, X., Rios, R., & Moyano, A. (2010). Chem. Eur. J., 16, 1142.
- [19] Takemoto, Y. (2010). Chem. Pharm. Bull., 58, 593.
- [20] Okino, T., Hoashi, Y., Furukawa, T., Xu, X., & Takemoto, Y. (2005). J. Am. Chem. Soc., 127, 119.
- [21] Mohamed, M. S., Kamel, M. M., Kassem, E. M. M., Abotaleb, N., Abd El-moez, S. I., & Ahmed, M. F. (2010). *Eur. J. Med. Chem.*, 45, 3311.
- [22] Marverti, G., Cusumano, M., Ligabue, A., Di Pietro, M. L., Vainiglia, P. A., Ferrari, A., Bergomi, M., Moruzzi, M. S., & Frassineti, C. (2008). J. Inorg. Biochem., 102, 699.
- [23] Keche, A. P., Hatnapure, G. D., Tale, R. H., Rodge, A. H., Birajdar, S. S., & Kamble, V. M. (2010). Bioorg. Med. Chem Lett., 22, 3445.
- [24] Sriram, D., Yogeeswari, P., & Madhu, K. (2006). Bioorg. Med. Chem Lett., 16, 876.
- [25] D'Cruz, O. J., Dong, Y., & Uckun, F. M. (2003). Biochem. Bioph. Res. Co., 302, 253.
- [26] Foresman, J. B., & Frisch, Æ. (1996). Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc.: Pittsburgh, PA.
- [27] Arslan, H., Flörke, U., & Külcü, N. (2007). Spectrochim. Acta A, 67, 936.
- [28] Arslan, H., Flörke, U., Külcü, N., & Binzet, G. (2007). Spectrochim. Acta A, 68, 1347.

- [29] Yusof, M. S. M., Mutalib, S. F. A., Arshad, S., & Razak, I. A. (2012). Acta Cryst. E, 68, 0982
- [30] Yusof, M. S. M., Embong, N. F., Arshad, S., & Razak, I. A. (2012). Acta Cryst. E, 68, o1029.
- [31] Yusof, M. S. M., Embong, N. F., Arshad, S., & Razak, I. A. (2012). Acta Cryst. E, 68, o1267.
- [32] Yusof, M. S. M., Arshad, S., Razak, I. A., & Rahman, A. A. (2012). Acta Cryst. E, 68, o2670.
- [33] Duan, X.-E., Wei, X.-H., Tong, H.-B., Bai, S.-D., Zhang, Y.-B., & Liu, D.-S. (2011). J. Mol. Struct., 1005, 91.
- [34] Yusof, M. S. M., Jusoh, R. H., Khairul, W. M., & Yamin, B. M. (2010). J. Mol. Struct., 975, 280.
- [35] Saeed, A., Erben, M. F., Abbas, N., & Flörke, U. (2010). J. Mol. Struct., 984, 240.
- [36] Hritzová, O., Černák, J., Šafař, P., Frőhlichová, Z., & Csőregh, I. (2005). J. Mol. Struct., 743, 29.
- [37] Cremer, D., & Pople, J. A. (1975). J. Am. Chem. Soc., 97, 1354.
- [38] Fun, H.-K., Arshad, S., Samshuddin, S., Narayana, B., & Sarojini, B. K. (2011). Acta Cryst. E, 67, 03372.
- [39] Jie, L., Shuchen, P., Li, H., & Yong, W. (2012). Acta Cryst. E, 68, 013.
- [40] Devarajegowda, H. C., Kumar, K. M., Seenivasa, S., Arunkashi, H. K., & Kotresh, O. (2013). Acta Cryst. E, 69, 0192.
- [41] Bernstein, J., Davis, R. E., Shimoni, L., & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555.
- [42] Saeed, A., Erben, M. F., & Bolte, M. (2011). J. Mol. Struct., 985, 57.
- [43] Subashchandrabose, S., Saleem, H., Erdogdu, Y., Rajarajan, G., & Thanikachalam, V. (2011). Spectrochim. Acta A, 82, 260.
- [44] Krishnamoorthy, A., Herbert, F. W., Yip, S., Vliet, K. J. V., & Yildiz, B. (2013). J. Phys.: Condens. Matter., 25, 045004.
- [45] Cosier J., & Glazer A. M. (1986). J. Appl. Cryst., 19, 105.
- [46] Bruker. SADABS, APEX2 and SAINT. (2009). Bruker AXS, Inc.: Madison, Wisconsin, USA.
- [47] Sheldrick, G. M. (2008). Acta Cryst. A, 64, 112.
- [48] Spek, A. L. (2009). Acta Cryst. D, 65, 148.
- [49] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Scalmani, G., et al. Gaussian 09, Revision A.1, Gaussian, Inc.: Wallingford, CT.
- [50] Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5, Semichem, Inc.: Shawnee Mission, KS.