Chemical Communications

Number 7 1985

Reactivity of Chalcogen Cluster Polycations

A. M. Rosan

Corporate Research & Development, Allied Corporation, Morristown, NJ 07960, U.S.A.

The chalcogen polycations $S_8(AsF_6)_2$, $S_{19}(HS_2O_7)_2$, and $Se_4(HS_2O_7)_2$ are powerful oxidants entering into electron transfer reactions with hydrocarbons, aromatic compounds, and halides.

The polynuclear polycations of Group 6A constitute a fascinating class of compounds whose synthetic and structural chemistry has only recently been elucidated.^{1,2} It has long been known that highly coloured ionic species are produced upon dissolution and subsequent oxidation of sulphur, selenium, or tellurium in oleum or fluorosulphonic acid.³ Solution cryoscopic, spectroscopic,⁴ crystallographic,^{5,6} and theoretical7 investigations have facilitated the study of cluster geometry and bonding in the derived dications S_{19}^{2+} , S_8^{2+} , $Se_{4^{2+}}$, $Te_{4^{2+}}$, and related species.⁸ For example, $S_{19^{2+}}$ (red, earlier postulated to be S_{16}^{2+} and S_{8}^{2+} (blue) are produced upon oxidation of S_8 in SO_3 -H₂SO₄, while a more convenient synthesis utilizing AsF_5-SO_2 permits isolation of the salt $S_8(AsF_6)_2$, equation (1).⁹ This species has been shown to adopt a cyclic exo-endo conformation and to exhibit a weak 1,5 transannular sulphur-sulphur interaction. To date, studies of the reactivity of this class of electrophiles have been confined to reports of formation of perfluorinated sulphides,^{10,11} selenides,^{11,12} and tellurides¹²⁻¹⁴ from oxidation of inert C₂F₄. We report herein on their reaction with hydrocarbons and other donors.

Deep blue $S_8(AsF_6)_2^9$ reacts with simple hydrocarbons in SO₂ solution. The salt is slowly reduced by methane providing methanethiol (~5%). Higher hydrocarbons are more reactive, equation (2).[†] For example, warming a frozen mixture of $S_8(AsF_6)_2$ and propane in SO₂ provides iso- and n-propyl sulphides, di-isopropyl disulphide, and isopropyl n-propyl sulphide (30%; relative proportions 50:5:1). From n-butane the homologous di-n-butyl disulphide and di-n-butyl trisulphide in addition to n-butyl n-butenyl sulphide are obtained (~45%; relative proportions 1:1:1). These reactions employed an excess of hydrocarbon and were accompanied by a series of colour changes below room temperature (blue

$$S_8 + 3AsF_5 \xrightarrow{SO_2} S_8(AsF_6)_2 + AsF_3$$
(1)

$$S_8(AsF_6)_2 + 2RH \xrightarrow{SO_2} R_2S_n (n = 1-3)$$
 (2)

 \rightarrow violet \rightarrow red \rightarrow orange \rightarrow yellow \rightarrow tan) with the ultimate precipitation of S₈ (Raman).

Neither elemental sulphur nor S_8 -SO₂ are reactive toward the cited substrates. In general, the oxidizing character of S_8 is not manifested at low temperatures¹⁵ and, unlike S₈²⁺, usually involves reduction to H₂S. The transformations reported herein result from electron transfer between hydrocarbon (donor-reductant) and polycation (acceptor-oxidant). A further manifestation of this reactivity is shown in the selective conversion of toluene by $S_8(AsF_6)_2$ into a series of isomeric dimethylbiphenyls (45%; relative proportions of 2-3', 3-3', and 4-4' isomers 1:3:3), wherein electrophilic substitution predominates over benzylic activation. Aromatic cation radicals would be expected to be important intermediates.¹⁶ A third reaction path reflecting the oxidizing power of S_8^{2+} is demonstrated by oxidation of cycloheptatriene to tropylium hexafluoroarsenate (20%).[‡] As with similar oxidations induced by amine radical cations,¹⁷ the sequence of hydride abstraction vs. electron transfer steps is unresolved.

We have not examined the reactions of simple hydrocarbons with the less accessible Se_4^{2+} cation,¹⁸ but note that red selenium is produced immediately on contacting $Se_4(H-S_2O_7)_2$ -HSO₃F with cyclohexane or Nujol oil, although dilution with SO₂ does not lead to disproportionation. In contrast, $Te_4(AsF_6)_2$ ^{9,19} is not reduced by hexane.

A number of other reactions reflect the high redox reactivity of the chalcogen polycations. Thus, CO is selectively converted into COS (20%) by $S_8(AsF_6)_2$ -SO₂, but is oxidized to CO₂ by orange Se₄(HS₂O₇)₂, which in turn affords green Se₈²⁺ (Raman). This latter species is inert to O₂-HSO₃F at 300 K. It is noteworthy that AsF₅ is itself a sufficiently strong oxidant that exposure to CO-SO₂ slowly liberates CO₂ and deposits the characteristically blue S₈(AsF₆)₂, equation (3).

$$3AsF_5 + CO \xrightarrow{SO_2} S_8(AsF_6)_2 + CO_2 + AsF_3$$
 (3)

Potassium fluoride in SO₂ slowly reacts with $S_8(AsF_{6)2}$ producing SOF₂ (15%). Solvent participation may be involved

[†] All products were identified by gas chromatography and gas chromatography-mass spectroscopy.

[‡] Identified by ¹H n.m.r. spectroscopy in $(CD_3)_2CO$: δ 9.50 (s). AsF₅-SO₂ can also produce tropylium in low yield (<5%).

in this process as no simple sulphur fluorides are produced. In 30–33% oleum, addition of KF to S_{19}^{2+} produces SO_2 consistent with polycation disproportionation induced by the lower acidity of the KF–SO₃ mixture.

In summary, the remarkably electrophilic chalcogen cluster polycations, in which the elements are present in fractional oxidation states, are exceptionally strong oxidants toward C-H bonds and other weak donors. The ensuing reactions proceed *via* electron-transfer processes, which may lead to substrate sulphurization, dimerization, or oxidation.

I acknowledge with thanks Dr. G. P. Pez for discussions, encouragement, and advice and Drs. J. Witt and E. R. McCarthy for assistance with Raman and g.c.-mass spectroscopic work.

Received, 22nd October 1984; Com. 1482

References

- 1 R. J. Gillespie and J. Passmore, Acc. Chem. Res., 1971, 4, 413; Adv. Inorg. Chem., 1975, 17, 49.
- 2 J. D. Corbett, Progr. Inorg. Chem., 1976, 21, 129.
- 3 C. F. Bucholz, Gehlen's Neures J. Chem., 1804, 3, 7.

- 4 R. J. Gillespie, J. Passmore, P. K. Ummat, and O. C. Vaidya, *Inorg. Chem.*, 1971, **10**, 1327 (and following papers in this series).
- 5 R. Č. Burns, R. J. Gillespie, and J. F. Sawyer, *Inorg. Chem.*, 1980, **19**, 1423.
- 6 C. G. Davis, R. J. Gillespie, J. J. Park, and J. Passmore, *Inorg. Chem.*, 1971, **10**, 2781.
- 7 K. Tanaka, T. Yamabe, H. Terama-e, and K. Fukui, Inorg. Chem., 1979, 18, 3591; Nouv. J. Chim., 1979, 3, 379.
- 8 For example S_4^{2+} , J. Passmore, G. Sutherland, and P. S. White, J. Chem. Soc., Chem. Commun., 1980, 330.
- 9 R. J. Gillespie, Inorg. Synth., 1974, XV, 213.
- 10 H. L. Paige and J. Passmore, Inorg. Chem., 1973, 12, 593.
- 11 C. D. Desjardins and J. Passmore, Can. J. Chem., 1977, 55, 3136.
- 12 C. D. Desjardins and J. Passmore, J. Chem. Soc., Dalton Trans., 1973, 2314.
- 13 C. D. Desjardins, H. L. Paige, J. Passmore, and P. Taylor, J. Chem. Soc., Dalton Trans., 1974, 488.
- 14 H. L. Paige and J. Passmore, J. Inorg. Nucl. Chem. Lett., 1973, 9, 277.
- 15 W. A. Pryor, 'Mechanisms of Sulfur Reactions,' McGraw-Hill, New York, 1962.
- 16 H. Bock, U. Stein, and P. Rittmeyer, Angew. Chem., Int. Ed. Engl., 1982, 21, 533.
- 17 P. Beresford and A. Ledwith, Chem. Commun., 1970, 15.
- 18 J. Barr, D. B. Crump, R. J. Gillespie, R. Kapoor, and P. K. Ummat, Can. J. Chem., 1968, 46, 3607.
- 19 J. Barr, R. J. Gillespie, G. P. Pez, P. K. Ummat, and O. C. Vaidya, *Inorg. Chem.*, 1971, 10, 362.