FURTHER TRITERPENOIDS FROM THE STEMS OF LITHOCARPUS POLYSTACHYA

WAI-HAAN HUI and MAN-MOON LI

Department of Chemistry, University of Hong Kong, Hong Kong

(Received 23 July 1976)

Key Word Index—Lithocarpus polystachya; Fagaceae; triterpenoids; lupeol; taraxerol; 3β -acetoxylupan-29-al; 20-hydroxylupan-3-one; lupane- 3β , 29-diol; betulin morolic and oleanolic acids.

INTRODUCTION

The following compounds have previously been isolated from Lithocarpus polystachya: (Wall.) Rhed. friedelin, friedelan-3 β -ol, glutinol, β -amyrin, taraxerol, sitosterol and three new cycloartane triterpenes from leaves [1, 2]; friedelin, friedelan-3 β -ol, sitosterol and betulinic acid from stems [2, 3]. Neutral and acidic pentacyclic triterpenoids have also been obtained from 9 Hong Kong Lithocarpus species [1-6].

RESULTS

On reinvestigation on a bigger scale, the stems of L. polystachya have yielded in addition to those triterpenoids already reported [2, 3], lupeol, taraxerol, betulin, 20-hydroxylupan-3-one (1), 3β -acetoxylupan-29-al(2), lupane- 3β , 29-diol(3), morolic acid and oleanolic acid. Compounds 1-3 have not previously been isolated from natural sources. They were all saturated compounds (negative tetranitromethane test).

Compounds 1, $C_{30}H_{50}O_2$, contained a $-CH_2CO$ function $[v_{max} 1700 \text{ cm}^{-1}, \delta 2.40 (2H, m)]$, and an OH group $(v_{max} 3474 \text{ cm}^{-1})$ which could not be acetylated. Reduction of 1 with NaBH₄ gave a diol (4), which on acetylation yielded a monoacetate (5), and on oxidation was converted back to 1. The presence of a tertiary OH group in these compounds was thus suggested. The NMR spectra of compounds 1, 4 and 5 all revealed $2 CH_3$ singlets at δ 1.12 and 1.22, showing the existence of a $-C(Me)_2OH$ group, probably belonging to the 20-hydroxylupane and not to the 22-hydroxyhopane series [7], as the latter usually gives two equivalent CH_3 singlets at δ 1.20 [5]. This was confirmed by the ready dehydration of 1 to give lup-20(29)-en-3-one (lupenone) (6), and by LiAlH₄ reduction of 20, 29-epoxylupan-3β-yl acetate (7) [8] to yield 3β,20-dihydroxylupane, identical with 4. Compound 1 was thus 20-hydroxylupan-3-one, which has previously been prepared from eisacol (4), a natural product [9]. Compound 4 was first isolated in 1954, and named monogynol-A (10], and its structure was confirmed in 1961 [8].

Compound 2, $C_{32}H_{52}O_3$, contained an equatorial-OCOMe function $[v_{max} 1730, 1250 \text{ cm}^{-1}, \delta 2.02 (3H, s), 4.47 (1H, q, <math>J_{ax/ax} = 9 \text{ Hz}, J_{ax/eq} = 7 \text{ Hz})]$ and a --CHO group $[v_{max} 2840, 2720, 1730 \text{ cm}^{-1}, \delta 9.60 (1H, s)]$. On reduction with LiAlH₄ it yielded a diol, $C_{30}H_{52}O_2$, $(v_{max} 3550, 3500 \text{ cm}^{-1})$, identical with compound 3, and on Wolff-Kishner reduction followed by acetylation it gave 3β -acetoxylupane (8). Compound 3 formed a diacetate (9), the NMR spectrum of which indicated

the presence of a ---CH---CH₂OAc group (δ 3.88, 2H, d, J = 8 Hz) probably representing part of the side chain of a lupane derivative. This was confirmed by acid treatment of the epoxide 7 to yield 3\beta-acetoxylupan-29al [11], identical with 2. Hence 3 must be 3 β , 29-dihydroxylupane. Although 2 and 3 are new natural products, they have previously been synthesised, 2 as described above, and 3 from methyl 3 β -acetoxylup-20(29)-en-30oate (10) or 3 β -acetoxy-30-oxolup-20(29)-ene (11) [12].

The NMR shifts of the tertiary Me proton signals (δ values) in compounds 1, 2, 4, 5, 7 and 9 are assigned as shown in Table 1.

In this and previous studies [1-3], it has been shown that a total of 16 triterpenoids have been isolated from

Compound	C-23	C-24	C-25	C-26	C-27	C-28	C29/C30
1	1.10	1.02	0.93	1.09	0.97	0.80	1.12/1.22
2	0.84	0.84	0.84	1.04	0.89	0.79	
4	0.96	0.78	0.85	1.07	0.96	0.82	1.12/1.22
5	0.84	0.84	0.86	1.06	0.96	0.81	1.12/1.22
7	0.84	0.84	0.84	1.03	0.93	0.83	1.24
9	0.88	0.88	0.88	1.05	0.94	0.77	—

Table 1. NMR shifts of lupane derivatives

L. polystachya. Compounds 1-3 are examples of rare saturated naturally occurring lupane derivatives, and 2 and 3 are the first two such compounds with oxygen functions at C-29.

EXPERIMENTAL

Optical rotations were recorded in $CHCl_3$ solns, IR spectra for KBr discs, NMR spectra in $CDCl_3$ were determined at 60 MHz using TMS as internal standard. Petrol had bp 60-80°. Known compounds were identified by TLC, mmp, IR and MS comparisons with authentic samples.

Extraction and isolation of compounds. Milled air-dried stems of L. polystachya (Wall.) Rhed. (45 kg) were extracted 2 × at room temp with petrol for 10 days. Combined extracts were distilled to give a residue (150 g), which was chromatographed in petrol on alumina (3 kg). Elution with petrol gave friedelin (3.0 g), mp 261–263°, friedelan-3 β -ol (1.0 g), mp 285–287°, then lupeol (0.1 g), mp 209-211°; with petrol- C_6H_6 (1:1) yielded taraxerol (1.0 g), mp 287-289°, then sitosterol (0.5 g), mp 139-140°, and finally plates of 3^β-acetoxylupan-29-al (2) (0.05 g), mp 227-229° (from CHCl₃), $[\alpha]_D + 10.8^\circ$ (Lit. [11], mp 223-226°, $[\alpha]_D + 14.4^\circ$). (Found : M⁺ 484. Calc. for $C_{32}H_{52}O_3$: M⁺ 484). Further elution with C_6H_6 afforded plates of 20-hydroxylupan-3-one (1) (0.04 g), mp 224–225° (from CHCl₃), $[\alpha]_{\rm D}$ + 30.7° (Lit. [9], mp 220–222°, $[\alpha]_{\rm D}$ + 27.2°). (Found: M⁺ 442. Calc. for C₃₀H₅₀O₂: M⁺ 442); then needles of 3β.29-dihydroxylupane (3) (0.05 g), mp 237–239° (from MeOH), $[\alpha]_D + 3.0°$ (Lit. [12], mp 236–238°, $[\alpha]_D \pm 0°$]. (Found : M⁺ 444. Calc. for $C_{30}H_{52}O_2$: M^+ 444). Finally elution with C_6H_6 -CHCl₃ (1:1) gave needles of betulin (0.02 g), mp 254-256°. The residue after extraction with petrol was extracted $2 \times$ at room temperature with ethanol. The acidic solid (7 g) isolated through the sodium salt, was treated with CH₂N₂ in ether, and the product was chromatographed on alumina (150 g). Elution with petrol yielded prisms of methyl betulinate (0.07 g), mp 228–230°, with petrol-C₆H₆ (1:1), needles of methyl morolate (0.01 g), mp $230-232^\circ$, ĪŔ $v_{\text{max}} \text{ cm}^{-1}$: 3580 (OH), 1720, 1225 (COOMe), 1650, 850 (C=CH), then needles of methyl oleanolate (0.02 g), mp 197-200°, IR $v_{\text{max}} \text{ cm}^{-1}$: 3380 (OH), 1730, 1160 (COOMe), 3030, 1650, 850 (C = CH)

Attempted acetylation of 1. 1 (0.02 g) was kept at room

temp. in $(MeCO)_2O$ and C_5H_5N for 2 days. The product (0.017 g), mp 222–224°, was identified to be unchanged 1.

Reduction of **1.** 1 (0.04 g) was stirred with NaBH₄ (0.1 g) in (Me)₂CHOH (25 ml) at room temp for 4 hr. The product (4) (0.035 g), mp 237-238° (from CHCl₃), $[\alpha]_D + 27.5°$, MS: *m/e* 444 (M⁺), C₃₀H₅₂O₂. IR v_{max} cm⁻¹. 3500 (OH), NMR : δ 3.20 (1H, q, $J_{ax/ax}$ 9 Hz, $J_{ax/eq}$ 7 Hz, C-3xH). It formed a monoacetate (5), mp 253-254° (from CHCl₃-MeOH), $[\alpha]_D + 21.7°$, MS: *m/e* 486 (M⁺), C₃₂H₅₄O₃. IR v_{max} cm⁻¹: 3500 (OH), 1720, 1270 (OAc), NMR : δ 4.47 [1H, q, $J_{ax/ax}$ 9 Hz, $J_{ax/eq}$ 7 Hz (C-3αH), 2.04, 3H, s (OCOC<u>H₃</u>)].

Oxidation of 4.4 (0.025 g) was treated with Jones' reagent. The product (0.02 g), mp 223-225°, was identical with 1.

Dehydration of 1. 1 (0.03 g) was refluxed with POCl₃ (0.2 ml) and C₅H₅N (25 ml) for 2 hr. The product (0.023 g), mp 169–171° (from petrol), $[\alpha]_D + 57.0^\circ$, IR ν_{max} cm⁻¹: 1700 (C=O), 3080, 1045, 885 (\geq C=CH₂), was identical with lupenone (6). Partial synthesis of lupane-3β,20-diol (4). Lupenyl acetate (0.05) was treated with *m*-chloroperbenzoic acid (0.2 g) in CHCl₃ (150 ml) at 0° for 6 hr to give plates of 20,29-epoxylupan-3β-yl acetate (7) (0.04 g), mp 238–240° (from ether), $[\alpha]_D + 24.0^\circ$, MS: *m/e* 484 (M⁺), C₃₂H₅₂O₃, IR ν_{max} cm⁻¹. 1730, 1250 (OAc), 880 (epoxy), NMR: δ 2.62 (2H, s

s, OCOCH₃₀), 4.47 (1H, $q J_{ax/ax}$ 9 Hz, $J_{ax/eq}$ 7 Hz, C-3 α H). Compound 7(0.03 g) was then refluxed with LiAlH₄ (0.3 g) in dry Et₂O for 18 hr. The product (0.024 g), mp 223-225° (from CHCl₃-MeOH), was identical with 4.

Reduction of **2**. **2** (0.03 g) was refluxed with LiAlH₄ (0.5 g) in dry Et₂O (25 ml) for 4 hr. The product (0.025 g), mp 236–238°, IR v_{max} cm⁻¹: 3500 (OH), was identical with **3**.

Wolff-Kishner reduction of 2. 2 (0.01 g), NaOH (0.2 g) and hydrazine hydrate (0.2 ml) in diethylene glycol (50 ml) was heated at 120° for 1 hr, then at 210° for 7 hr. The product was treated with (MeCO)₂O (20 ml) and C₅H₅N (1 ml) at room temperature for 3 hr to give plates (0.03 g), mp 247-249°, IR ν_{max} cm⁻¹: 1740, 1255 (OAc), identical with 3β-acetoxylupane (8).

Acetylation of 3. 3 (0.025 g) was acetylated at room temp to give plates of 9 (0.025 g), mp 191–193° (from petrol), $[\alpha]_D +$ 71.1°. (Found : M⁺ 528. Calc. for C₃₄H₅₆O₄ : M⁺ 528), IR ν_{max} cm⁻¹ : 1730, 1250 (OAc).

Acid isomerization of 7. The epoxide 7 (0.05 g) in $CHCl_3$ -MeOH (1:1) (100 ml) was treated with conc. HCl (1 ml) at room temp for 6 hr. The product (0.04 g), mp 225–228° (from $CHCl_3$), was identical with 2

Acknowledgements—We thank the Committee on Higher Degrees and Research Grants, University of Hong Kong, for financial support.

REFERENCES

- 1. Arthur, H. R., Ko, P. D. S. and Cheung, H. T. (1974) Phytochemistry 13, 2551.
- Hui, W. H., Ko, P. D. S., Lee, Y. C., Li, M. M. and Arthur, H. R. (1975) *Phytochemistry* 14, 1063.
- 3. Hui, W. H. and Li, M. M. (1976) Phytochemistry 15, 336.
- Hui, W. H., Li, M. M. and Lee, Y. C. (1975) J. Chem. Soc. Perkin I 617.
- 5. Hui, W. H. and Li, M. M. (1976) J. Chem. Soc. Perkin I 23.
- 6. Hui, W. H. and Li, M. M. (1975) Phytochemistry 14, 785.
- Chin, W. J., Corbett, R. E., Heng, C. K. and Wilkins, A. L. (1973) J. Chem. Soc. Perkin I 1437.
- 8. Lewis, K. G. (1961) J. Chem. Soc. 2330.
- Dominguez, X. A., Barragan, V. A., Leon, V. J., Morales, J., and Watson, W. H. (1971) Rev. Latinoamer. Quim. 2, 35.
- Chatterji, S. K., Sharma, V. N., and Dhar, M. L. (1954)
 J. Sci. Ind. Res. Inst. (India) 13B, 546.
- 11. Ruzicka, L. and Rosenkranz, G. (1939) Helv. Chim. Acta 22, 778.
- 12. Adhikary, S. P., Lawrie, W., Mclean, J. and Malik, M. S. (1971), J. Chem. Soc. 32.