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A novel synthetic route to optically active 1,3-oxazolidines
via formal [3 + 2] cycloaddition in the presence of cinchona-
alkaloid-thiourea-based bifunctional organocatalysts is reported.
This protocol gives easy access to a wide range of chiral 1,3-
oxazolidines. In addition, the results show that bifunctional
organocatalysts can effect the intramolecular aza-Michael
addition, leading to the asymmetric synthesis of nitrogen-
containing heterocycles.

Asymmetric 1,3-oxazolidine frameworks are found in
natural products and pharmaceutical compounds.1 They are also
utilized as versatile chiral intermediates leading to ¢-amino-
carbonyl compounds as well as synthetic reagents such as chiral
auxiliaries and ligands.2 Therefore, the development of an
efficient route to various asymmetric 1,3-oxazolidine derivatives
is highly desirable. Nevertheless, their synthesis is based mainly
on optically active starting materials, and there are very few
examples of catalytic enantioselective synthesis methods.3

Recently, we developed several asymmetric cycloetherifi-
cation reactions mediated by bifunctional organocatalysts, which
can facilitate multipoint recognition utilizing hydrogen bonding
in the intramolecular oxy-Michael addition step.4,5 This method-
ology could also be extended to the formal [3 + 2] cycloaddition
of £-hydroxy-¡,¢-unsaturated carbonyls with aldehydes via
hemiacetal intermediates.4b,4c Inspired by our previous results,
we attempted to use this formal cycloaddition approach for the
development of an efficient route to nitrogen-containing chiral
heterocycles through the intramolecular aza-Michael addition
(Scheme 1).6 Herein, we present a novel asymmetric catalytic
formal [3 + 2] cycloaddition method for the synthesis of 1,3-
oxazolidines using cinchona-alkaloid-thiourea-based bifunction-
al organocatalysts.7

We initiated our investigations by carrying out the formal
cycloaddition of (E)-4-hydroxy-1-phenylbut-2-en-1-one (1a)
with (E)-N-benzylidene-4-methylbenzenesulfonamide (2a) in
the presence of the cinchonidine-derived bifunctional catalyst
4a (10mol%) in CHCl3 at 25 °C. As expected, 1,3-oxazolidines
were formed as a diastereomer mixture with modest enantio-
selectivity in 83% yield (Table 1, Entry 1). Screening of various

solvents revealed that less polar solvents are more efficient for
the stereoselectivity (Table 1, Entries 8­10).8 When the reaction
was carried out in toluene at 0 °C, the enantioselectivity was
improved to 64% ee (Table 1, Entry 11). Notably, even when
the catalyst loading was reduced to 1mol%, the stereoselectivity
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Scheme 1. Formal cycloaddition route to 1,3-oxazolidines
using bifunctional organocatalyst.
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Entry Catalyst Solvent
Yield
/%b

drc

(3aa:3aa¤)
ee/%

(3aa, 3aa¤)

1 4a CHCl3 83 2.4:1 43, 30
2 4a Et2O 78 3.0:1 59, 44
3 4a THF 53 2.4:1 46, 46
4 4a CPMEg 77 2.6:1 51, 51
5 4a DMEh 63 2.4:1 55, 48
6 4a CH3CN 79 2.7:1 54, 19
7 4a AcOEt 79 2.7:1 47, 22
8 4a benzene 93 5.6:1 54, 22
9 4a toluene 85 4.5:1 54, 32
10 4a xylene 89 4.3:1 56, 37
11d 4a toluene 95 2.4:1 64, 59
12d,e 4a toluene 46 2.5:1 64, 60
13f 4a toluene 62 2.4:1 67, 62
14d 4b toluene 53 3.0:1 53, 48
15d 4c toluene 84 9.1:1 ¹63, ¹40
16d 4d toluene 59 10:1 ¹62, ¹24
aReactions were run using 1a (0.25mmol), 2a (0.25mmol),
and the catalyst (0.025mmol) in the solvent (0.5mL). bIsolated
yields. cDiastereomeric ratios were determined by 1HNMR.
dReactions were run at 0 °C. eReaction was run using 1mol%
of 4a (0.0025mmol). fReaction was run at ¹20 °C. gCPME:
cyclopentyl methyl ether. hDME: 1,2-dimethoxyethane.
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remained unchanged (Table 1, Entry 12). No dramatic improve-
ment in the stereoselectivity was observed when the reaction
temperature was decreased to ¹20 °C, and the yield decreased
considerably (Table 1, Entry 13). Catalyst screening identified
that 4c efficiently aided the formation of the opposite enantiomer
of 3aa in good yield and with high stereoselectivity (Table 1,
Entry 15).9

With the optimized conditions and 4a as the catalyst, we
explored the substrate scope (Table 2). £-Hydroxy-¡,¢-unsat-
urated ketones 1 could be prepared readily from commercially
available materials through our reported procedure.10 Using 1a
as the substrate, we examined the feasibility of extending the
reaction to various imines 2 (Table 2, Entries 1­9).11 The
corresponding products were obtained with similar stereoselec-
tivities regardless of the electronic nature of the imine (Table 2,
Entries 2 and 3). An imine bearing a p-bromophenyl group also
afforded the corresponding product (Table 2, Entry 4). In
addition, imines with o-tolyl, 1-naphthyl, and 2-thienyl sub-
stituents gave the cycloadducts with high diastereoselectivity
(Table 2, Entries 5­7). Notably, a high enantioselectivity of up

to 87% ee was achieved when using imines with alkyl
substituents (Table 2, Entries 8 and 9). We next investigated
the reactions of various enones with imines 2a and 2f (Table 2,
Entries 10­23). In most cases, 2f gave the corresponding 1,3-
oxazolidines with high diastereoselectivity. Both electron-rich
and electron-deficient enones afforded the desired cycloaddition
products (Table 2, Entries 10­13). A substrate bearing a p-
bromophenyl group was tolerated, but o-tolyl- and 1-naphthyl-
substituted enones gave low enantioselectivities (Table 2,
Entries 14­19). Further, heterocycle- or alkyl-substituted enones
gave the corresponding 1,3-oxazolidines with acceptable stereo-
selectivities (Table 2, Entries 20­23). The absolute configuration
of 3af (the major diastereomer) was determined by X-ray
analysis (see Supporting Information for details16),12 and the
configurations of all other examples were assigned analogously.

The £-hydroxy-¡,¢-unsaturated ester 1i could also be used
with this protocol. The reaction of 1i with the imine 2f afforded
3if as a single diastereomer, albeit with low enantioselectivity
(Scheme 2). Subsequent treatment of 3if with titanium tetra-
chloride gave ¢-tosylamino-£-butyrolactone (5).13 The absolute
configuration of 5 was assigned as (R) by comparing the optical
rotation with the literature value13e (see Supporting Information
for details16).14

Although a major limitation of this reaction is its moderate
stereoselectivity, we were able to establish the catalytic synthesis
of enantioenriched 3aa on a gram scale (Scheme 3). Formal
[3 + 2] cycloaddition of 1a (1.6 g, 10mmol) with 2a (2.6 g,
10mmol) in the presence of 1mol% 4a afforded 3aa/3aa¤
(2.9 g, 6.8mmol, 68% yield) in a 2.3:1 diastereomeric ratio, with
68% ee for the major diastereomer 3aa. Separation of the major
diastereomer by flash silica gel column chromatography using
toluene/EtOAc/hexane (v/v/v = 30/1/10) as an eluent and

Table 2. Scope of substratesa

R1

O

OH
R2 H

N
+

R1

O
O

N

R2

4a (10 mol %)

toluene, 0 °C, 24 h

321

Ts
Ts  

Entry R1 R2 3
Yield
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1 Ph Ph 3aa 95 2.4:1 64
2e Ph 4-CH3OC6H4 3ab 75 3.7:1 65
3 Ph 4-CF3C6H4 3ac 70 4.3:1 66
4 Ph 4-BrC6H4 3ad 84 3.1:1 51
5 Ph 2-CH3C6H4 3ae 74 5.3:1 57
6 Ph 1-naphthyl 3af 95 7.2:1 55
7 Ph 2-thienyl 3ag 55 9.3:1 53
8 Ph cyclohexyl 3ah 99 1.9:1 74
9 Ph t-Bu 3ai 62 2.6:1 87
10 4-CH3OC6H4 Ph 3ba 58 2.2:1 63
11 4-CH3OC6H4 1-naphthyl 3bf 88 5.3:1 55
12 4-CF3C6H4 Ph 3ca 71 4.8:1 66
13 4-CF3C6H4 1-naphthyl 3cf 95 11:1 60
14 4-BrC6H4 Ph 3da 84 4.0:1 68
15 4-BrC6H4 1-naphthyl 3df 87 11:1 60
16 2-CH3C6H4 Ph 3ea 55 11:1 23
17 2-CH3C6H4 1-naphthyl 3ef 90 11:1 19
18 1-naphthyl Ph 3fa 93 11:1 24
19 1-naphthyl 1-naphthyl 3ff 87 11:1 20
20 2-thienyl Ph 3ga 74 2.6:1 61
21 2-thienyl 1-naphthyl 3gf 91 7.2:1 49
22 C6H5(CH2)2 Ph 3ha 45 3.3:1 65
23f C6H5(CH2)2 1-naphthyl 3hf 54 6.3:1 65
aReactions were run using 1 (0.25mmol), 2 (0.25mmol), and
4a (0.025mmol) in toluene (0.5mL). bIsolated yields. cDias-
tereomeric ratios were determined by 1HNMR. dValues are for
the major diastereomers of 3. See Supporting Information for
minor diastereomers.16 eReaction was run at 25 °C. fReaction
was run for 48 h.
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Scheme 2. Formal [3 + 2] cycloaddition of £-hydroxy-¡,¢-
unsaturated ester 1i with 2f and further transformation to ¢-
amino-£-butyrolactone 5.
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subsequent one-time recrystallization with 2-propanol gave 1.2 g
of 3aa (2.8mmol, overall yield: 28%) with 98% ee. Besides, the
tosyl group could be removed after reduction of the carbonyl
group by treatment with sodium naphthalenide to afford 6 in
high yield without any deterioration of the optical purity
(Scheme 4).

In summary, we have developed a novel, efficient route to
a wide range of optically active 1,3-oxazolidines via organo-
catalytic formal [3 + 2] cycloaddition. Despite its moderate
stereoselectivity, this protocol is expected to contribute signifi-
cantly to the construction of a 1,3-oxazolidine library. In
addition, we have demonstrated that bifunctional organocatalysts
can aid the asymmetric synthesis of nitrogen-containing hetero-
cycles via the intramolecular aza-Michael addition. Further
studies toward stereoselectivity improvement and the application
of this methodology to the synthesis of other heterocycles are
currently underway in our laboratory. The results of these studies
will be reported in due course.

We thank Professor Takuya Kurahashi (Kyoto University)
for X-ray crystallographic analysis. This work was supported
financially by the Japanese Ministry of Education, Culture,
Sports, Science and Technology.
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