Studies of NO₃ Radical Reactions with Some Atmospheric Organic Compounds at Low Pressures

Edward J. Dlugokencky and Carleton J. Howard*

Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80303, and Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado (Received: March 11, 1988)

Rate constants for the reactions of NO₃ with *trans*-2-butene (1), isoprene (2), α -pinene (3), and acetaldehyde (4) have been measured as a function of temperature at low pressures in a fast flow system with LIF detection of the NO₃ reactant and NO₂ product. Rate constants for reaction 1 were found to be independent of pressure from 0.44 to 4.5 Torr, and the Arrhenius plot was curved. The data were fit by the four-parameter equation, $k_1(T = 204-378 \text{ K}) = (1.78 \pm 0.36) \times 10^{-12} \exp[-(530 \times 10^{-12} \text{ K})]$ $\pm 100/T$ + (1.28 ± 0.26) $\times 10^{-14} \exp[(570 \pm 110)/T]$ (where all the error limits are the 95% confidence levels including a factor for systematic error, and the units are cm^3 molecule⁻¹ s⁻¹). The data for isoprene were fit by a normal Arrhenius equation, $k_2(T = 251-381 \text{ K}) = (3.03 \pm 0.45) \times 10^{-12} \exp[-(450 \pm 70)/T]$. The Arrhenius plots for α -pinene and acetaldehyde were linear, and the fits gave $k_3(T = 261 - 384 \text{ K}) = (1.19 \pm 0.31) \times 10^{-12} \exp[(490 \pm 70)/T]$ and $k_4(T = 264 - 374 \text{ K}) =$ $(1.44 \pm 0.18) \times 10^{-12} \exp[(-1860 \pm 300)/T]$. The efficiencies for the conversion of NO₃ to NO₂ were determined for reactions of trans-2-butene and isoprene at low pressures and room temperature in He, N₂, and O₂ carrier gases, and at 360 K in 1 Torr of He. The measured yields of NO_2 decreased with increasing size of the organic reactant, with increasing pressure, with decreasing temperature, and with increasing deactivation efficiency of the carrier gas. These observations and the temperature dependencies of the rate constants indicate that reactions 1-3 proceed by way of an addition mechanism. From the analysis used to determine the NO₂ yields, NO₂ fluorescence quenching rate constants were determined for isoprene, $k = (3.5 \pm 1.1) \times 10^{-10}$, and *trans*-2-butene, $k = (3.0 \pm 0.9) \times 10^{-10}$.

Introduction

The oxidation of natural and anthropogenic organic compounds has been recognized as an important atmospheric source of CO and other reactive intermediates such as HO₂ and RO₂¹ which ultimately produce ozone. Many kinetic and mechanistic studies of the oxidation of organics by OH and O_3 have been reported,^{2,3} but less is known about reactions with nitrate radical (NO₃) as the oxidizing agent.

The reactions of NO₃ with atmospheric organic compounds can lead to formation of HNO3,4 peroxyacyl nitrate (PAN),5 RO2,5.6 and toxic compounds such as dinitrates.⁶ Since NO₃ is rapidly photolyzed by sunlight, it is present in appreciable quantities only at night. Reactions of organic compounds with NO₃ can then provide a significant loss process for the organic species at night. Therefore, kinetics and product information about these reactions are important for atmospheric models.

Several groups have made room temperature studies of the kinetics and mechanisms of oxidation by NO₃,⁵⁻¹⁶ but little is known about the primary products for reactions of NO₃ with organic compounds. Most of the kinetic measurements are from indirect studies at room temperature and atmospheric pressure, and no studies of the temperature and pressure dependencies of the rate constants or the products have been reported. Using the fast flow system with LIF detection, we are able to detect NO_2 and NO_3 with excellent sensitivity and to study reactions as functions of temperaure and pressure in the low-pressure region. We report here the results of studies of NO₃ reactions with the four species: trans-2-butene (reaction 1), isoprene (2), α -pinene (3), and CH_3CHO (4). A comparison of our results with the earlier studies done at higher pressures will serve as a test of the applicability of our work to pressures as high as 1 atm.

Experimental Section

The flow tube reactor with laser-induced fluorescence (LIF) detection of NO₃ and NO₂ has been described in detail,¹⁷ so only a brief description is given here.

Temperature control of a 2.54 or a 4.13 cm i.d. Pyrex flow tube was achieved by circulating either silicone oil (T > 298 K) or ethanol (T < 298 K) from a thermoregulated reservoir through

a condenser-like jacket surrounding the reaction zone.

The inside surfaces of the reactor were coated with a halocarbon wax to minimize wall effects. The loss of NO₃ on the halocarbon wax coated reactor walls was small, $k_w \leq 1 \text{ s}^{-1}$, at all temperatures. We further tested for wall effects in the reaction of NO₃ with α -pinene at room temperature by changing the surface area to volume ratio, i.e., the diameter of the flow reactor by a factor of 1.6. Curved decay plots were observed for the NO₃ reactions with isoprene and α -pinene at temperatures ≤ 250 K. This was taken to be evidence of wall effects; therefore data for these two reactants taken below 250 K were rejected.

Nitrate radicals were produced in a source reactor by thermal decomposition of N₂O₅ at \simeq 400 K and \simeq 3 Torr pressure

$$N_2O_5 + He \rightarrow NO_3 + NO_2 + He$$
 (5)

where $k_5 \approx 50 \text{ s}^{-1.18}$

(1) Zimmerman, P. R.; Chatfield, R. B.; Fishman, J.; Crutzen, P. J.; Hanst, P. L. Geophys Res. Lett. 1978, 5, 679.

- (2) Atkinson, R. Chem. Rev. 1986, 86, 69.
- (4) Atkinson, R.; Lloyd, A. C. J. Phys. Chem. Ref. Data 1984, 13, 315.
 (4) Atkinson, R.; Plum, C. N.; Carter, W. P. L.; Winer, A. M.; Pitts, J. N. Jr. J. Phys. Chem. 1984, 88, 2361.
- (5) Cantrell, C. A.; Davidson, J. A.; Busarow, K. L.; Calvert, J. G. J. Geophys. Res. 1986, 91, 5347.
- (6) Bandow, H.; Okuda, M.; Akimoto, H. J. Phys. Chem. 1980, 84, 3604. (7) Atkinson, R.; Aschmann, S. A.; Winer, A. M.; Carter, W. P. L. En-
- viron. Sci. Technol. 1985, 19, 87. (8) Atkinson, R.; Plum, C. N.; Carter, W. P. L.; Winer, A. M.; Pitts, J. N. Jr. J. Phys. Chem. 1984, 88, 1210.
- (9) Atkinson, R.; Aschmann, S. A.; Winer, A. M.; Pitts, J. N. Jr. Environ. Sci. Technol. 1984, 18, 370.
- (10) Atkinson, R.; Carter, W. P. L.; Plum, C. N.; Winer, A. M.; Pitts, J. N. Jr. Int. J. Chem. Kinet. 1984, 16, 887.
- (11) Atkinson, R.; Plum, C. N.; Carter, W. P. L.; Winer, A. M.; Pitts, J. N. Jr. J. Phys. Chem. 1984, 88, 2361. (12) Tuazon, E. C.; Sanhueza, E.; Atkinson, R.; Carter, W. P. L.; Winer,
- A. M.; Pitts, J. N. Jr. J. Phys. Chem. 1984, 88, 3095.
 (13) Japar, S. M.; Niki, H. J. Phys. Chem. 1975, 79, 1629.
- (14) Morris, E. D.; Niki, H. J. Phys. Chem. 1975, 78, 1023.
 (15) Hoshino, M.; Ogata, T.; Akimoto, H.; Inoue, G.; Sakamaki, F.;
 Okuda, M. Chem. Lett. 1978, 1367.
 (15) Hoshino, M.; Ogata, T.; Akimoto, H.; Inoue, G.; Sakamaki, F.;
- (16) Ravishankara, A. R.; Mauldin, R. L. III J. Phys. Chem. 1985, 89, 3144.
- (17) Hammer, P. D.; Dlugokencky, E. J.; Howard, C. J. J. Phys. Chem. 1986, 90, 2491.

^{*} Author to whom correspondence should be addressed at NOAA R/E/ Al-2, 325 Broadway, Boulder, CO 80303.

The NO₃ fluorescence was excited with an Ar⁺ laser pumped ($\simeq 6$ W) dye laser ($\simeq 0.4$ W) which was tuned to the peak of the strong NO₃ absorption feature at 662 nm and then detected by a cooled photomultiplier tube. The NO₂ fluorescence was excited by using the Ar⁺ laser ($\lambda = 514$ and 488 nm), and its signal was calibrated directly by adding measured flow rates of NO₂. The NO₃ fluorescence signal was calibrated relative to NO₂ by converting NO₃ to NO₂ by the reaction

$$NO + NO_3 \rightarrow 2NO_2$$
 (6)

$$k_6 = 3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} (\text{ref } 17)$$

in excess NO, ([NO] $\simeq 1 \times 10^{13}$ molecules cm⁻³). The detection limit was $\simeq 1 \times 10^8$ molecules cm⁻³ for NO₃ and $\simeq 8 \times 10^7$ molecules cm^{-3} for NO₂ with 15-s signal averaging. All kinetic measurements were made under pseudo-first-order conditions $([organic reactant]/[NO_3] > 100)$ which produced linear plots of $\ln I_f(NO_3)$ vs reaction distance, z, i.e., the distance between the tip of the moveable inlet and the detection region. The reaction distance is equivalent to reaction time, t = z/v, where v is the average flow velocity. In the kinetic studies, the $[NO_3]_0$ was in the range $(0.6-3) \times 10^{10}$ molecules cm⁻³. The use of such low radical concentrations precludes the possibility of any significant interference from secondary reactions. The concentrations of organic reactants were calculated from their flow rates, which were determined by measuring the rate of change in pressure in a known volume. trans-2-Butene, isoprene, and α -pinene were added to the flow tube through a moveable inlet. An inert carrier gas was added to the flow to prevent reactant condensation in the inlet. For slow reactions, the necessary addition of large reactant flows through the inlet produced a discontinuity in the flow velocity at the addition point. This problem was circumvented for the reaction of NO₃ with acetaldehyde by modifying the experimental arrangement so that NO₃ was added through the moveable inlet, and the acetaldehyde was added to the carrier gas through a fixed port.

The NO₂ product yields were determined by reacting NO₃ to completion (>99.9%) with excess organic reactant and then measuring the product [NO₂]. The large excess organic reactant concentration assured that there was no significant production of NO₂ by secondary reactions (<1%, even if the secondary reaction rate coefficient were as large as 10^{-11} cm³ molecule⁻¹ s⁻¹). Because of the large concentrations of organic compounds necessary to react NO₃ to completion and the large NO₂ fluorescence quenching rate constants for the organics, a Stern-Volmer analysis¹⁹ was used to determine the NO₂ product yields. The Stern-Volmer equation (for $k_f \ll k_q$ and k_M) is

$$\frac{1}{I_{\rm f}} = \frac{k_{\rm q}[{\rm organic}] + k_{\rm M}[{\rm M}]}{k_{\rm f}I_{\rm a}}$$

where I_f is the NO₂ fluorescence intensity (s⁻¹), k_q is the NO₂ fluorescence quenching rate constant for the organic (cm³ molecule⁻¹ s⁻¹), k_M is the NO₂ fluorescence quenching rate constant for the bath gas (cm³ molecule⁻¹ s⁻¹), k_f is the NO₂ fluorescence decay rate (s⁻¹), and I_a is the rate of photon absorption by NO₂ (s⁻¹). The NO₂ fluorescence intensity was measured over at least a factor of 5 in [organic], and Stern–Volmer plots (i.e. plots of $1/I_f$ vs [organic]) were made for each set of conditions of T, P, and carrier gas. The inverse of the intercept is $I_f(0)$, the NO₂ fluorescence intensity in the absence of organic quencher. This signal was due to fluorescence from NO₂ produced in the source reactor and NO₂ produced by the reaction of NO₃ with the organic. The [NO₂] from the source reactor was measured and subtracted from the total. The NO₂ yield was calibrated by using the reaction NO + NO₃ $\rightarrow 2NO_2$.

From the slopes (k_q/k_l_a) and intercepts $(k_M[M]/k_l_a)$ of the Stern-Volmer plots, we also estimated the quenching rate con-

Figure 1. Typical decay plots for NO₃ reaction with *trans*-2-butene. The experimental conditions are T = 297 K; v = 770 cm s⁻¹; P = 1.11 Torr; and $[C_4H_8] = 0$ (×), 0.67 (O), 7.58 (□), and 13.7 (Δ), all in 10¹³ molecule cm⁻³.

Figure 2. Plot of first-order rate coefficients vs [*trans*-2-butene] for data at 378 K (O), 298 K (Δ), and 213 K (\times). The slopes of the linear fits to each set of data give the second-order rate constants.

stants for isoprene and *trans*-2-butene. Taking the ratio, slope/intercept = $k_q/k_M[M]$, and the carrier gas quenching rate constants, k_M (for M = He, N₂, and O₂), given by Donnelly et al.,²⁰ the NO₂ fluorescence quenching rate constants were obtained for isoprene and *trans*-2-butene.

The liquid reactants, isoprene (>99.5%), α -pinene (>99%), and acetaldehyde (>99%), were transferred into glass storage flasks under a N₂ atmosphere, and the head space above the liquid was immediately pumped out. *trans*-2-Butene (>99%) was used directly from the gas cylinder. The He (>99.999%) carrier gas was passed through a liquid nitrogen cooled molecular sieve filled trap. The O₂ (>99.97%) and N₂ (>99.999%) carrier gases were used without purification.

Results

For all four reactions, the reaction times were between 24 and 225 ms, and the change in $[NO_3]$ was over factors of $\simeq 1.7-145$ for *trans*-2-butene, 2.0-140 for isoprene, 1.3-98 for α -pinene, and 1.1-6.4 for acetaldehyde. Examples of decay plots for the reaction of NO₃ with *trans*-2-butene are shown in Figure 1. The (X)

⁽¹⁸⁾ DeMore, W. B.; Molina, M. J.; Watson, R. T.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R. JPL Publication 85-37, Jet Propulsion Laboratory, Pasadena, CA, 1985.

⁽¹⁹⁾ Okabe, H. Photochemistry of Small Molecules; Wiley: New York, 1978; p 62.

⁽²⁰⁾ Donnelly, V. M.; Keil, D. G.; Kaufman, F. J. Chem. Phys. 1979, 71, 659.

TABLE I:	Summary of	of Our	Rate	Coefficient	Measurements f	or Reactions 1-4	4
----------	------------	--------	------	-------------	----------------	------------------	---

and the second sec					
		av flow	[reactant]	$k \pm 2\sigma,^{b}$	
		velocity, v,	range,	10^{-13} cm^3	
<i>T</i> , K	P, Torr	cm s ⁻¹	10^{13} molecule cm ⁻³	molecule ⁻¹ s ⁻¹	
·····		trans	-2-Butene		
204	1.0	340500	1.54-12.6	3.46 ± 0.08	
206	1.1	200-500	0.84-10.5	3.43 ± 0.11	
213	1.1	320-490	1.70-23.3	3.31 ± 0.03	
223	1.1	310-530	1.43-18.0	3.27 ± 0.04	
243	1.1	350-540	0.69-9.13	3.35 ± 0.07	
267	1.1	410-640	1.47-16.6	3.55 ± 0.04	
298	0.44-4.5	330-770	0.84-16.0	3.96 ± 0.06	
337	1.1	520-750	1.10-11.6	4.37 ± 0.09	
378	1.1	470-720	1.06-15.3	4.99 ± 0.05	
k	$(T) = (1.78 \pm 0.36)$	$\times 10^{-12} \exp[-(530 \pm 100)]$	$)/T] + (1.28 \pm 0.26) \times 10^{-14} \text{ exp}$	$p[(570 \pm 110)/T]^c$	
		Ise	oprene		
251	1.1	290-650	0.69-11.4	5.22 ± 0.04	
297	1.1	270-780	0.66-9.92	6.52 ± 0.07	
347	1.0	370-870	0.68-9.58	8.37 ± 0.14	
381	1.1	430-980	0.41-10.1	9.55 ± 0.06	
		$k(T) = (3.03 \pm 0.45) \times$	$(10^{-12} \exp[-(450 \pm 70)/T]^c)$		
		α-	Pinene		
261ª	1.1	990-1250	0.086-1.74	78.8 ± 1.6	
297ª	1.0	990-1890	0.072-0.92	62.6 ± 1.4	
297	1.0	800-990	0.046-0.94	61.0 ± 3.3	
338ª	1.0	1160-1760	0.16-1.68	51.9 ± 0.8	
384ª	1.0	1300	0.13-1.60	42.4 ± 1.0	
		$k(T) = (1.19 \pm 0.31)$	$\times 10^{-12} \exp[(490 \pm 70)/T]^c$		
		Acet	aldehyde		
264	1.3	300-400	42.3-299	$(1.26 \pm 0.04) \times 10^{-2}$	
298	1.2	330-460	26.1-260	$(2.74 \pm 0.07) \times 10^{-2}$	
332	1.3	350-580	19.1-152	$(5.27 \pm 0.17) \times 10^{-2}$	
374	1.1	520-770	25.1-143	$(10.0 \pm 0.20) \times 10^{-2}$	
		$k(T) = (1.44 \pm 0.18) \times$	$10^{-12} \exp[-(1860 \pm 300)/T]^c$		

^a Denotes experiments using 2.54 cm i.d. flow tube. All other measurements were made in 4.13 cm i.d. reactor. ^b Errors are 2σ values from the least-squares fits to k^{I} vs [reactant] data. ^c Errors are our estimates of the 95% confidence limits.

TA	RT	E	II:	NO.	Product	Vieldsa
10				1101	LIVUULL	LICIUS

	carrier gas		
press., Torr	He	O ₂	N ₂
	Isoprene		
0.5	0.86	0.72	0.74
1.0	0.76, 0.90		
2.0	0.59	0.41	0.43
4.1	0.38		
	trans-2-Butene	e	
0.5	0.99		
1.0	0.97, 0.95 ^b	0.84	
2.0	0.96	0.70	
4.0	0.91		
	α-Pinene		
1.0	0.67		
	Acetaldehyde		
1.0	<0.05		

^aUncertainties of yield measurements are estimated to be ± 0.1 . ^bYields measured at 360 K, all other data taken at 298 K.

symbols in Figure 1 represent the increase in NO₃ signal as the reactant inlet was moved with [*trans*-2-butene] = 0. This shows that the NO₃ loss on the moveable inlet surface was negligible. Pseudo-first-order rate constants were determined from the slopes of the plots shown in Figure 1. Figure 2 shows plots of the pseudo-first-order rate constants vs [*trans*-2-butene] at different temperatures, and the second-order rate constants are the slopes of least-squares fits to these data. The intercepts determined from the least-squares fits were on the order of $0 \pm 0.2 \text{ s}^{-1}$. A summary of results for the reactions of NO₃ with *trans*-2-butene, isoprene, α -pinene, and acetaldehyde is given in Table I. The second-order rate constants, k, are shown for reactions 1-3 in an Arrhenius plot in Figure 3.

Figure 3. Arrhenius plots for the reactions of NO₃ with α -pinene (Δ), isoprene (\Box), and *trans*-2-butene (O). One error bar is shown to illustrate the 95% confidence limit of ±12%. The solid lines are the fits to our data.

The total flow tube pressure for most experiments was ≈ 1.1 Torr. Some runs for the reaction of NO₃ with *trans*-2-butene were made at room temperature over the pressure range 0.44-4.5 Torr. There was <4% variation in the measured rate constants, and thus no systematic trend in k with P was observed over this pressure range.

TABLE III:	NO ₂ Fluorescence Quer	ching Rate Constants
	slope/intercept,	k_{a}^{b}
P, Iorr	10 ⁻¹⁰ cm ³ molecule	10 ¹⁰ cm ³ molecule · s ·
	trans-2-E	Butene
	He	
0.53	5.30	3.20
1.06	2.69	3.25
2.07	1.38	3.25
4.19	0.64	3.03
1.06ª	3.02	3.02
	0,	
1.02	1.43	2.56
2.03	0.70	2.50
		3.0 ± 0.9^{c}
	Isopre	ene
	He	
0.52	5.61	3.32
1.07	3.09	3.76
2.11	1.58	3.79
4.19	0.96	4.59
1.05ª	3.28	3.27
	0,	
0.51	3.24	2.90
2.03	0.92	3.28
	N ₂	
0.51	3.35	3.31
2.04	0.90	3.57

^a Data obtained at 360 K. All other data obtained at 298 K. ^b Our relative rate coefficients are placed on an absolute basis by using the data of Donnelly et al.²⁰ The error limits are the 95% confidence limits and include the 5% error limits for the rate coefficients reported in Donnelly et al.,²⁰ and an estimate of our uncertainties. ^c Recommended value.

 $3.5 \pm 1.1^{\circ}$

A summary of the NO₂ product yields is given in Table II. Most of the measurements were made at 298 K. Figure 4 is a plot of $1/I_f$ vs [*trans*-2-butene] at 1.06 Torr and 298 K. The intercept represents [NO₂] = 6.2×10^{10} molecules cm⁻³, where the [NO₂] from the NO₃ source is 3.3×10^{10} molecules cm⁻³, and the initial [NO₃] is 3.0×10^{10} molecules cm⁻³. The data indicate an NO₂ yield of $\simeq 0.97^{+0.03}_{-0.1}$. The smaller upper error limit is the result of an upper limit on the NO₂ yield of unity. A Stern-Volmer analysis was not made for α -pinene because its low vapor pressure restricted the range of obtainable α -pinene flow rates. The yield of NO₂ from the α -pinene reaction was determined in the same way as described in the Experimental Section for *trans*-2-butene and isoprene, except that the NO₂ LIF quenching correction was determined as the ratio of the NO₂ LIF signal with and without the α -pinene present for an added [NO₂] = 3.3×10^{10} molecules cm⁻³. No NO₂ product was observed for the reaction of NO₃ with acetaldehyde, indicating <5% yield.

The Stern–Volmer analysis used to determine the NO₂ yields was also used to calculate the ratio of NO₂ fluorescence quenching rate constants for organic reactants and carrier gases (k_q/k_M) . From the published values for the NO₂ fluorescence quenching rate constants of He, O₂, and N₂ from Donnelly et al.²⁰ ($k_{\text{He}} =$ $(3.51 \pm 0.16) \times 10^{-11}$, $k_{O_2} = (5.42 \pm 0.22) \times 10^{-11}$, and $k_{N_2} =$ $(5.98 \pm 0.28) \times 10^{-11}$, all in units of cm³ molecule⁻¹ s⁻¹), the NO₂

Figure 4. Plot of $1/I_f$ vs [*trans*-2-butene] for Stern-Volmer analysis for the conditions, P = 1.06 Torr and T = 298 K.

fluorescence quenching rate constants for *trans*-2-butene and isoprene were calculated. These data are summarized in Table III.

All organic reactants were used directly from their storage containers, but α -pinene was also used in a mixture with He (typically $\approx 3\% \alpha$ -pinene by volume). We found that after allowing the α -pinene mixture to sit in a glass bulb for greater than 1 week, we obtained a second-order rate constant that was \approx 1.7-2.3 times larger than the rate constant obtained by using α -pinene directly from its storage vessel. We did not investigate the cause of this discrepancy, but one possible explanation is that the α -pinene decomposed to give other compounds which were more reactive toward NO₃. For all the data reported here, α pinene mixtures were used within 2 days of being prepared. In this case, the rate constants obtained with the α -pinene/He mixtures were always within 8% of those obtained by using pure α -pinene.

Discussion

The precision of the kinetic measurements for reactions 1-4, as estimated from a propagation of error analysis, is $\pm 9\%$ at the 95% confidence level.¹⁷ This can be compared with the 2σ limits for the second-order rate constants determined from the slopes of least-squares fits of k^{I} vs [reactant], which are in the range 1-5% but are typically $\simeq 2\%$. Although this shows that the precision of the measurements is quite high, neither of these error estimates includes contributions from possible systematic errors such as reaction of NO_3 with impurities or due to wall effects. Including a factor for systematic errors, the uncertainty is estimated at the 95% confidence level as $\pm 12\%$. The errors in the Arrhenius parameters are our estimates of the 95% confidence limits. For the NO_2 fluorescence quenching rate constants, the measurements made in O_2 are $\simeq 20\%$ smaller than those made in He for both trans-2-butene and isoprene. This trend may be due to the small number of measurements made in our study, errors in the rate constants reported by Donnelly et al.,²⁰ or a combination of both. The overall uncertainties in our quenching rate constant measurements are estimated as $\pm 30\%$ at the 95% confidence level.

The linearity of the decay plots (Figure 1) and the absence of significant intercepts in the plots of k^{I} vs [organic] (Figure 2) support our conclusion that we are observing homogeneous first-order reaction kinetics. Our studies of the α -pinene reaction

TABLE IV: Room Temperature Rate Constants (k, cm^3 molecule⁻¹ s⁻¹) for Reactions 1-4

trans-2-butene (1)	isoprene (2)	α -pinene (3)	acetaldehyde (4)	technique ^a	ref
$(3.96 \pm 0.48) \times 10^{-13}$	$(6.52 \pm 0.78) \times 10^{-13}$	$(6.18 \pm 0.74) \times 10^{-12}$	$(2.74 \pm 0.33) \times 10^{-15}$	FT, LIF	this work
$(3.80 \pm 0.43) \times 10^{-13}$, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	$(2.41 \pm 0.50) \times 10^{-15}$	SC, I, FTIR	8 ^b
(,	$(5.81 \pm 0.68) \times 10^{-13}$	$(6.1 \pm 1.4) \times 10^{-12}$, ,	SC, I, FTIR	9 ^b
	· · · · · ·		$(1.2 \pm 0.3) \times 10^{-15c}$	SC, I, IR A	14
$(1.4 \pm 0.4) \times 10^{-13c}$				SC, I, IR A	13
			$(2.1 \pm 0.4) \times 10^{-15}$	SC, I, FTIR	5
$(3.78 \pm 0.41) \times 10^{-13}$				FT, LIF, A	16

 a FT = flow tube, LIF = laser-induced fluorescence, SC = smog chamber, I = indirect technique, FTIR = Fourier transform infrared detection, A = absorption detection. b These rate constants have been corrected as described in ref 12. c Discrepancies with these results are discussed in text.

Studies of NO₃ Radical Reactions

in two flow tubes with different surface area to volume ratios further demonstrates the absence of significant wall effects.

Our results are compared with those of other workers in Table IV. We are in disagreement with the values reported by Niki and co-workers^{13,14} who used a 50-L reaction cell and monitored N_2O_5 , NO_2 , and organic species with long-path IR absorption spectroscopy to study the reactions of organics and NO_3 . The equilibrium

$$N_2O_5 + M \leftrightarrow NO_2 + NO_3 + M \tag{5}$$

was employed as a steady-state source of NO₃ radicals. Excess NO₂ was added to the reaction system so that the [NO₂] would be relatively constant over the time period the reaction was monitored. An important contribution of their studies was that, by varying the [NO₂], they proved the reaction was initiated by NO₃ rather than N₂O₅. Rate constants were obtained by fits of their data to the rate equations. The rate constants they obtained with this method were directly related to the equilibrium constant for reaction 5, a value which has been revised significantly since their study. We have used the chemical reaction scheme of Morris and Niki¹⁴ with the currently accepted value for K_5 (K_5 (300 K) = 4.7 × 10¹⁰ molecules cm⁻³)¹⁸ and our rate constant, k_4 , to obtain fits to their data that are consistent with our study.

The rate coefficients for NO₃ reactions with many different organic compounds have been determined by the University of California Riverside group,⁷⁻¹¹ whose studies have included the reactions of NO3 with alkanes, alkenes, aldehydes, aromatics, and other species. Their experiments were done in a smog chamber interfaced to a FTIR spectrometer with multipass optics. They used two different indirect techniques to obtain rate constants. The first method involved observing the increased rate of decay of N_2O_5 in the presence of the organic reactant, as described above for Niki et al.^{13,14} In the second method, the relative decay of two organic compounds was observed in the presence of a steady-state source of NO₃ radicals. This method required that the rate constant for one of the reactions must be known accurately. Their reference rate constants were determined using the first method. The rate constants of Atkinson et al.^{8,9} listed in Table IV have been multiplied by a factor of 1.8 as described in ref 12, and these values are in excellent agreement with our work.

Cantrell et al.⁵ used a large glass reaction cell equipped with multiple-reflection optics and interfaced to a FTIR spectrometer to study the reaction of NO₃ with CH₃CHO in air at 700 Torr and 299 K. Thermal decomposition of N₂O₅ was used as a source of NO₃. Kinetic data were obtained by determining the rates of product (HONO₂ and PAN) formation and reactant (CH₃CHO) loss and then plotting these rates versus [CH₃CHO][NO₃], where the [NO₃] was determined from the equilibrium constant for reaction 5. The second-order rate constant was determined from the slope of this line. Our value for k_4 is in good agreement with that of Cantrell et al.⁵

Direct measurements of the reactions of NO₃ with *trans*-2butene and isobutene were reported by Ravishankara and Mauldin.¹⁶ They used a halocarbon wax coated flow reactor with laser-induced fluorescence (LIF) and absorption detection of NO₃ to study the reactions at room temperature and from 1 to 4 Torr pressure. Nitrate radicals were produced by the reaction F + HNO₃ \rightarrow HF + NO₃ or by thermal decomposition of N₂O₅. We are in excellent agreement with their study of NO₃ + *trans*-2butene.

Morris and Niki¹⁴ reported NO₂ as the major product for the reaction of NO₃ with CH₃CHCH₂ in O₂ and argon at 1 atm pressure. They also observed an absorption at 1670 cm⁻¹ which they tentatively assigned as an organic nitrite. Hoshino et al.¹⁵ and Bandow et al.⁶ have used smog chambers with FTIR detection of reactant, product, and intermediate species to study the $C_3H_6/N_2O_5/O_2/N_2$ system. In addition to FTIR detection, Hoshino et al.¹⁵ used gas chromatography to identify products. Both studies determined that the major product of the NO₃ + CH₃CHCH₂ reaction has an absorption at 1670 cm⁻¹, and this product was identified as CH₃CH(ONO₂)CH₂(ONO₂).¹⁵ Acetaldehyde and NO₂ were determined to be minor products, in

contrast to the conclusions of Morris and Niki.14

Our product analysis data are not applicable to 1 atm pressure, but the results do provide an interesting insight into the NO₃ olefin reaction mechanisms. There are some trends evident in our NO₂ product yield data shown in Table II. (1) As the size or complexity of the alkene is increased at a given temperature and pressure, the yield of NO_2 decreases. (2) The yield of NO_2 from reaction of NO₃ with isoprene in He at 1 Torr increased when the temperature was increased from 298 to 360 K. Since the yield of NO₂ from the trans-2-butene reaction at 298 K was already nearly 100%, a significant increase could not occur when the temperature was increased to 360 K. (3) The room temperature yields of NO₂ from the trans-2-butene and isoprene reactions decreased as the pressure was increased or when a carrier gas with a greater deactivation efficiency $(N_2 \text{ or } O_2)$ was used. (4) Although there are changes in the NO₂ yields with pressure for reaction 1, over these same pressure ranges, the rate constant does not change. In fact, our low-pressure measurements for reactions 1-3 agree extremely well with the data obtained at much higher pressures by Atkinson et al.^{8,9} This agreement indicates that our lowpressure rate coefficients for these reactions are applicable at 1 atm pressure.

Atkinson et al.¹¹ have shown that the room temperature rate constants for H-atom abstraction from alkanes by NO₃ are in the range $(4-10) \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹. Our room temperature rate constants for reactions with alkenes (1-3) are $\simeq 10^3$ times larger; therefore these reactions certainly do not proceed by H-atom abstraction. The general observations cited above about these reactions, along with product data from previous studies^{6,14,15} and our observed small temperature dependencies, indicate a different mechanism. As originally proposed by Japar and Niki,13 the evidence indicates that NO₃ initially adds to the alkene π -bond. The excited adduct can react via at least four pathways: (a) it can be stabilized by collisions with the bath gas, (b) it can decompose to NO₂ plus an alkoxy diradical (a pathway which is unlikely because it is $\simeq 19$ kcal mol⁻¹ endothermic), (c) it can decompose to NO₂ plus an epoxide, or, (d) it can undergo H-atom migration and decompose to NO₂ and a carbonyl. These pathways are shown below for the reaction of NO₃ with propene.

$$NO_3 + CH_3CH = CH_2 \leftrightarrow (CH_3CHCH_2ONO_2)^{\dagger}$$
 (7)

$$(CH_{3}CHCH_{2}ONO_{2})^{\dagger} + M \xrightarrow{a} CH_{3}CHCH_{2}ONO_{2} + M$$
$$\Delta H = -20.2 \text{ kcal mol}^{-1}$$
$$(CH_{3}CHCH_{3}ONO_{2})^{\dagger} \xrightarrow{b} NO_{2} + CH_{3}CHCH_{2}O$$

 $\Delta H =$

$$\stackrel{c}{\longrightarrow} NO_2 + CH_3CHCH_2$$

$$\Delta H = -36.5 \text{ kcal mol}^{-1}$$

$$\stackrel{d}{\longrightarrow} NO_2 + CH_3CH_2CHO$$

$$\Delta H = -60.2 \text{ kcal mol}^{-1}$$

The reaction enthalpies have been calculated using the heats of formation and bond energies in Table V. All of the possible product isomeric forms are not shown. In the reactions of OH radicals with alkenes, addition to the terminal carbon is preferred,² so NO₃ addition reactions may be expected to behave similarly. Our observation that pathway a becomes more efficient with increased complexity or size of the organic molecule or carrier gas and with decreased temperature suggests that (a) predominates at high pressure and with large molecules. In the atmosphere, the alkyl nitrate radicals formed by this process probably add O₂ to form peroxy radicals as shown by Bandow et al.:⁶

$$CH_3CHCH_2ONO_2 + O_2 + M \rightarrow$$

$$CH_3CH(O_2)CH_2ONO_2 + M$$
 (8)

Hoshino et al.¹⁵ have observed epoxide formation (pathway c).

The addition mechanism observed for the NO_3 + olefin reactions is similar to that for O, OH, and O₃ reactions with olefins. These reactions were compared and analyzed in the earlier publications of Japar and Niki¹³ and Atkinson et al.⁸ In general the

TABLE V: Thermochemical Data for NO₃ + Propene Reaction Mechanism

compound	$\Delta H_{\rm f}$ ° ₂₉₈ , kcal mol ⁻¹	ref
Н	52.1	25
NO ₂	7.9	25
NO ₃	17.3	26
CH ₃ CHCH ₂	4.9	27
CH3CH-CH2	-22.2	27
CH ₃ CH ₂ CH ₂ ONO ₂	-41.6	27
CH ₃ CH ₂ CH ₂ OH	-61.6	27
CH ₃ CHCH ₂ OH	-18	25
CH ₃ CH ₂ CHO	-45.9	27
CH ₃ CHCH ₂ ONO ₂	2.0	а
CH ₃ CHCH ₂ O	33.3	a
bond	bond energy, kcal mol ⁻¹	ref
H-CH(CH ₃)CH ₂ OH	95.7	ь
H-CH(CH ₃)CH ₂ ONO ₂	95.7	ь
H-CH(CH ₃)CH ₂ O	95.7	b
H-OCH ₂ CH ₂ CH ₂	103.4	28

^a Estimated from known enthalpies of formation and bond energies. ^b Estimated from compounds with similar bonds.

reaction rate coefficients of O and OH are larger while those of O_3 are smaller than the corresponding NO_3 reactions. A common feature noted for all of the addition reactions is that the reactivity increases as the degree of substitution next to the double bond increases.

The magnitude of the rate coefficients at room temperature indicates a reaction efficiency of about 1 in 10²-10³ gas kinetic collisions for the NO_3 + olefin reactions. The measured temperature dependencies unfortunately give little insight into the origin of the low efficiencies, because trans-2-butene has a slightly curved Arrhenius plot, while isoprene has a small negative temperature coefficient and α -pinene has a small positive temperature coefficient. We have no satisfactory explanation of these observations. Interestingly all three data sets extrapolate to about the same $T = \infty$ intercept, $A \simeq 2 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. Too little is known about the potential energy surfaces for these reactions to gain any useful insight through the application of reaction rate theories. As discussed in connection with our study of the NO + NO₃ reaction,¹⁷ the magnitudes of the rate coefficients are readily matched with reasonable models, but the temperature dependencies are not.

Our inability to observe NO_2 as a product of the reaction with acetaldehyde and the observed positive temperature dependence for reaction 4 are consistent with an abstraction mechanism:

$$NO_3 + CH_3CHO \rightarrow HNO_3 + CH_3CO$$
$$\Delta H = -15.4 \text{ kcal mol}^{-1}$$
(4)

The acetyl radical undergoes further reactions in air to form PAN and other species as shown by Morris and Niki¹⁴ and Cantrell et al.⁵

The nighttime reactions of NO₃ with organic compounds are important in atmospheric chemistry when they remove significant amounts of reactants or form significant amounts of products such as alkylperoxy radicals, HNO₃, PAN, toxic dinitrates, aldehydes, etc. Atkinson et al.⁹ and Winer et al.²¹ have calculated atmospheric lifetimes for *trans*-2-butene, isoprene, and α -pinene with respect to their reactions with the atmospheric oxidants O₃, OH, and NO₃ for typical conditions in clean air and moderately polluted air. The lifetimes of the organic species based on reaction with NO₃ are between a couple of minutes and a few hours. These lifetimes are comparable to, or less than, the corresponding lifetimes due to reactions with OH and O₃. This indicates that reactions with NO₃ can provide significant, if not dominant, loss processes for these species.

In conclusion, we have studied the reactions of NO_3 with several organic compounds as a function of temperature and pressure. Because these reactions were studied at pressures significantly lower than tropospheric pressures, it is reasonable to question whether our results apply to tropospheric conditions. For the H-atom abstraction reaction of NO_3 with CH_3CHO , our temperature dependence applies to tropospheric conditions. For the addition reactions between NO_3 and olefins, the product distributions vary with pressure, but the temperature dependence we measure probably applies at atmospheric pressure. It appears that the reaction rate is determined by the rate of formation of the adduct. Essentially all of the excited adducts then yield products, either through collisional stabilization or unimolecular dissociation. Relatively few of the energetic molecules dissociate back to reactants.

Acknowledgment. This work was supported by NOAA as part of the National Acid Precipitation Assessment Program.

Registry No. 1, 624-64-6; 2, 78-79-5; 3, 80-56-8; 4, 75-07-0; NO₃, 12033-49-7; NO₂, 10102-44-0.

(24) Johnston, H. S.; Cantrell, C. A.; Calvert, J. G. J. Geophys. Res. 1986, 91, 5159.

(25) Baulch, D. L.; Cox, R. A.; Hampson, R. F. Jr.; Kerr, J. A.; Troe, J.; Watson, R. T. J. Phys. Chem. Ref. Data 1984, 13, 1259.

(26) Kircher, C. C.; Margitan, J. J.; Sander, S. P. J. Phys. Chem. 1984, 88, 4370.

(27) Stull, D. R.; Westrum, E. F. Jr.; Sinke, G. C. The Chemical Thermodynamics of Organic Compounds; Wiley: New York, 1969.

(28) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493.

⁽²¹⁾ Winer, A. M.; Atkinson, R.; Pitts, J. N. Jr. Science **1984**, 224, 156. (22) Stockwell, W. R.; Calvert, J. G. J. Geophys. Res. **1983**, 88, 6673.

⁽²³⁾ Cantrell, C. A.; Stockwell, W. R.; Anderson, L. G.; Busarow, K. L.; Perner, D.; Schmeltekopf, A.; Calvert, J. G.; Johnston, H. S. J. Phys. Chem. 1985, 89, 139.