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ABSTRACT: The structural diversity of type II polyketides is 
largely generated by tailoring enzymes. In rishirilide biosynthesis 
by Streptomyces bottropensis, 13C-labelling studies previously 
implied extraordinary carbon backbone and sidechain 
rearrangements. In this work, we employ gene deletion 
experiments and in vitro enzyme studies to identify key 
biosynthetic intermediates and expose intricate redox tailoring 
steps for the formation of rishirilides A, B, D and lupinacidin A. 
First, the flavin-dependent RslO5 reductively ring opens the 
epoxide-moiety of an advanced polycyclic intermediate to form an 
alcohol. Then, flavin monooxygenase RslO9 oxidatively 
rearranges the carbon backbone, presumably via lactone-forming 
Baeyer-Villiger oxidation and subsequent intramolecular aldol 
condensation. While RslO9 can further convert the rearranged 
intermediate to rishirilide D and lupinacidin A, an additional 
ketoreductase RslO8 is required for formation of the main products 
rishirilide A and rishirilide B. This work provides insight into the 
structural diversification of aromatic polyketide natural products 
via unusual redox tailoring reactions that appear to defy 
biosynthetic logic.

Streptomycetes generate structurally diverse natural products 
with a wide spectrum of bioactivities, such as the type II 
polyketides1 rishirilides A (1), B (2) and D (3) from S. bottropensis. 
These compounds act as inhibitors of α2-macroglobulin (1 and 2)2 
and S-glutathione reductase (2)3 (Scheme 1). While four total 
syntheses of 2 have been reported,4–7 little is known about 
rishirilide biosynthesis. Previous 13C-labelling and NMR 
spectroscopic studies revealed that 2 is derived from an isobutyrate 
starter unit (generated from valine and malonyl-CoA) and eight 
malonyl-CoA extender units, the last of which undergoes an 
additional decarboxylation (Scheme 1).8 The 13C-labelling pattern 
furthermore implied an unusual oxidative rearrangement of the 
carbon backbone2 (Scheme 1). In this study, the redox tailoring 
enzymes RslO5, RslO8, and RslO9, encoded by the rishirilide (rsl) 
biosynthetic gene cluster,9 are shown to facilitate the key tailoring 
steps in rishirilide biosynthesis. 

Initially, the roles of the predicted flavin-dependent enzymes 
RslO5 and RslO9 were examined, as flavoenzymes are 
mechanistically versatile10–15 and often impart structural 
complexity to polyketide natural products.11,13,16–18 The individual 
genes in S. bottropensis were replaced via double cross-overs with 
spectinomycin (rslO5 mutant) or apramycin resistance genes 
(rslO9 mutant) and the resulting mutants assayed for production of 
rishirilides by high resolution liquid chromatography mass 
spectrometry (HR-LCMS). 

Relative to S. bottropensis (Fig. 1A), the ∆rslO5 strain was 
deficient in the production of 1, 2, and 3, but accumulated putative 

biosynthetic intermediates or shunt products (e.g., 4) not observed 
in the native strain (Fig. 1B). To identify the substrate of RslO5, 
the enzyme was heterologously produced with an N-terminal His6 
tag and isolated with bound flavin mononucleotide (FMN) from 
Escherichia coli BL21 (DE3) StarTM (Figs. S1A and S2). Addition 
of RslO5 to a crude extract from the S. bottropensis ∆rslO5 mutant 
in the presence of additional FMN and NAD(P)H led to the 
conversion of 4 (m/z = 367.117, [M-H]–) into 5 (m/z = 369.133, [M-
H]–) (Fig. 1C, S3 and S4). Moreover, when RslO5 was incubated 
with purified 4 as a substrate, a clean reduction to 5 was observed 
in the presence of NADPH or NADH (Figs. 2A and B, S5, S6, & 
S7). In contrast, 4 was neither converted in assays with boiled 
RslO5, nor in assays containing only FMN and NADPH (Fig. S7). 
Next, 4 and 5 were purified from the respective mutants and 
analyzed by NMR spectroscopy (see Supporting Information). 4 
proved to be an advanced intermediate with fully cyclized but non-
rearranged carbon backbone and a surprising C3-C16 epoxide 
functionality. By contrast, 5 contained a C16-hydroxyl group most 
likely arising from the reductive epoxide ring opening of 4 
(Scheme 1). 

RslO5 is homologous to reductases of the Old Yellow Enzyme 
(OYE) family19. These enzymes typically catalyze two electron 
reductions of double bonds via hydride transfer, including those of 
α-β-unsaturated carbonyls and nitro-olefins. An amino acid 
sequence alignment of RslO5 with members of the OYE family 
(Fig. S8) revealed the conservation of Y177, H172, and N175. The 
corresponding amino acid residues H191 and N194 in OYE 
stabilize the transient enolate anion arising from initial hydride 
transfer, followed by Y196-dependent protonation to afford the 
reduced product.19–21 For the conversion of 4 into 5, we thus 
envisage a mechanism analogous to OYE for RslO5 (Scheme 1), 
possibly via a transient C17 oxyanion intermediate stabilized by 
H172 and N175. To further examine RslO5, enzyme variants were 
generated by site-directed mutagenesis. Unlike wild type RslO5, 
solutions of purified RslO5-H172N were clear, indicating a 
deficiency in FMN binding. Moreover, the RslO5-H172N variant 
was inactive when incubated with an extract containing 4 in the 
presence of FMN and NADPH (Fig. 2C). In contrast, the N175H 
and Y177F enzyme variants maintained the ability to bind FMN 
but showed significantly reduced activity (30 % and 11 % relative 
to wild type RslO5, respectively) (Figs. 2D and E, S5 and S6), 
consistent with the proposed catalytic roles of the side chain 
residues. 

Scheme 1. Proposed biosynthesis of rishirilides and side products by S. bottropensis. Compounds in boxes were characterized by NMR 
spectroscopy. The oxygen atom derived from O2 is colored in red. Black and grey arrows indicate main enzyme reactions and (enzymatic 
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and non-enzymatic) side reactions, respectively. The pathway likely involves reduced hydroquinonic intermediates, which promote 
subsequent redox transformations (such as the epoxidation to 4)22–25.
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Figure 1. Gene inactivation studies of rslO5 and rslO9. (A) TIC 
analysis of a culture extract from S. bottropensis. (B) Extract from 
S. bottropensis ∆rslO5. (C) Reaction of RslO5 with a crude extract 
from the ∆rslO5 mutant with FMN and NADPH. (D) Extract from 
S. bottropensis ∆rslO9. The compound marked with asterisks (*) is 
a degradation product of 5 (structure not elucidated). The peak 
numbering corresponds to compounds in Scheme 1.

Figure 2. LC-MS (TIC) analysis of the conversion of 4 by RslO5 
and active site variants. (A) Purified 4; (B) 4 + RslO5 + FMN + 
NADPH; (C) 4 + RslO5-H172N + FMN + NADPH; (D) 4 + RslO5-
N175H + FMN + NADPH; (E) 4 + RslO5-Y177F + FMN + 
NADPH. See Figs. S5 and S6 for uncropped traces and EIC’s.

As 5 also accumulated in the ∆rslO9 mutant (but was prone to 
degradation) (Fig. 1D), it may represent RslO9’s substrate. RslO9 
is a prime candidate for catalyzing the central oxidative 
rearrangement steps in rishirilide biosynthesis because of 
homology to FAD-dependent Baeyer-Villiger monooxygenases 
such as MrqO6 (52% sequence identity / 95% sequence coverage), 
BexE (31% / 92%) and MtmOIV (36% / 46 %). Both MrqO6 and 
BexE perform key oxidative rearrangements during the 
biosynthesis of the angular aromatic polyketides murayaquinone 
and BE-7585A, respectively26,27, while MtmOIV catalyzes 
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oxidative C–C bond cleavage in mithramycin biosynthesis.28 
RslO9 was heterologously produced with an N-terminal His6 tag 
and contained a bound FAD cofactor after purification (Figs. S1B 
and S2). Indeed, RslO9 converted 5 to 3 (m/z = 387.144, [M-H]–) 
in the presence of NADPH or NADH. In contrast, 5 was not 
converted in assays containing heat-denatured RslO9 or in assays 
lacking NAD(P)H (Fig. 3 and Figs. S9, S10, & S11). 

Figure 3. LC-MS (TIC) analysis of the reactions of RslO8 and 
RslO9 in vitro. (A) Chromatogram for purified 5. (B) Incubation of 
5 with heat inactivated RslO9. (C) Reaction of 5 with RslO9. (D) 
Reaction of 5 with RslO9 and RslO8. Reactions B, C, and D all 
included FAD and NADPH. See Figs. S9 and S10 for uncropped 
traces and EIC’s.

To further investigate the anticipated oxygenase functionality of 
RslO9, we conducted isotope-labelling experiments with 18O2 (Fig. 
S12). Indeed, when 5 was converted by RslO9 in presence of 18O2, 
the incorporation of one 18O-atom into 3 was observed by HR-
LCMS. Hence, we propose that RslO9 first inserts an oxygen atom 
between C14 and C15 via Baeyer-Villiger oxidation, before a C14-
carbanion attacks the C17-ketone of the side chain to produce the 
postulated intermediate 6 (Scheme 1). Consistent with this 
mechanism, no incorporation of 18O was observed when 5 was 
converted to 3 in the presence of H2

18O (Fig. S12). RslO9 may then 
further transform 6 into 3 via reduction of the central ring under 
concomitant lactone opening and following tautomerization 
(Scheme 1). 

In order to corroborate the proposed pathway, we examined the 
RslO9-catalyzed reaction in more detail via discontinuous enzyme 
assays. In fact, the transient formation of an unstable compound 
with the expected mass of 6 (m/z = 385.129 [M-H]–) was observed 
during the conversion of 5 into 3 (Fig. 4, S13 and S14). Moreover, 
following the isolation of 6 and subsequent incubation with RslO9 
in in vitro assays, 3 was formed by RslO9 in addition to degradation 
products such as the predominant 7, thus unambiguously 
identifying 6 as an intermediate in rishirilide biosynthesis (Scheme 
1, Figs. S15 and S16). Although substrate reduction by a flavin 
monooxygenase as suggested for RslO9 appears perplexing, it has 
been reported for flavin monooxygenase ActVA involved in the 
biosynthesis of the type II polyketide actinorhodin29. It is 
noteworthy that 3 proved unstable and decomposed spontaneously 
to 7 (m/z = 339.123, [M-H]–) and other minor compounds (Figs. 1, 
3 & 4 and Fig. S17). Based on MS and UV-Vis data30, 7 is most 
likely the anti-tumorigenic lupinacidin A31 that was recently 
reported to be produced by the rishirilide gene cluster32. 7 
formation can be envisaged by decarboxylation of C15 of 3 and 
concurrent water elimination at C17, followed by tautomerization 
and autooxidation, as supported by 18O-isotope labelling 
experiments (Scheme 1, Fig. S12).

Figure 4. LC-MS (TIC) analysis of 6 formation during time-course 
reactions of RslO9 ± RslO8. (A) Chromatogram for purified 5. (B) 
Incubation of 5 with RslO9 for 0.5 min, (C) 1 min, (D) 1.5 min and 
(E) 5 min. (F) Reaction of 5 with RslO9 and RslO8 incubated for 
0.5 min, (G) 1 min, (H) 1.5 min and (I) 5 min. See Figs. S13 and 
S14 for uncropped traces and EIC’s. All reactions included 
NADPH.

The proposed structure of 6 implies that reduction of the C13-
ketone to the respective hydroxyl group could afford 1. We 
hypothesized that this step could be catalyzed by RslO8, which is 
50% identical to the proposed enoyl-reductase ActVI-ORF2 from 
actinorhodin biosynthesis33 and resembles medium chain 
dehydrogenases/reductases. These enzymes are typically 
composed of two domains: an N-terminal catalytic domain with 
homology to the folding chaperones GroEL and GroES; and a C-
terminal Rossmann fold that binds NAD(P)H. To gain more 
insights into the function of RslO8, the S. bottropensis ΔrslO8 
mutant was generated. Compared to the wild type, inactivation of 
rslO8 eliminated production of 1 and 2 in S. bottropensis, but 
increased the formation of 3 (Figs. S18 and S19), thus supporting 
a role for RslO8 in late stage rishirilide tailoring. 

To further investigate this, N-terminal His6 tagged RslO8 was 
produced and isolated from E. coli (Fig. S1C). As anticipated, in 
vitro assays of RslO8 and RslO9 with 5 as substrate afforded 1 and 
only minor amounts of 3 (Fig. 3D), whereas RslO8 alone did not 
convert 5. RslO8 thus likely regio- and stereoselectively reduces 
the C13-ketone of 6 and thereby redirects the pathway toward 1 
production. Consistent with this proposal, 3 was not accepted as a 
substrate by RslO8 in in vitro assays (Fig. S17). Crucially, isolated 
6 could be reduced to 1 by RslO8 in presence of either NADH or 
NADPH, thus corroborating our biosynthetic proposal (Figs. S15 
and S16). The structure of 1 suggests a possible lactone opening 
and conversion to 3 at higher pH values triggered by the 
deprotonation of C13. In fact, incubation of 1 at pH values ≥ 7.5 
resulted in the spontaneous formation of 3 (Scheme 1, Fig. S20). 3 
may thus represent both a shunt product arising from spontaneous 
degradation of 1 as well as an enzymatic side product from the 
competing activity of RslO9 and RslO8 for 6. Finally, the 
generation of 2 from main product 1 could be rationalized by 
RslO9-mediated reduction of the central ring resulting in lactone 
opening, followed by water elimination (Scheme 1). Indeed, 1 was 
slowly converted to 2 in in vitro assays containing RslO9 and 
NADPH, in contrast to assays with boiled enzyme (Figs. S21 and 
S22). Taken together, 1 and 2 likely represent the main pathway 
products; yet the instability of 1 at higher pH values also promotes 
formation of the side products 3 and 7.

In summary, this study establishes the key enzymatic tailoring 
reactions steps in rishirilide biosynthesis (for an overview of the 
gene cluster and the predicted functions of other encoded proteins, 
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see Fig. S23). The interplay between epoxide reductase RslO5, 
flavin monooxygenase RslO9, and ketoreductase RslO8 enables 
the intricate oxidative rearrangement of the polyketide carbon 
backbone and ultimately gives rise to structurally distinct 
rishirilides and lupinacidin A. 
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