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N-[N′,N′-Methylphenylamino(thiocarbonyl)]benzimidoyl chloride (1) reacts with in situ-prepared arylselenolates
or aryltellurolates under formation of the first representatives of the corresponding iminoselenides or -tellurides.
The products are air-stable solids, which have been studied spectroscopically and by single-crystal X-ray
diffraction.
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N-[N′,N′-(Dialkylamino(thiocarbonyl)]benzimidoyl chlorides (1) are
versatile building blocks for the synthesis of bi-, tri- and tetradentate
ligand systems. Reactions with amines give the corresponding ben-
zamidines 2, which form stable complexes with a large number of
transition metals [1–11].
Only less is reported about reactions of 1with chalcogenolates. An
early report describes the formation of the methylester 2a, -thioester
2b and -selenoester 2c of the diethylamino derivative [12]. The for-
mer two compounds have been used for the complexation of
thiophilic metal ions such as Ag+ and Hg2+ [13,14]. The selenium de-
rivative, however, is described as an instable solid, which slowly de-
composes, even when stored at low temperatures [12].
m).
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The use of arylchalcogene building blocks instead of the methyl
substituted ones increases the stability of the products. Thus, com-
pounds 3 and 4 can be obtained in good yields from one-pot reactions
of 1 (R=Me, Ph), the corresponding diselenides or ditellurides and
NaBH4 in ethanol [15] as deep yellow or orange-red solids. They are
stable as solids as well as in solution and can be obtained in crystal-
line form after recrystallization from toluene.

The 1H NMR spectra support the structure of products. It is inter-
esting to note that for the protons of the methylphenylamino residues
only one single methyl signal is observed. This is in contrast to the
spectra of corresponding thiocarbamoylbenzamidines, where hin-
dered rotation around the C\NR2 bonds doubles the NMR signal of
the respective residues [3–11]. Obviously, the compounds under
study possess located C\N double, while delocated π-systems are
found in the nitrogen derivatives. The 77Se and 125Te resonances at
440 ppm (3a), 596 ppm (4a) and 799 ppm (4b) appear in the ex-
pected ranges for aromatic organoselenium(II) and -tellurium(II)
compounds [16,17]. ESI mass spectra of the compounds show the mo-
lecular ion peaks of the compounds and give some evidence for
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Fig. 1. Ellipsoid representation of the molecular structure of 3a [20].

Fig. 2. Ellipsoid representations of two molecules of 4b, which are arranged in a
pseudo-dimeric fashion by inversion symmetry [20].
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dimerization in the gas phase by the formation of cluster ions of the
composition of [M2+K]+ or [M2+Na]+.

Single crystal X-ray diffraction studies confirm the composition of
the title compounds [18]. Fig. 1 displays the molecular structure of
3a. Selected bond lengths are summarized in Table 1. The X-ray dif-
fraction results clearly confirm the conclusions from the spec-
troscopic studies and the formation of the target compound. The
arylselenolate unit has replaced the chlorine atom of 1 in a straight-
forward reaction. The resulting selenoester has Z configuration with
respect to the C10\N1 bond. This bond of 1.274(3) Å is clearly
shorter than the other carbon–nitrogen bonds in 3a and can be
assigned to a double bond. Nevertheless, some delocalization of π
electron density can be deduced for the C17\N1 and C17\N2
bonds. This delocalization, however, is small compared with the sit-
uation in the corresponding thiocarbamoylbenzamidines. There, an
almost ideal bond length equalization is found for the C\N bonds,
which also includes the bond to the dialkylamino groups [3–11].
The lower extend of such delocalization of electron density in the
title compounds also explains the fact that no hindered rotation
around the C17\N2 bonds is observed in the NMR spectra of the
compounds 3a, 4a and 4b.

The thiourea moiety of 3a has the expected planar structure and,
in accordance with the almost located N1=C10 double bond, the sul-
fur atom is not in plane with the selenium atom. The corresponding
Se1–C10–N1–C17 torsion angle is around 55°.

The molecular structure of the tellurium analogue 4a is very sim-
ilar to that of 3a. Therefore, no extra figure is given for this structure.
Selected bond lengths and angles are contained in Table 1 and the
atomic labeling scheme has been adopted from the selenium com-
pound. No significant differences of bond lengths and angles are ob-
served as a consequence of the replacement of selenium by the
heavier chalcogen.
Table 1
Selected bond lengths (Å) and angles (°).

3a 4a 4b

S1–C17 1.665 (1) 1.645 (6) 1.676 (4)
C24–N2 1.469 (4) 1.457 (7) 1.461 (8)
C18–N2 1.434 (4) 1.441 (7) 1.436 (5)
C17–N2 1.338 (4) 1.366 (7) 1.384 (5)
C17–N1 1.397 (3) 1.404 (6) 1.373 (5)
N1–C10 1.274 (3) 1.285 (6) 1.284 (4)
C10–Se1/Te1 1.927 (3) 2.152 (5) 2.142 (3)
Se1/Te1–C1 1.942 (3) 2.134 (5) 2.118 (3)
C1–Se1/Te1–C10 102.5 (1) 95.4 (2) 95.3 (1)
Se1/Te1–C10–N1 122.0 (2) 122.0 (3) 121.8 (3)
N1–C17–S1 122.3 (2) 123.0 (4) 122.1 (3)
N1–C17–N2 112.8 (2) 112.0 (5) 113.2 (4)
S1–C17–N2 124.4 (2) 124.7 (4) 124.5 (3)
S1–C17–N1–C10 54.97 (1) 46.23 (1) 60.11 (1)
Fig. 2 displays themolecular structure of the 4-methoxy-substituted
compound 4b. All general structural features of 3a and 3b are also found
in this iminotelluride. The main difference between the two tellurium
compounds is the Te1–C10–N1–C17 torsion angle, which is larger by
about 15° for 4b. This may have to do with the smaller steric stress
around the tellurium atom and causes another arrangement of themol-
ecules in the solid state structure. Each two of the molecules of 4b are
arranged to pseudo-dimers via weak long-distance interactions be-
tween the tellurium and sulfur atoms. The corresponding distance is
3.698(1) Å, which is within the sum of the van der Waals radii of tellu-
rium and sulfur. Secondary interactions between tellurium and halogen
or sulfur atoms are not unusual and represent common features in the
structural chemistry of organotellurium (II) compounds [21–23]. In
the present case, such interactions have a significant influence on the
crystallization behavior of the tellurium compound.

In future studies, the title compounds will be tested as ligands in
transition metal complexes and precursors for the synthesis of
selenium- and tellurium-containing heterocycles. Another potential
field of application, which is widely unexplored up to now, is the use
of organoselenium and -tellurium compounds for pharmaceutical
purposes [24]. Some vinyltellurium derivatives have recently been
found to possess considerable anti-oxidant activity, which implies a
potential against excitotoxic agents [25,26]. The iminoselenides
and -tellurides 3 and 4 can be regarded as nitrogen analogues of
such active compounds.

Appendix A. Supplementary material

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.inoche.2012.10.021.
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