SYNTHESIS OF DERIVATIVES OF 2-AMINO-2-DEOXY-4-O-(α - AND β -d-GALACTOPYRANOSYL)-d-GLUCOSE*

NIKOLAY E. NIFANT'EV, LEON V. BACKINOWSKY, AND NIKOLAY K. KOCHETKOV N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.) (Received April 7th, 1987; accepted for publication, June 17th, 1987)

ABSTRACT

Galactosylation of methyl 6-O-acetyl-3-O-benzoyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (5) and its trityl ether 9 with 2,3,4,6-tetra-O-benzoyl- α -D-galactopyranosyl bromide (8), 1-O-acetyl-2,3,4,6-tetra-O-benzoyl- β -D-galactopyranose (13), 3,4,6-tri-O-benzoyl-1,2-O-(α -p-tolythiobenzylidene)- α -D-galactopyranose (11), and 3,4,6-tri-O-benzoyl-1,2-O-(α -cyanobenzylidene)- α -D-galactopyranose (12) gave 1,2-cis- and 1,2-trans-linked disaccharide derivatives in ratios ranging from 3.8:1 to 1:8.5 depending on the conditions of glycosylation. A practical synthesis of the target lactosamine derivative 2 was achieved by the reaction of 5 and 8 in nitromethane in the presence of silver triflate.

INTRODUCTION

The synthesis of a tetrasaccharide 1,2-O-(1-cyanoethylidene) derivative 1 tritylated at O-6", which is a precursor for the preparation of the capsular polysaccharide of *Streptococcus pneumoniae* type 14, required the use of the specifically protected methyl 2-amino-2-deoxylactoside (lactosamine) derivative 2. Access to 2 could involve either starting from lactosamine or attachment of the benzoylated galactose residue to O-4 of methyl 6-O-acetyl-3-O-benzoyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (5). Lactosamine is expensive and its synthesis¹⁻³ followed by conversion into 2 would require more stages than the second approach which was thus preferred. We now report on the glycosylation of 5 and its trityl ether 9 in connection with the preparation of 2.

0008-6215/88/\$03.50 © 1988 Elsevier Science Publishers B.V.

^{*} Dedicated to Professor Hans Paulsen.

I	
Щ	
E	
2	

(CDCI ₃)															
Compoun	d Residue ^a	I-H	Н-2	Н-3	H-4	Н-5	9-H	,9-H	$J_{I,2}$	J _{2,3}	J _{3,4}	J4,5	J _{5,6}	J _{5,6'}	J _{6,6'}
7	×	5.34	4.42	6.16	4.13	p	4.21	4.46	8.4	11.0	8.6	9.8	4.2	2.0	12.0
	Z	4.87	5.71	5.46	5.76	q	3.68	q	7.8	10.2	3.3	v	6.7	5.6	10.1
4		5.38	4.42	5.87	, J	3.73	٤	s	8.1	10.7	8.6		5.0	3.4	12.0
ŝ		5.36	4.43	5.89	3.80	- 3.87	4.47 -	- 4.57	8.5	10.3	8.6				11.9
9		5.42	4.46	6.10	5.32	3.79	3.70	3.87	8.5	10.6	9.2	9.2	4.0	2.1	12.2
-		5.42	4.47	6.05	5.38	3.98	4.25	4.42	8.1	10.8	9.1	10.0	2.5	4.5	12.1
0		5.42	4.09	6.28	3.68	4.10	3.75	4.41	8.4	10.5	8.4	8.6	6.0	2.4	11.6
10	z	5.43	4.33	6.05	4.36	4.04	4.45	4.77	8.4	10.5	8.5	9.5	4.5	2.5	11.9
	Z	5.75	5.67	5.88	6.04	4.75	4.38	4.61	3.7	10.7	3.1	1.4	7.6	5.9	11.1
14	2	5.25	4.35	5.98	5.10	4.01	3.80	4.11	8.0	10.4	8.7	9.4	7.1	1.8	10.3
	z	5.00	5.85	5.65	6.01	4,39	4.46	4.69	7.6	10.1	3.3	v	6.0	6.3	10.3
15 ^d		5.39	4.38	5.95	4.06	3.80	4.27	4.40	8.3	10.5	8.5	9.3	4.0	2.1	11.7
17	2	5.39	4.34	6.09	4.21	3.96	4.37	4.61	8.2	10.5	8.3	9.4	4.7	2.4	11.7
	Z	5.38	5.16	5.24	5.44	4.28	4.08	e	3.9	10.6	3.0	1.3	3.9		6.4
18	2	5.38	4.38	6.08	4.05	3.91	4.20	4.59	8.3	10.5	8.3	9.9	4.6	2.9	11.5
	Z	4.57	5.11	4.88	5.15	ŕ	مر	•	7.5	10.4	3.3	v			
"R ''redu	cino'' end: N	-uou,, 'I	reducine'	end.	.77-3.94	1 (m. 3 F	H-5R	5N 6' N)	c3.90-4	07 (m	3 H. H.	4.6.6').		0.03. 68	4.15.

², τυμυνίε είμι, τγ. πομπταματίης επί. ⁻³, //-3,94 (m, 3 H, H-5K,5N,6'N). ⁻³,90-4.07 (m, 3 H, H-4,6,6'). ^{-δ}SiMe₁ -0.03. ^δB_{H-6'} 4.15, multiplicity not determined. ^{/3}.35-3.58 (m, 6 H, H-5N, 6R,6'R and OMe). Other signals: aromatic δ 7.04-8.17, OMe 3.40-3.49 (3.07 for 14), AcO 1.83-2.20.

TABLE II

REACTION CONDITIONS^a AND YIELDS OF THE DISACCHARIDE DERIVATIVES 2 AND 10

Run	Glycosyl	Glycosyl	Promoter	Solvent	Temperature	Yield (%)	I	Recovery
	donor	acceptor			6	10	7	(%) ¢ (0
1		S	Hg(CN) ₂ -HgBr ₂	MeCN	60-70	42	11	40
2	oc	ŝ	AgOSO ₂ CF ₃	Toluene	-2530	67	31	
ę	*	ŝ	AgOSO ₂ CF,	CH_2Cl_2	-25 - 30	40	4	
4	~	S	AgOSO ₂ CF ₃	MeNO ₂	- 25 30	40	53	
ŝ	~	ŝ	AgOSO ₂ CF ₃	MeCN	- 25 30	42	15	42
9	~	6	AgOSO ₂ CF ₃	CH ₂ Cl ₂	-2530	51	4	
7	11	6	TrCl04	CH_2CI_2	20	œ	17	69
ø	12	6	TrClO4	CH ₂ Cl ₂	20	19	26	51
6	12	6	TrBF4	CH ₂ Cl ₂	20	2	17	75
10^{b}	13	5	Me ₃ SiOSO ₂ CF ₃	CH ₂ Cl ₂	20	e	20	31 ^c
"The ratio o	f glycosyl donor:	glycosyl acceptor:	promoter was 2:1:2 for run	s 1-6, 1:1:0.1 fo	r runs 7-9, and 1: ether 15	1:0.8 for run	10. ⁶ Th	e (1→6)-linked
disaccharide	derivative 14 wa:	s the main product	(yield 29%). "The yield of the	he trimethylsilyl	ether 15.			

TABLE III

Compound	<i>Residue^a</i>	C-1	C-2	C-3	C-4	C-5	C-6	OCH₃	J _{C-1,H-1}
2	R	99.2	54.9	71.4	76.9	72.9	62.0	57.0	158.7
-	N	101.2	70.2	71.9	67.6	71.4	60.9		158.7
10	R	98.7	55.1	73.6	74.7	72.7	63.1 ^b	57.0	162.8
	N	97.2	68.3	67.9	68.8	67.9	61.9		172.0
14	R	98.9	54.9	71.6	70.3	73.7	68.8	56.6	161.1
	N	101.8	70.0	71.8	68.4	71.8	62.2		161.1
17	R	98.9	55.2	74.8	74.1	72.8	61.5	56.9	
••	N	96.8	66.8	67.6	68.0	67.4	63.3		
18	R	99.2	55.0	71.7	77.3	72.9	60.1	57.0	
	N	100.9	69.5	71.1	66.5	70.7	62.4		

¹³C-N.M.R. DATA FOR COMPOUNDS 2, 10, 14, 17, AND 18 (CDC1₃; δ , p.p.m.; J, Hz)

^aR, "reducing" end; N, "non-reducing" end. ^bAssignments may be interchanged. Other signals: C = O, 164.9–170.7; aromatic, 123.0–134.2; CH₃CO, 20.4–20.9 p.p.m.

RESULTS AND DISCUSSION

Benzylidenation of the known^{4,5} methyl 2-deoxy-2-phthalimido- β -D-glucopyranoside (3) followed by benzoylation and deacetalation afforded the diol 4 in 76% overall yield. The selective acetylation of 4 gave mainly the 6-acetate 5 (86%), which could easily be separated from the 4-acetate 6 (3%) and 4,6-diacetate 7 (10%) by crystallisation and column chromatography. The ¹H-n.m.r. data for 4-7 were in accord with their structures (see Table I).

Treatment of 5 at $60-70^{\circ}$ with 2 mol of 2,3,4,6-tetra-O-benzoyl- α -D-galactopyranosyl bromide (benzobromogalactose, 8) under Helferich conditions [acetonitrile-mercuric cyanide (2 mol)-mercuric bromide (catalytic amount)] gave a mixture of the anomeric disaccharide derivatives 2 and 10 in which the latter (1,2-*cis*-linked) markedly preponderated (Table II, run 1). No disaccharide derivatives were formed on attempted reaction at room temperature.

The structures of 2 and 10 were established on the basis of ¹H- and ¹³C-n.m.r. data (Tables I and III). Thus, in particular, the low-field shift of the signal for C-4 in the spectra of 2 (δ 76.9) and 10 (δ 74.7) shows the galactosylation site to be O-4. The $J_{\text{H-1'},\text{H-2'}}$ and $J_{\text{C-1'},\text{H-1'}}$ values for 2 (7.8 and 158.7 Hz) and 10 (3.7 and 172.0 Hz) establish the β and α configurations, respectively.

The reactions of 5 and 8 in the presence of silver triflate and in various solvents (Table II, runs 2-5) showed that increase in the polarity of the solvent (toluene \rightarrow dichloromethane \rightarrow nitromethane, runs 2-4) favoured the formation of the 1,2-*trans*-linked derivative 2, whereas the result with acetonitrile (run 5) shows this dependence to be complex and ambiguous.

The reaction of 2-amino-2-deoxy-D-glucose derivatives with 2-O-acylgalactosyl halides to give a $(1\rightarrow 4)$ linkage has a low efficiency when O-6 and especially O-3 in the acceptor bear acyl substituents⁶, whereas, with alkyl substituents (e.g. allyl, benzyl, or methyl), the efficiency and stereoselectivity are high⁷⁻¹⁴. The lack of stereoselectivity of glycosylation in combination with high total yield of disaccharide derivatives has been observed with 3,4,6-tri-O-benzyl-2-O-p-nitrobenzoyl- α -D-galactopyranosyl bromide as the donor¹⁴. Replacement of the alcohol 5 by its trityl ether 9 did not solve this problem since, although the reaction of 9 with 8 increased the total yield of 2 and 10, the stereoselectivity was not improved (Table II, run 6). The trityl ether 9 was prepared by treatment of 5 with triphenylmethylium perchlorate in the presence of 2,4,6-trimethylpyridine¹⁵. That the trityl group was located at O-4 was proved by regeneration of 5 upon treatment of 9 with aqueous trifluoro-acetic acid; the ¹H-n.m.r. spectrum of 9 was not informative.

1,2-Thio-orthoesters and 1,2-O-cyanoalkylidene derivatives have been used for stereospecific 1,2-*trans*-glycosylation¹⁶⁻¹⁸, although loss of stereospecificity with these reagents is also documented^{17,19,20}. When 9 reacted with the 1,2-thio-orthoester 11 and the 1,2-O-(α -cyanobenzylidene) derivative 12 (Table II, runs 7-9), the stereoselectivity of glycosylation was higher than with 8 but the yields of 2 and 10 were unsatisfactory. This result is in accord with the low efficiency of glycosylation of a 4-O-tritylated 2-acetamido-2-deoxy-D-glucose derivative with galactose 1,2thio-orthoester¹⁸. The 4-O-glycosylation of 2-amino-2-deoxy-D-glucose derivatives with galactose 1,2-orthoesters^{21,22} is non-stereospecific. The use of triphenylmethylium tetrafluoroborate as a catalyst (run 9) instead of perchlorate (run 8) favours 1,2-*trans*-stereoselectivity of glycosylation which is consistent with earlier observations²³.

Galactosylation of the alcohol 5 with 1-O-acetyl-2,3,4,6-tetra-O-benzoyl- β -D-galactopyranose (13) in the presence of trimethylsilyl triflate (run 10) was also studied in view of a synthesis of a lactosamine derivative using β -D-galactopyranose penta-acetate²⁴. Interaction of 5 with 13 afforded, in addition to the (1 \rightarrow 4)-linked disaccharide derivatives 2 and 10, the (1 \rightarrow 6)-linked allo-lactosamine derivative 14, the yield of which exceeded those of 2 and 10 combined. The formation of 14 is probably due to $6\rightarrow$ 4 acetyl migration. The O-trimethylsilyl derivative 15 was also isolated, and its structure determined from the ¹H-n.m.r. data (Table I) and the regeneration of 5 on acid hydrolysis. The structure of 14 was indicated by the ¹H-and ¹³C-n.m.r. data (Tables I and III). In particular, the low-field position of the signal of C-6 (δ 68.8) shows that galactosylation had occurred at O-6 and the $J_{H-1', H-2'}$ and $J_{C-1', H-1'}$ values (8.0 and 161.1 Hz, respectively) indicated the bond to be β .

Thus, the galactosylation of the alcohol 5 and its trityl ether 9 with mono- and bi-cyclic glycosylating agents lacks stereospecificity and, in some reactions, the 1,2-cis-linked disaccharide 10 was the preponderant product. Relatively high 1,2trans-selectivity was observed with the glycosyl donors 13 and 12 (in the presence of triphenylmethylium tetrafluoroborate), but the yields of the target disaccharide derivative 2 were low. Under the conditions of run 4 (Table II), 2 was formed with highest efficiency and they were chosen for its preparation. The 5-mmolar-scale galactosylation of 5 gave 2 and 10 in yields of 44 and 40%, respectively.

Although runs 1, 2, and 5 (Table II) were unsatisfactory for the synthesis of 2, the conditions employed (especially those of run 2) may be suitable for the prepara-

tion of 4-O-(α -D-galactopyranosyl) derivatives of 2-amino-2-deoxy-D-glucose.

The alcohol 5 was reacted with 2,3,4,6-tetra-*O*-acetyl- α -D-galactopyranosyl bromide (acetobromogalactose, 16) in order to compare the reactivities of 8 and 16, the former being reported²⁵ to be the more efficient galactosylating agent. Condensation of 16 with 5 under the conditions of run 4 (Table II) gave, after acetylation, the disaccharide derivatives 17 and 18 in yields of 20 and 32.5%, respectively, and the diacetate 7 (39%) was also isolated. The ¹H- and ¹³C-n.m.r. data of 17 and 18 accord with the structures assigned. Thus, benzobromogalactose is a more effective galactosylating agent than acetobromogalactose, but the 1,2-*trans*-selectivity of the latter in the reaction with alcohol 5 was higher.

EXPERIMENTAL

Melting points were determined with a Kofler apparatus and optical rotations, for solutions in chloroform, with a A1-EPN (U.S.S.R.) automatic polarimeter at 20 $\pm 2^{\circ}$. N.m.r. spectra were recorded with a Bruker WM-250 instrument for solutions in CDCl₃ (internal Me₄Si). Nitromethane was distilled from urea at 100 mmHg, then from P_2O_5 (twice), and finally from CaH₂. Dichloromethane was washed with conc. H₂SO₄ and water, dried with CaCl₂, and distilled from CaH₂. Toluene was dried with $CaCl_2$ and distilled from Na. Acetonitrile was distilled from P_2O_5 and then from CaH₂. Freshly distilled solvents were used in all experiments. 2,4,6-Trimethylpyridine was distilled from KOH and then from CaH₂. Tetramethylurea was distilled and stored over molecular sieves 3Å. Triphenylmethylium perchlorate and tetrafluoroborate were synthesised as described²⁶ and futher purified²⁷ when used as catalysts for glycosylation. Silver triflate was prepared as described²⁸. Column chromatography was performed on Silica Gel L 40/100 μ m (C.S.S.R.), using a benzene-ethyl acetate gradient. Kieselgel 60 (Merck) was used for t.l.c. with ethyl acetate-toluene mixtures (A, 1:10; B, 1:4; C, 1:2; D, 1:1) and E, 1:4 acetonebenzene, and with detection by charring with sulphuric acid.

Methyl 3-O-benzoyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (4). — To a solution of methyl 2-deoxy-2-phthalimido- β -D-glucopyranoside⁴⁻⁵ (3; 4.5 g, 13.9 mmol) in acetonitrile (20 mL) were added benzaldehyde dimethyl acetal (13 mL, ~70 mmol) and TsOH·H₂O (~20 mg). The mixture was kept for 17 h at 20°, and then pyridine (6 mL) was added followed by benzoyl chloride (5.8 mL), dropwise with cooling. The mixture was stored for ~3 h at 20°, MeOH (5 mL) was then added, the mixture was concentrated to dryness, and toluene was distilled repeatedly from the residue *in vacuo*. A solution of the residue in aqueous 90% trifluoroacetic acid (20 mL) was kept for ~1 h at room temperature, then poured into ice-water (200 mL), and extracted with CHCl₃ (150 mL plus 2 × 50 mL). The combined extracts were washed with aqueous NaHCO₃ and water, filtered, and concentrated. The residue was crystallised from chloroform-hexane and purified by column chromatography (CHCl₃-MeOH, 93:7) to give 4 (4.5 g, 76%), m.p. 168-169° (from chloroform-hexane), [α]_D + 112° (*c* 0.9), *R*_F 0.15 (solvent *D*).

Anal. Calc. for C₂₂H₂₁NO₈: C, 61.82; H, 4.95; N, 3.28. Found: C, 62.03; H, 5.24; N, 3.34.

Methyl 6-O-acetyl-3-O-benzoyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (5). — To a stirred solution of 4 (1.4 g, 3.3 mmol) and pyridine (0.8 mL) in dry chloroform (10 mL) was added a solution of acetyl chloride (0.225 mL, 3.6 mmol) in dry chloroform (5 mL) dropwise during 1 h at 20°. Stirring was continued for 20 min, the solution was concentrated, and toluene was evaporated from the residue, which was then crystallised from chloroform-hexane to give 5. Column chromatography of the mother liquor (benzene-acetone) gave the diacetate 7, more 5, and the 4-acetate 6.

Compound 5 (1.33 g, 86%) had m.p. 181–184° (from chloroform-hexane), $[\alpha]_D + 99^\circ$ (c 0.7), R_F 0.42 (solvent C) and 0.47 (solvent E).

Anal. Calc. for C₂₄H₂₃NO₉: C, 61.40; H, 4.94; N, 2.98. Found: C, 61.31; H, 4.57; N, 3.11.

Methyl 4-O-acetyl-3-O-benzoyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (6; 50 mg, 3%) was amorphous and had $[\alpha]_D$ + 122° (c 0.55), R_F 0.24 (solvent *E*).

Anal. Found: C, 61.44; H, 5.10; N, 2.80.

Methyl 4,6-di-O-acetyl-3-O-benzoyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (7; 0.17 g, 10%) was amorphous and had $[\alpha]_D + 105^\circ$ (c 1.05), $R_F 0.64$ (solvent *E*).

Anal. Calc. for C₂₆H₂₅NO₁₀: C, 61.06; H, 4.93; N, 2.74. Found: C, 61.20; H, 5.02; N, 2.96.

The ¹H-n.m.r. data for 5-7 are listed in Table I.

Methyl 6-O-acetyl-3-O-benzoyl-2-deoxy-4-O-trityl-2-phthalimido- β -D-glucopyranoside (9). — To a stirred solution of 5 (0.94 g, 2 mmol) and 2,4,6-trimethylpyridine (0.58 mL, 4 mmol) in dry dichloromethane (20 mL) was added triphenylmethylium perchlorate (0.82 g, 2.4 mmol) portionwise during 1 h. The solution was stirred for 17 h, treated with 3:1 pyridine-methanol (1 mL), diluted with chloroform (70 mL), washed with water (3 \times 30 mL), and concentrated. Column chromatography of the residue gave 9 (1.40 g, 99%; 81% after crystallisation from etherhexane), m.p. 195-196.5°, $[\alpha]_{\rm D}$ + 223° (c 1.8), $R_{\rm F}$ 0.46 (solvent B).

Anal. Calc. for C₄₃H₃₇NO₉: C, 72.56; H, 5.24; N, 1.97. Found: C, 72.64; H, 5.43; N, 1.91.

The ¹H-n.m.r. data are listed in Table I.

3,4,6-Tri-O-benzoyl-1,2-O-(α -p-tolylthiobenzylidene)- α -D-galactopyranose (11). — Following the general procedure for the preparation of sugar 1,2-thioorthoesters²⁹, a solution of benzobromogalactose **8** (3.30 g, 5.0 mmol) in nitromethane (5 mL) was heated with *p*-toluenethiol (0.59 g, 4.8 mmol) and 2,4,6-trimethylpyridine (1.2 mL, 7.5 mmol) for 30 min at 60-70°. Conventional work-up then gave amorphous 11 (2.32 g, 69%), $[\alpha]_D$ + 54° (*c* 1.15), R_F 0.79 (ether-benzene, 1:13).

Anal. Calc. for C₄₁H₃₄O₉S: C, 70.07; H, 4.88; S, 4.56. Found: C, 69.61; H, 4.98; S, 4.55.

3,4,6-Tri-O-benzoyl-1,2-O-(α -cyanobenzylidene)- α -D-galactopyranose (12). — Using the conditions for the preparation of sugar 1,2-O-cyanoalkylidene derivatives³⁰, a solution of **8** (3.30 g, 5.0 mmol) in acetonitrile (10 mL) was stirred with tetrabutylammonium bromide (0.75 g, 2.5 mmol) for 0.5 h at room temperature. Finely ground, dry sodium cyanide (1.23 g, 25 mmol) was then added and stirring was continued for 17 h. Conventional work-up gave amorphous 12 (0.90 g, 30%), $[\alpha]_{\rm D}$ + 87° (c 0.7), $R_{\rm F}$ 0.50 (ethyl acetate-heptane, 1:2) and 0.63 (ethyl acetatebenzene, 1:8).

Anal. Calc. for C₃₅H₂₇NO₉: C, 69.42; H, 4.49; N, 2.31. Found: C, 69.44; H, 4.51; N, 2.38.

I-O-Acetyl-2,3,4,6-tetra-O-benzoyl-β-D-galactopyranose (13). — Following the procedure for the preparation of glycosyl acetates^{31,32}, a solution of **8** (0.66 g, 1.0 mmol) in glacial acetic acid (10 mL) was stirred with mercuric acetate (0.64 g, 2.0 mmol) until dissolution was complete and then left overnight at 20°. The solution was diluted with chloroform (50 mL), washed with saturated aqueous potassium bromide (2 × 30 mL) and water, filtered, and concentrated, and the residue was dried *in vacuo* to give amorphous 13 (0.62 g, 97%), $[\alpha]_D$ + 133° (*c* 0.55), R_F 0.54 (solvent *A*). ¹H-n.m.r. data: δ 8.15-7.20 (m, 20 H, 4 Ph), 6.11 (d, 1 H, $J_{1,2}$ 8.2 Hz, H-1), 6.05 (dd, 1 H, $J_{3,4}$ 3.4, $J_{4,5}$ 0.8 Hz, H-4), 5.93 (dd, 1 H, $J_{2,3}$ 10.3 Hz, H-2), 5.68 (dd, 1 H, H-3), 4.65 (dd, 1 H, $J_{5,6}$ 5.2, $J_{6,6'}$ 9.9 Hz, H-6), 4.48 (ddd, 1 H, $J_{5,6'}$ 6.0 Hz, H-5), 4.43 (dd, 1 H, H-6'), 2.11 (s, 3 H, AcO).

Anal. Calc. for C₃₆H₃₀O₁₁: C, 67.71; H, 4.74. Found: C, 67.36; H, 4.85.

Synthesis of methyl 6-O-acetyl-3-O-benzoyl-2-deoxy-2-phthalimido-4-O-(2,3, 4,6-tetra-O-benzoyl- α - (2) and - β -D-galactopyranosyl)- β -D-glucopyranoside (10). — The results are summarised in Table II. Column chromatography was used to isolate the products, which were identified by ¹H-n.m.r. spectroscopy.

(a) Run 1. To a solution of 5 (0.25 g, 0.53 mmol), mercuric cyanide (0.25 g, 1.0 mmol), and mercuric bromide (30 mg) in dry acetonitrile (4 mL) was added a

solution of 8 (0.66 g, 1.0 mmol) in dry acetonitrile (10 mL). The mixture was heated for 5 h at 60–70°, left overnight at 20°, then diluted with chloroform (70 mL), and worked-up as described above for the preparation of 13, to give 10 (230 mg, 42%), 2 (60 mg, 11%), and 5 (100 mg, 40%).

Compound 2 was amorphous and had $[\alpha]_D + 70^\circ$ (c 0.5), $R_F 0.40$ (solvent B).

Anal. Calc. for C₅₈H₄₉NO₁₈: C, 66.47; H, 4.77; N, 1.34. Found: C, 66.14; H, 4.77; N, 1.30.

Compound 10 was amorphous and had $[\alpha]_D + 121^\circ$ (c 0.4), $R_F 0.48$ (solvent B).

Anal. Found: C, 66.81; H, 4.55; N, 1.53.

The n.m.r. data for 2 and 10 are listed in Tables I and III.

(b) Runs 2-5. A solution of 5 (235 mg, 0.5 mmol), silver triflate (257 mg, 1.0 mmol), and tetramethylurea (90 μ L, ~1 mmol) in the solvent specified (10 mL in run 2 and 5 mL in the others) was stirred, with protection from light, at -25 to -30° and a solution of 8 (660 mg, 1.0 mmol) in the appropriate solvent (5 mL) was added dropwise during 1 h. Stirring was continued for 1 h at this temperature and then for 1-2 h at 20°. The mixture was diluted with chloroform (80 mL), filtered, washed with aqueous 5% sodium thiosulphate (2 × 50 mL) and water (2 × 50 mL), and then concentrated, and the residue was chromatographed.

Galactosylation of 5 (5.0 mmol) under the conditions of the run 4 gave 44% of 2 and 40% of 10.

(c) Run 6. The glycosylation of 9 (355 mg, 0.5 mmol) was performed as described above but with the omission of the tetramethylurea.

(d) Run 7. Using the conditions of glycosylation with sugar 1,2-thio-orthoesters¹⁸, to a stirred solution of 9 (355 mg, 0.5 mmol) and triphenylmethylium perchlorate (17 mg, 0.05 mmol) in dry dichloromethane (5 mL) was added dropwise a solution of 11 (351 mg, 0.5 mmol) in dichloromethane at such a rate as to retain the yellow colour of the mixture. The mixture was stirred for 20 min and then treated with aqueous 90% trifluoroacetic acid (3 mL) for 15-20 min. The solution was poured into water (200 mL) and extracted with chloroform (3 \times 30 mL), the combined extracts were washed with water (200 mL), saturated aqueous sodium hydrogencarbonate (50 mL), and water, and concentrated, and the residue was chromatographed.

(e) Runs 8 and 9. Glycosylation of 9 (284 mg, 0.4 mmol) with 12 (242 mg, 0.4 mmol) was performed in dichloromethane (2 mL) for 17 h at room temperature in the presence of triphenylmethylium perchlorate (14 mg, 0.04 mmol; run 8) or tetra-fluoroborate (12 mg, 0.04 mmol; run 9), using the vacuum technique¹⁷. The catalyst was destroyed by addition of 3:1 methanol-pyridine (0.2 mL). No 12 or 9 was then detected in the reaction mixtures. The products 2, 10, and 5 were isolated by column chromatography.

(f) Run 10. A mixture of 5 (120 mg, 0.25 mmol), 13 (160 mg, 0.25 mmol), and molecular sieves 4Å in dry dichloromethane (5 mL) was stirred under argon at 20°, trimethylsilyl triflate (20 μ L, ~0.1 mmol) was added with a syringe, and stirring was

continued overnight. T.l.c. then revealed 5-10% of products. More (20 μ L) promoter was added and the mixture was stirred for 40 h. The reaction mixture then contained (t.l.c.) **2**, **5**, **10**, **14**, and **15**. Addition of triethylamine (0.2 mL) converted 5 into 15. The mixture was diluted with chloroform (50 mL), filtered, washed with water, and concentrated. Column chromatography then gave **2**, **10**, methyl 6-*O*-acetyl-3-*O*-benzoyl-2-deoxy-2-phthalimido-4-*O*-trimethylsilyl- β -D-glucopyranoside [15; 42 mg, 31%; R_F 0.55 (solvent *B*) and 0.31 (solvent *A*)], and methyl 4-*O*-acetyl-3-*O*-benzoyl-2-deoxy-2-phthalimido-6-*O*-(2,3,4,6-tetra-*O*-benzoyl- β -D-glacopyranoside (14; 76 mg, 29%), foam, [α]_D + 106° (*c* 2.5), R_F 0.55 (solvent *B*) and 0.29 (solvent *A*).

Anal. Calc. for C₅₈H₄₉NO₁₈: C, 66.47; H, 4.71; N, 1.34. Found: C, 65.96; H, 5.17; N, 1.30.

Compound 15 was treated with aqueous 90% trifluoroacetic acid (2 mL) for 20 min (the reaction was monitored by t.l.c.), and the solution was diluted with chloroform (30 mL), washed with water (2 \times 30 mL), and concentrated to give 5 (-25 mg).

Methyl 6-O-acetyl-3-O-benzoyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl- α - (17) and - β -D-galactopyranosyl)- β -D-glucopyranoside (18). — Glyco-sylation of 5 (235 mg, 0.5 mmol) with acetobromogalactose 16 (420 mg, 1.0 mmol) was carried out under the conditions of run 4. In order to facilitate chromatographic separation, the worked-up reaction mixture was treated with acetic anhydride (2 mL) in pyridine (2 mL) for 17 h at 20°. Methanol (2 mL) was added and, after 15 min, the mixture was concentrated. Toluene (3 \times 5 mL) was then evaporated from the residue which was chromatographed to give 7 (80 mg, 39%), 17 (80 mg, 20%), and 18 (130 mg, 32.5%).

Compound 17 was amorphous and had $[\alpha]_D + 218^\circ$ (c 0.1), $R_F 0.5$ (solvent D). Anal. Calc. for $C_{38}H_{41}NO_{18}$: C, 57.07; H, 5.17; N, 1.75. Found: C, 57.18; H,

Compound 18 had m.p. 236–237° (from chloroform-hexane), $[\alpha]_D + 61.8°$ (c 0.45), $R_F 0.40$ (solvent D).

Anal. Found: C, 56.94; H, 5.40; N, 1.75.

REFERENCES

- 1 J. ALAIS AND A. VEYRIERES, Carbohydr. Res., 93 (1981) 164-165.
- 2 J. ARNARP AND J. LÖNNGREN, J. Chem. Soc., Perkin Trans., 1 (1981) 2070-2074.
- 3 B. A. DMITRIEV, YU. A. KNIREL, AND N. K. KOCHETKOV, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1973) 2365-2366.
- 4 M. V. OVCHINNIKOV, N. E. BYRAMOVA, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, *Bioorg. Khim.*, 9 (1983) 401–406.
- 5 N. E. BYRAMOVA, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1985) 1140–1145.
- 6 P. SINAŸ, Pure Appl. Chem., 50 (1978) 1437-1452.
- 7 S. S. RANA, J. J. BARLOW, AND K. L. MATTA, *Carbohydr. Res.*, 113 (1983) 257-271; K. L. MATTA, R. VIG, AND S. A. ABBAS, *ibid.*, 132 (1984) 119-126.
- 8 A. VEYRIERES, J. Chem. Soc., Perkin Trans. 1, (1981) 1626-1629.
- 9 M.-L. MILAT AND P. SINAŸ, Angew. Chem., 91 (1979) 501-502.

- 10 N. V. BOVIN, E. YU. KORCHAGINA, AND A. YA. KHORLIN, Bioorg. Khim., 11 (1985) 1253-1255.
- 11 G. E. EKBORG, Y. SONE, AND C. P. J. GLAUDEMANS, Carbohydr. Res., 110(1985) 55-67.
- 12 H. PAULSEN AND C. KOLAR, Tetrahedron Lett., (1979) 2881-2884.
- 13 J. DAHMÉN, G. GNOSSPELIUS, A.-C. LARSSON, T. LAVE, G. NOORI, K. PALSSON, T. FREJD, AND G. MAGNUSSON, *Carbohydr. Res.*, 138 (1985) 17–28.
- 14 O. HINDSGAUL, T. NORBERG, J. LE PENDU, AND R. U. LEMIEUX, Carbohydr. Res., 109 (1982) 109-142.
- 15 V. I. BETANELI, M. V. OVCHINNIKOV, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, Carbohydr. Res., 76 (1979) 252–256.
- 16 N. K. KOCHETKOV, Sov. Scient. Rev. Sect. B. Chem. Rev., 4(1982) 1-69.
- 17 L. V. BACKINOWSKY, N. E. NIFANT'EV, V. I. BETANELI, M. I. STRUCHKOVA, AND N. K. KOCHET-KOV, Bioorg. Khim., 9 (1983) 74–78.
- 18 L. V. BACKINOWSKY, YU. E. TSVETKOV, N. E. BYRAMOVA, N. F. BALAN, AND N. K. KOCHET-KOV, Carbohydr. Res., 85 (1980) 209-221.
- 19 L. V. BACKINOWSKY, N. E. NIFANT'EV, AND N. K. KOCHETKOV, *Bioorg. Khim.*, 9 (1983) 1089-1096.
- 20 N. K. KOCHETKOV, N. N. MALYSHEVA, M. I. STRUCHKOVA, AND E. M. KLIMOV, *Bioorg. Khim.*, 11 (1985) 391-402.
- 21 J.-C. JACQUINET AND P. SINAŸ, J. Org. Chem., 42 (1977) 720-724.
- 22 J.-C. JACQUINET AND P. SINAŸ, Tetrahedron, 32 (1976) 1693-1697.
- 23 L. V. BACKINOWSKY, N. E. NIFANT'EV, AND N. K. KOCHETKOV, *Bioorg. Khim.*, 10 (1984) 226-231.
- 24 H. PAULSEN AND M. PAAL, Carbohydr. Res., 113 (1983) 203-218.
- 25 P. J. GAREGG AND T. NORBERG, Acta Chem. Scand., Ser. B, 33 (1979) 116-118.
- 26 H. J. DAUBEN, JR., L. R. HONNEN, AND K. M. HARMON, J. Org. Chem., 25 (1960) 1442-1445.
- 27 N. K. KOCHETKOV, V. I. BETANELI, M. V. OVCHINNIKOV, AND L. V. BACKINOWSKY, Tetrahedron, 37 (1981) Suppl. 9, 149–156.
- 28 D. G. RUSSELL AND J. B. SENIOR, Can. J. Chem., 58 (1980) 22-29.
- 29 G. MAGNUSSON, J. Org. Chem., 41 (1976) 4110-4112.
- 30 V. I. BETANELI, M. V. OVCHINNIKOV, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, Izv. Akad. Nauk SSSR, Ser. Khim., (1979) 2751–2758.
- 31 A. THOMPSON, M. L. WOLFROM, AND M. INATAME, J. Am. Chem. Soc., 77 (1955) 3160-3161.
- 32 M. L. WOLFROM AND W. GROEBKE, J. Org. Chem., 28 (1963) 2986-2988.