

Novel Bi-Doped Amorphous SnO_x Nanoshells for Efficient Electrochemical CO_2 Reduction into Formate at Low Overpotentials

Qi Yang, Qilong Wu, Yang Liu, Shuiping Luo, Xiaotong Wu, Xixia Zhao, Haiyuan Zou, Baihua Long, Wen Chen, Yujia Liao, Lanxi Li, Pei Kang Shen, Lele Duan, and Zewei Quan*

Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO₂ reduction. Herein, the first synthesis of homogeneous $Sn_{1-x}Bi_x$ alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnO_x shells for efficient CO₂ reduction is reported. The Bi-SnO_x nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (-0.67 to -0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnO_x nanoshells derived from $Sn_{0.80}Bi_{0.20}$ alloy nanoparticles exhibit a great partial current density of 74.6 mA cm⁻² and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H₂ and CO.

Electrochemical converting greenhouse gas CO_2 into useful renewable fuels is an emerging research area, in which achieving high reaction activity and product selectivity at low overpotential is of vital importance.^[1] Compared with the noble metals^[2] (Pd, Au, Ag, etc.) and toxic metals^[3] (Pb, In, etc.), Sn is an inexpensive, non-toxic and environmentally friendly electrocatalyst for CO_2 reduction. Specially, tin oxides (SnO, SnO₂ and SnO_x) are attractive catalysts for the electrochemical conversion of CO_2 to high-valuable formate, due to their appropriate orbital energy and electronic configuration.^[4a] However, the performance of various tin oxides is far from satisfactory, owing to their relatively low intrinsic electrical conductivity and low selectivity toward

```
Q. Yang, Q. Wu, Dr. S. Luo, X. Wu, Dr. X. Zhao, H. Zou, Dr. B. Long,
W. Chen, Y. Liao, L. Li, Prof. L. Duan, Prof. Z. Quan
Department of Chemistry, Key Laboratory of Energy Conversion
and Storage Technologies, Ministry of Education
```

Southern University of Science and Technology (SUSTech)

Collaborative Innovation Center of Sustainable Energy Materials Guangxi Key Laboratory of Electrochemical Energy Materials College of Chemistry and Chemical Engineering Guangxi University

Nanning, Guangxi 530004, P. R. China

DOI: 10.1002/adma.202002822

formate formation at low overpotentials.^[4] One alternative strategy for improving catalytic activity and selectivity is to introduce other components (e.g., Ag, Cu, Mn) that have a synergistic effect with Sn to modulate the reactant adsorption, activation and product desorption.^[1h,4,5] However, the low formate selectivity (typically <40%) of these catalysts at low overpotentials remains an urgent problem.

To further promote formate production, engineering new Sn-based bimetallic materials has emerged as an efficient strategy. In addition, the high oxygen affinity properties of Sn makes it possible to form core–shell nanostructures with tunable atom-doped tin oxide nanoshells and high electronic conductivity.^[6] Another alterna-

tive low-cost catalyst of Bi possesses some characteristics that are suitable for CO₂ electrochemical reduction.^[1h,7] Recently, several studies reported the unique properties of Sn-Bi eutectic alloys,^[8] the orbital interaction effects at the interface between Sn nanosheets and Bi nanoparticles (NPs),^[9] and amorphous SnO_x modified by Bi species,^[10] which are promising candidates for CO₂ reduction. Nonetheless, the problems of low formate selectivity and high competition with hydrogen evolution at low overpotentials remain unsolved.

Herein, we report the first synthesis of homogeneous $Sn_{1-x}Bi_x$ alloy NPs with remarkably high Bi concentration (*x* up to 0.20) that naturally form the Bi-doped amorphous SnO_x nanoshells. The state-of-the-art Bi-SnO_x nanoshells derived from $Sn_{0.80}Bi_{0.20}$ alloy NPs exhibit higher selectivities (>90% from -0.67 to -0.92 V, with a maximum value of 95.8% at -0.88 V) and partial current density (74.6 mA cm⁻²) for the electrochemical reduction of CO₂ to formate than current tin oxide catalysts. Based on experimental results and DFT analyses, the excellent performance of Bi-SnO_x catalysts is revealed to originate from the synergistic effect between incorporated Bi atoms and Sn species, which could facilitate charge-transfer from the electrode to the adsorbed CO₂ and significantly enhance the formate selectivity by suppressing H₂ and CO formation.

Uniform $Sn_{1-x}Bi_x$ alloy NPs were successfully synthesized through the co-reduction of $SnCl_2$ and BiI_3 precursors with tunable molar ratios (refer to Figures S1 and S2 and the Experimental Section in the Supporting Information for details). The typical transmission electron microscopy (TEM)

Shenzhen, Guangdong 518055, P. R. China

E-mail: guanzw@sustech.edu.cn

Dr. Y. Liu, Prof. P. K. Shen

D The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202002822.

Figure 1. a-c) TEM, HAADF-STEM and aberration-corrected HAADF-STEM images of as-prepared $Sn_{0.80}Bi_{0.20}$ alloy NPs. d-g) EDS elemental mapping images of $Sn_{0.80}Bi_{0.20}$ alloy NPs. h) Corresponding EELS of Bi $M_{4,5}$ acquired at marked points (i–iii) in (c). The scale bars in d-g) represent 5 nm.

and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images (Figure 1a,b) show that $Sn_{0.80}Bi_{0.20}$ alloy NPs are spherical and monodisperse with good size uniformity. Based on the statistics of over 200 NPs, the average size diameter of the $Sn_{0.80}Bi_{0.20}$ alloy NPs

is 19.9 ± 1.2 nm, which is similar to those of other $Sn_{1-x}Bi_x$ compositions (Sn, $Sn_{0.93}Bi_{0.07}$, $Sn_{0.86}Bi_{0.14}$), as shown in Figure S3 (Supporting Information). These Sn/Bi atomic ratios were determined by inductively coupled plasma mass spectrometry (ICP-MS). Aberration-corrected HAADF-STEM image (Figure 1c)

Figure 2. a) XRD patterns of $Sn_{1-x}Bi_x$ alloy NPs with different compositions. XPS spectra of $Sn_{0.80}Bi_{0.20}$ alloy NPs: b) Sn 3d, c) Bi 4f, and d) O 1s. e) CV curves of Sn and $Sn_{0.80}Bi_{0.20}$ alloy NPs. f) The structural model of Bi-doped SnO_x catalyst for CO₂ reduction.

clearly reveals the atomic structure of the Sn_{0.80}Bi_{0.20} alloy NPs. The interplanar *d*-spacing of 3.36 Å in the core of the particle is slightly larger than that of (200) planes of tetrahedral Sn (2.92 Å), due to the incorporation of larger Bi atoms into the Sn crystal. An amorphous oxide nanoshell with a thickness of 3.1 nm was formed on the single-crystal core, as Sn_{1-x}Bi_x alloy nanocrystals are sensitive to air exposure.^[8,11] Figure 1d–g and Figures S4–S6 (Supporting Information) show EDS elemental line scan profiles and elemental mapping images of Sn_{1-x}Bi_x alloy NPs, confirming the uniform distributions of Sn and Bi elements over the entire alloy NPs. The distribution of Bi element on the surface of the amorphous oxide nanoshell is also verified by atomic-resolution electron energy-loss spectroscopy (EELS) acquisitions (Figure 1h).

Phase pure $Sn_{1-x}Bi_x$ alloy NPs with tunable compositions in the range of x = 0-0.20 are confirmed by their XRD patterns (Figure 2a), which show the homogeneity of the crystal structure and absence of byproducts (such as Bi NPs). The diffraction patterns also indicate the expansion of the tetrahedral Sn lattice due to the incorporation of larger Bi atoms into Sn, which has been clearly observed via the shift of Bragg reflections to lower 2θ angles and the linear expansion of the (200) d-spacing with increasing Bi content (Figures S7 and S8a, Supporting Information). Simultaneously, the increase of lattice parameters in the Sn_{1-x}Bi_x alloy NPs satisfies the linear relationship (Figure S8b, Supporting Information). In addition, the size distributions of the Sn and Sn_{1-x}Bi_x alloy NPs obtained from Williamson-Hall^[12] and Scherrer methods are very close to the statistics from TEM images (Figures S9-S10 and Table S1, Supporting Information). These consistent results further confirm the uniform size and structure of the $Sn_{1-x}Bi_x$ alloy NPs.

The structural properties of the amorphous oxide nanoshells on the $Sn_{1-x}Bi_x$ alloy NPs were further investigated by X-ray

photoelectron spectroscopy (XPS) and electrochemical cyclic voltammograms (CVs). Figure 2b-d and Figure S11 (Supporting Information) show the Sn_{0.80}Bi_{0.20} alloy NP survey spectrum and typical XPS fitting curves of the Sn 3d, Bi 4f, and O 1s spectra, which indicate the presence of Sn^0 (493.0 and 484.6 eV), Sn^{4+/2+} (494.9 and 486.5 eV), Bi⁰ (161.6 and 156.3 eV), and O²⁻ (530.2 eV) on the surface. The observed binding energy of Sn species in the Sn_{0.80}Bi_{0.20} alloy NPs are slightly larger than those for the Sn NPs (Figure S12, Supporting Information), while the values for Bi are slightly smaller than the reported values.^[9,13] These are due to the charge transfer between Sn and Bi or band bending across the core-shell junctions.^[5a] The surface compositions obtained from XPS agree with the ICP-MS results (Table S2, Supporting Information), indicating the uniform distribution of Sn and Bi elements in the whole Sn_{0.80}Bi_{0.20} core-shell NPs. CV curves of the Sn and Sn_{0.80}Bi_{0.20} alloy NPs (Figure 2e) show that the surface redox potentials of the Sn species in the Sn NPs agree with a previous report,^[14] while in the Sn_{0.80}Bi_{0.20} alloy NPs, the two anodic peaks slightly shifted by 0.02 V to a lower potential due to the incorporation of Bi into Sn species. In addition, the reverse scan CV curve (first reduction then oxidation) of the Sn_{0.80}Bi_{0.20} alloy NPs shows the absence of a reduction peak but has one broad oxidation peak of Bi⁰ to Bi³⁺ (from 0.2 to 0.8 V).^[7] These results indicate that the valence of Bi in the amorphous SnO_x nanoshells should be zero, which is consistent with the XPS and EELS results. The absence of Bi oxide in the nanoshells is due to the competing oxidation process of the metallic phases, according to the Bi-Sn-O phase diagram (Figure S13, Supporting Information).^[8] During the competitive oxidation process, Sn atoms with higher oxygen affinity are oxidized to form amorphous SnO_r while relatively inert Bi atoms remain stable. Due to the interaction between Sn and Bi atoms in the original β -Sn_{1-x}Bi_x alloy lattice, Bi atoms are directly involved in this transformation process and are finally anchored in the as-formed amorphous SnO_x.^[15] Based on the above structural characterizations, we can conclude that the Sn_{0.80}Bi_{0.20} alloy NPs have a core–shell nanostructure, in which the core is crystalline Sn_{0.80}Bi_{0.20} alloy and the shell is Bi-doped amorphous SnO_x, denoted as Sn_{0.80}Bi_{0.20} @ Bi-SnO_x. In comparison, the Sn NPs possess a crystalline core of Sn and an amorphous shell of SnO_x, denoted as Sn@SnO_x. The homogeneous bimetallic alloy core of the Sn_{0.80}Bi_{0.20} @ Bi-SnO_x NPs ensures high electrical conductivity,^[6] and the tunable Bi-doped oxide nanoshell is promising for efficient CO₂ reduction (Figure 2f).

Due to the large lattice mismatch (>22%) and low solubility (<2 at%) between Sn and Bi,^[16] as well as the ease of phase separation and oxidization,^[8] the preparation of homogeneous Sn_{1-x}Bix alloys to construct their oxide derivatives is challenging. The successful synthesis of novel Sn_{1-x}Bi_x alloy NPs with tunable bismuth concentration (x up to 0.20) was achieved in this work. In order to further raise the composition of Bi in the $Sn_{1-x}Bi_x$ alloy NPs (x > 0.2), a series of attempts were performed such as the increase of Bil₃ amount and the decrease of SnCl₂ amount. Unfortunately, the byproducts (Bi NPs) inevitably accompanied the as-formed Sn_{1-x}Bi_x alloy NPs, as shown in the XRD patterns and TEM images (Figure S14, Supporting Information). Finely tuning the reduction speed of the metal precursors (BiCl₃, BiBr₃ and BiI₃) with small redox potential differences could control the composition and size uniformity of $Sn_{1-x}Bi_x$ alloy NPs, as shown in the CV curves, XRD patterns, ICP-MS results and corresponding TEM images (Figures S15 and S16, Supporting Information). Bil₃ could be reduced more easily, as it has the most positive redox potential (0.326 V) compared with BiCl₃ (0.204 V) and BiBr₃ (0.263 V), and that help to achieve the best size uniformity in the final $Sn_{1-x}Bi_x$ alloy NPs. In addition, larger Sn_{1-x}Bi_x alloy NPs can also be produced by extending the reaction time (from 10 to 30 min), as indicated by the XRD patterns and corresponding TEM images (Figures S17 and S18, Supporting Information). Meanwhile, the Bi content in these larger $Sn_{1-x}Bi_x$ alloy NPs is decreased, as indicated by the shift of Bragg reflections to higher 2θ angles and the ICP-MS results. These changes originate from the production of additional Sn species from excess SnCl₂ precursor during the reaction, which undergoes continuous solid diffusion within the NPs during the growth process.

The electrocatalytic CO₂ reduction properties of the Sn and $Sn_{1-x}Bi_x$ catalysts were evaluated in a gas diffusion flow cell with a three-electrode setup (Figures S19 and S22, Supporting Information). **Figure 3**a shows linear sweep voltammetry (LSV) curves of the Sn@SnO_x and Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalysts. In Ar-saturated 0.5 M KHCO₃ electrolyte, the current densities measured at potentials lower than -0.68 V are attributed to the hydrogen evolution reaction (HER), which is the main competitive reaction during CO₂ reduction. In the CO₂-saturated 0.5 M KHCO₃ electrolyte, the dramatic increase of current densities indicates that CO₂ reduction is more favorable than the HER. The Faradaic efficiencies (FEs) of the CO₂ reduction products (CO and formate) and byproduct (H₂) were quantified by gas chromatography (GC) and nuclear magnetic resonance (NMR) spectroscopy (Figure S23, Supporting Information). For the Sn@SnO_x

catalyst (Figure 3b), the FE of formate reaches a maximum value of $\approx 60\%$ in the potential range from -0.98 to -1.18 V, while H₂ dominates in the low potential range from -0.68 to -0.88 V (FE of H₂: 81.5-100%). These results indicate that the Sn@SnO_r catalyst exhibits low formate selectivity and high FE of H₂ at low potentials. In contrast, the Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalysts possess high selectivity for formate with FEs reaching above 91.5% in a wide potential window (from -0.67 to -0.92 V). Moreover, the maximum FE reaches 95.8% at -0.88 V (Figure 3c). Thus, it's clearly indicated that products can be successfully tuned from H₂ to formate at low overpotentials. In addition, we have also investigated the catalytic performance of commercial Bi NPs, which exhibit low formate selectivity and high FE of H₂ at low overpotentials (Figure S24, Supporting Information). These results confirm that the performances of Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalysts are superior to both of Sn@SnOr and pure Bi NPs.

Simultaneously, the partial current density of formate on the Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalysts is dramatically increased compared with Sn@SnO_x catalysts (Figure 3d), showing a higher current density of 20.9 mA cm⁻² at the highest FE of 95.8% and a desirable current density of 74.6 mA cm⁻² at a moderate potential of -1.38 V. Tauc and Nyquist plots obtained from ultraviolet visible-near infrared (UV-Vis-NIR) spectra (Figure S25, Supporting Information) and electrochemical impedance spectroscopy (Figure S26, Supporting Information) suggest that the bandgap and impedance of the Sn_{0.80}Bi_{0.20} @ Bi-SnO_x are lower than those of Sn@SnO_x, due to the incorporation of Bi into Sn species. These results confirm that the presence of Bi in the catalysts could decrease the energy barrier and facilitate the charge-transfer process from the electrode to the adsorbed CO₂, contributing to ultrahigh current density.

To explore the effect of composition on the selectivity of CO₂ reduction, the electrocatalytic performances of two other catalysts with low Bi contents (Sn_{0.93}Bi_{0.07} and Sn_{0.86}Bi_{0.14} alloy NPs) have also been measured (Figures S27-S29, Supporting Information). With the increase of Bi content, the FEs of formate increase gradually from 10.9% to 95.8% at the applied potential of -0.88 V, and the HER as well as CO production are simultaneously suppressed (Figure 3e). The electrochemical active surface area (ECSA) was estimated by measuring the double-layer capacitance. As shown in Figure S30 (Supporting Information), the capacitances of these catalysts increase with the enhanced Bi contents, and the Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalyst possesses a higher capacitance (2.79 mF cm⁻²) than three other catalysts, including $Sn@SnO_x$ (1.21 mF cm⁻²), $Sn_{0.93}Bi_{0.07}$ @ Bi-SnO_x (1.49 mF cm⁻²), and $Sn_{0.86}Bi_{0.14}$ @ Bi-SnO_x $(2.35 \text{ mF cm}^{-2})$. As a result, theses catalysts with continuously increased ECSAs could provide more active sites for electrochemical CO₂ reduction, also contributing to its enhanced catalytic performances. Compared with current tin oxide catalysts for electrochemical CO₂ reduction, the Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalysts exhibit the highest formate selectivity at low overpotentials (standard reduction potentials of formate: -0.02 V vs RHE),^[1a] as shown in Figure 3f and Table S3 (Supporting Information). In addition, the long-term stability of the Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalysts was also investigated, and their FEs of formate could keep a higher level (≈90%) after 50 h (Figure S31, Supporting Information). The good structure stability is revealed by a series of characterizations, including TEM, HRTEM, EDS elemental

www.advancedsciencenews.com

Figure 3. a) LSV of $Sn@SnO_x$ and $Sn_{0.80}Bi_{0.20}$ @ Bi-SnO_x catalysts in Ar- or CO_2 -saturated 0.5 M KHCO₃ aqueous solution (scan rate: 10 mV s⁻¹). H₂, CO, and formate FEs of b) $Sn@SnO_x$ and c) $Sn_{0.80}Bi_{0.20}$ @ Bi-SnO_x catalysts. d) Formate partial current densities of $Sn@SnO_x$ and $Sn_{0.80}Bi_{0.20}$ @ Bi-SnO_x catalysts. d) Formate partial current densities of $Sn@SnO_x$ and $Sn_{0.80}Bi_{0.20}$ @ Bi-SnO_x catalysts. e) FEs for H₂, CO and formate obtained on the catalysts of Sn, $Sn_{0.93}Bi_{0.07}$, $Sn_{0.86}Bi_{0.14}$, and $Sn_{0.80}Bi_{0.20}$ at -0.88 V, respectively. f) Formate FEs of current tin oxide catalysts for electrochemical CO₂ reduction (inserted numbers represent the references in Table S3, Supporting Information).

mapping, XRD and CV (Figures S32–S34, Supporting Information). The concentration of electrolyte could affect the performances of electrocatalysts for CO₂ reduction.^[4d] Therefore, KHCO₃ solutions with different concentrations (from 0.1 to 1 M) were used to investigate the variations of FE and production rate of formate on Sn_{0.80}Bi_{0.20} @ Bi-SnO_x catalysts. As shown in Figure S35 (Supporting Information), the FE and production rate reach the highest values in 0.5 M KHCO₃ (95.8%, 254.9 μ mol h⁻¹ cm⁻²). As the KHCO₃ concentration increased further, these values begin to decrease due to the enhanced hydrogen production.^[4d]

To elucidate the underlying reasons for the excellent CO_2 reduction activity toward formate production on the $Sn_{0.80}Bi_{0.20}$ @ $Bi-SnO_x$ catalyst, DFT calculations were conducted over the thermochemical energetics of CO_2 reduction and the competing HER.^[17] The structural models for the DFT calculations were built based on the well-characterized Sn and

Sn_{0.80}Bi_{0.20} NPs, which possess a crystalline core and oxidized shell. The details are shown in Figures S36 and S37 and the Computational Section in the Supporting Information. The free energy diagrams (FEDs) for the formation of H₂, CO and HCOOH on Sn@SnOx and Sn0.80Bi0.20@Bi-SnOx are presented in Figure 4a-c, and the magnitudes of theoretical limiting potentials $|U_1|$ are summarized in Figure 4d. It is revealed that Sn_{0.80}Bi_{0.20} @ Bi-SnO_x possesses higher limiting potentials $(H_2: 1.01 \text{ V}, \text{CO}: 0.93 \text{ V})$ than those of $\text{Sn} \otimes \text{SnO}_x$ $(H_2: 0.27 \text{ V}, \text{CO}:$ 0.65 V), indicating that $Sn_{0.80}Bi_{0.20}$ @ Bi-SnO_x has lower activities toward both H₂ and CO production. In the formation of desirable formate, the potential limiting step on the Sn@SnO_x is transferring OCHO* to HCOOH, whereas it is turning CO2 to OCHO* on the $Sn_{0.80}Bi_{0.20}$ @ Bi-SnO_x. $Sn_{0.80}Bi_{0.20}$ @ Bi-SnO_x shows an obvious lower theoretical overpotential of 0.48 V for formate formation than that of $Sn@SnO_x$ (1.09 V), suggesting that Sn_{0.80}Bi_{0.20} @ Bi-SnO_x exhibits higher selectivity

Figure 4. a–c) Free energy diagrams for H_2 , CO, and HCOOH on Sn@SnO_x and Sn_{0.80}Bi_{0.20}@Bi-SnO_x. d) Magnitudes of the theoretical limiting potentials of H_2 , CO, and HCOOH production on stepped Sn@SnO_x and Sn_{0.80}Bi_{0.20}@Bi-SnO_x.

for generating HCOOH. Hence, we conclude that the incorporation of Bi into Sn@SnO_x to form Sn_{0.80}Bi_{0.20}@Bi-SnO_x not only increases the limiting potentials of H₂ and CO, but also decreases that of HCOOH, and thus significantly enhances formate selectivity. Based on these FED results, it should also be noted that the production of HCOOH on Sn_{0.80}Bi_{0.20} @ Bi-SnO_r is most preferential than the production of H₂ and CO at potentials from 0.48 to 0.93 V, which agrees well with the experimental results. Additionally, DFT calculations were also conducted for the pure Bi, which shows higher limiting potentials of 2.17 V for CO and 1.41 V for HCOOH compared to 1.31 V for H₂ (Figure S38, Supporting Information). These results indicate that pure Bi has the highest activity toward H₂ production, which is consistent with the experiments (Figure S24, Supporting Information). On the other hand, as revealed by the projected density of states (PDOS) at the Bi-Sn interface in a previous report,^[9] the higher electronegativity of Bi could allow electrons flow easily from Sn to Bi, which would upshift the electron states of Sn away from the Fermi level, thus decreasing the energy barrier and facilitating charge-transfer from the electrode to the adsorbed CO₂.^[8] These results are supported by the Tauc plots and Nyquist plots obtained from our experimental data.

In this work, novel $\text{Sn}_{1-x}\text{Bi}_x$ alloy NPs with native Bi-doped amorphous SnO_x nanoshells are synthesized for the first time. Based on combined experimental results and DFT analyses, the excellent CO₂ reduction performances of the Bi-SnO_x nanoshells derived from $\text{Sn}_{0.80}\text{Bi}_{0.20}$ alloy NPs are attributed to the incorporation of Bi into the Sn species, which could suppress hydrogen evolution and CO production and therefore facilitate formate generation. This work opens up an effective strategy for boosting catalytic reactions by creating atomdoped amorphous oxide surfaces derived from novel bimetallic alloys.

Experimental Section

Experimental details are provided in the Supporting Information.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

Q.Y., Q.W., and Y.L. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant 51772142), the Science and Technology Cooperation Fund between Chinese and Australian Governments (Grant 2017YFE0132300), the Guangdong Science and Technology Department (Grant 2016ZT06C279), the Shenzhen Science and Technology Innovation Committee (Grants JCY)20170412152528921 and KQTD2016053019134356), the Guangxi Science and Technology Project (AA17204083 and AB16380030), the link project of the National Natural Science Foundation of China and Fujian Province (U1705252), and the SUSTech Presidential Fund.

Conflict of Interest

The authors declare no conflict of interest.

SCIENCE NEWS _____ www.advancedsciencenews.com

IDVANCED

Keywords

 $\rm CO_2$ electroreduction, core–shell nanostructures, formate, novel $\rm Sn_{1-x}Bi_x$ alloys

Received: April 26, 2020 Revised: June 11, 2020 Published online:

- [1] a) C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Chem. Rev. 2020, 120, 1184; b) Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Nature 2019, 575, 639; c) Z. Liang, W. Guo, R. Zhao, T. Qiu, H. Tabassum, R. Zou, Nano Energy 2019, 64, 103917; d) C. Dai, L. Sun, J. Song, H. Liao, A. C. Fisher, Z. J. Xu, Small Methods 2019, 3, 1900362; e) H. Tabassum, A. Mahmood, B. Zhu, Z. Liang, R. Zhong, S. Guo, R. Zou, Energy Environ. Sci. 2019, 12, 2924; f) Z. Quan, Z. Luo, W. S. Loc, J. Zhang, Y. Wang, K. Yang, N. Porter, J. Lin, H. Wang, J. Fang, J. Am. Chem. Soc. 2011, 133, 17590; g) J. Song, C. Wei, Z. F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196; h) Q. Wei, S. Wu, Y. Sun, Adv. Mater. 2018, 30, 1802082; i) M. G. Kibria, J. P. Edwards, C. M. Gabardo, C.-T. Dinh, A. Seifitokaldani, D. Sinton, E. H. Sargent, Adv. Mater. 2019, 31, 1807166; j) J. Wu, Y. Huang, W. Ye, Y. Li, Adv. Sci. 2017, 4, 1700194.
- [2] a) S. Zhu, Q. Wang, X. Qin, M. Gu, R. Tao, B. P. Lee, L. Zhang, Y. Yao, T. Li, M. Shao, *Adv. Energy Mater.* 2018, *8*, 1802238;
 b) J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, *J. Am. Chem. Soc.* 2019, *141*, 2490.
- [3] a) C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465; b) Z. Zhang,
 F. Ahmad, W. Zhao, W. Yan, W. Zhang, H. Huang, C. Ma, J. Zeng,
 Nano Lett. 2019, 19, 4029.
- [4] a) Y. Wei, J. Liu, F. Cheng, J. Chen, J. Mater. Chem. A 2019, 7, 19651;
 b) S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W. Lou, Angew. Chem., Int. Ed. 2019, 58, 8499; c) Q. Zhang, Y. Zhang, J. Mao, J. Liu, Y. Zhou, D. Guay, J. Qiao, ChemSusChem 2019, 12, 1443; d) L. Peng, Y. Wang, I. Masood, B. Zhou, Y. Wang, J. Lin, J. Qiao, F. Zhang, Appl. Catal., B 2020, 264, 118447; e) X. Hou, Y. Cai, D. Zhang, L. Li, X. Zhang, Z. Zhu, L. Peng, Y. Liu, J. Qiao, J. Mater. Chem. A 2019, 7, 3197.
- [5] a) Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J. J. Zhu, S. Sun, J. Am. Chem. Soc. 2017, 139, 4290;
 b) N. S. Porter, H. Wu, Z. Quan, J. Fang, Acc. Chem. Res. 2013, 46, 1867; c) A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu, J. Zeng, Angew. Chem., Int. Ed. 2018, 57, 10954;
 d) Z. Geng, X. Kong, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang, J. Zeng, Angew. Chem., Int. Ed. 2018, 57, 6054; e) X. Wang, Q. Zhao, B. Yang, Z. Li, Z. Bo, K. H. Lam, N. M. Adli, L. Lei, Z. Wen, G. Wu,

Y. Hou, J. Mater. Chem. A 2019, 7, 25191; f) F. Pan, H. Zhang, Z. Liu, D. Cullen, K. Liu, K. More, G. Wu, G. Wang, Y. Li, J. Mater. Chem. A 2019, 7, 26231; g) X. Li, X. Li, C. Liu, H. Huang, P. Gao, F. Ahmad, L. Luo, Y. Ye, Z. Geng, G. Wang, R. Si, C. Ma, J. Yang, J. Zeng, Nano Lett. 2020, 20, 1403; h) S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu, L. Li, X. Wu, T. Wu, M. Li, Q. Yang, K. Deng, Z. Quan, Adv. Mater. 2019, 31, 1903683; i) P. Wang, M. Qiao, Q. Shao, Y. Pi, X. Zhu, Y. Li, X. Huang, Nat. Commun. 2018, 9, 4933.

- [6] W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, J. Am. Chem. Soc. 2017, 139, 1885.
- [7] a) H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li,
 Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1801536; b) N. Han, Y. Wang,
 H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, 9, 1320;
 c) X. Zhang, J. Fu, Y. Liu, X. Zhou, J. Qiao, ACS Sustainable Chem.
 Eng. 2020, 8, 4871; d) X. Zhang, X. Hou, Q. Zhang, Y. Cai, Y. Liu,
 J. Qiao, J. Catal. 2018, 365, 63.
- [8] J. Tang, R. Daiyan, M. B. Ghasemian, S. A. Idrus-Saidi, A. Zavabeti, T. Daeneke, J. Yang, P. Koshy, S. Cheong, R. D. Tilley, R. B. Kaner, R. Amal, K. Kalantar-Zadeh, *Nat. Commun.* **2019**, *10*, 4645.
- [9] G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Bai, L. Yang, Z. Chen, *Adv. Energy Mater.* 2018, *8*, 1802427.
- [10] T. Yuan, Z. Hu, Y. Zhao, J. Fang, J. Lv, Q. Zhang, Z. Zhuang, L. Gu, S. Hu, Nano Lett. 2020, 20, 2916.
- [11] a) X. Zhao, Q. Di, X. Wu, Y. Liu, Y. Yu, G. Wei, J. Zhang, Z. Quan, *Chem. Commun.* 2017, 53, 11001; b) Q. Yang, X. Zhao, X. Wu, M. Li, Q. Di, X. Fan, J. Zhu, X. Song, Q. Li, Z. Quan, *Chem. Mater.* 2019, 31, 2248; c) X. Zhao, Q. Di, M. Li, Q. Yang, Z. Zhang, X. Guo, X. Fan, K. Deng, W. Chen, J. Zhang, J. Fang, Z. Quan, *Chem. Mater.* 2019, 31, 4325; d) X. Zhao, Q. Yang, Z. Quan, *Chem. Commun.* 2019, 55, 8683; e) Y. Sun, X. Zuo, S. K. R. S. Sankaranarayanan, S. Peng, B. Narayanan, G. Kamath, *Science* 2017, 356, 303.
- [12] A. Khorsand Zak, W. H. Abd Majid, M. E. Abrishami, R. Yousefi, Solid State Sci. 2011, 13, 251.
- [13] Z. Zhang, M. Chi, G. M. Veith, P. Zhang, D. A. Lutterman, J. Rosenthal, S. H. Overbury, S. Dai, H. Zhu, ACS Catal. 2016, 6, 6255.
- [14] W. Ju, J. Zeng, K. Bejtka, H. Ma, D. Rentsch, M. Castellino, A. Sacco, C. F. Pirri, C. Battaglia, ACS Appl. Energy Mater. 2019, 2, 867.
- [15] E. A. Sutter, X. Tong, K. Jungjohann, P. W. Sutter, Proc. Natl. Acad. Sci. USA 2013, 110, 10519.
- [16] H. Okamoto, J. Phase Equilib. Diffus. 2010, 31, 205.
- [17] a) K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, *J. Chem. Phys.* **2014**, *140*, 084106;
 b) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865; c) X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.-G. Steinrück, K. Lim, Y. Li, M. F. Toney, K. Chan, Y. Cui, *Nat. Catal.* **2019**, *2*, 55.