Synthesis and β -Hydrogen Elimination of Water-Soluble Dialkylplatinum(II) Complexes in Water

Sanshiro Komiya,* Miho Ikuine, Nobuyuki Komine, and Masafumi Hirano

Department of Applied Chemistry, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588

(Received August 16, 2002)

Water-soluble *cis*-dialkylplatinum(II) complexes *cis*-[PtR₂L₂] (L₂ = 2 TPPTS, 2 THMP, DHMPE; R = Me, Et, Ph) have been prepared by ligand displacement reactions of [PtR₂(1,5-COD)] with L₂. They are stable in water; the diethyl-platinum(II) complexes *cis*-[PtEt₂(TPPTS)₂] undergo preferential disproportionation of the ethyl groups in water, giving ethylene and ethane in 1:1 ratio via β -hydrogen elimination in preference to protonolysis at 80 °C. A retardation effect of added free TPPTS on the reaction rate and a deuterium labelling study suggest a mechanism involving prior dissociation of TPPTS for reversible β -hydrogen elimination.

Many transition metal-mediated reactions and catalyses try to avoid moisture, because putative organometallic intermediates are believed to be easily hydrolyzed under the reaction conditions. Despite this consideration, organometallic reactions in water are becoming one of the promising areas of environmentally benign reaction systems,¹ since water is regarded as one of the most safe solvents and water/organic solvent biphasic catalysis can provide easy separation of hydrophobic organic products in industrial applications. In addition, many useful and well-established transition metal-mediated chemical transformations, which had been extensively developed in recent years, can be extended to the reactions of hydrophobic compounds in aqueous media. Thus, fundamental understanding of aqueous organometallic reactions has intrinsic importance in order to develop new transition metal-promoted chemical processes in water. To date, however, very limited watersoluble complexes having metal-carbon σ -bonds are known. Although methyliridium(I) complex trans-[IrMe(CO)(TPP- MS_{2} (TPPMS = diphenylphosphinobenzene-3-sulfonic acid sodium salt) is known as one of the water-soluble organometallic compounds (Chart 1), its Ir-C bond was immediately hydrolyzed in water to form the corresponding hydroxoiridium(I) complex.² Pringle and co-workers³ also reported *cis*-

[PtMe₂(THMP)₂] and *cis*- and *trans*-[PtMeX(THMP)₂] [THMP = tris(hydroxymethyl)phosphine] with insufficient characterization due to facile decomposition during the isolation processes. We now describe the synthesis and thermal stability of water-soluble diorganoplatinum(II) complexes *cis*-[PtR₂L₂] with TPPTS [TPPTS = 3,3',3"-phosphinidynetris-(benzenesulfonic acid) trisodium salt], THMP, or DHMPE {1,2-bis[di(hydroxymethyl)phosphino]ethane} ligands by ligand substitution reactions of *cis*-[PtR₂(1,5-COD)] (COD = cyclooctadiene). Among them, diethylplatinum(II) complexes undergo smooth and selective disproportionation of the ethyl groups via β -hydrogen elimination even in water. A part of the results has been published in a preliminary form.⁴

Experimental

All manipulations were carried out under an atmosphere of nitrogen or argon using standard Schlenk techniques. Water was purified by simple distillation, and other solvents were dried over and distilled from appropriate drying agents under N2 and were stored under nitrogen before use. [PtR₂(1,5-COD)] were prepared according to the literature methods.⁵ [Pt(CH₂CD₃)₂(1,5-COD)] (D content at the methyl group was estimated as 89%) was prepared by the reaction of [PtI₂(1,5-COD)] with (CD₃CH₂)MgBr. TPPTS was purchased from Aldrich and used as received. THMP and DHPME were prepared according to the literature methods.⁶ IR spectra were measured on a JASCO FT/IR-410 spectrometer. NMR spectra were obtained on a JEOL LA-300 (¹H 300.4 MHz) spectrometer. Chemical shifts were relative to DSS (¹H) and 85% H_3PO_4 (³¹P). Elemental analyses were performed with a Perkin-Elmer 2400 series II CHN analyzer. Gases were quantitatively analyzed by gas chromatography (Shimadzu GC-8A) using the internal standard method.

Synthesis of Water-Soluble *cis*-**Dialkylplatinum(II) Complexes.** A typical procedure for [PtMe₂(TPPTS)₂] (**1a**) is given. To an ethanol solution (2 mL) of [PtMe₂(1,5-COD)] (22.8 mg, 0.0685 mmol) was added TPPTS (74.0 mg, 0.130 mmol) in water (1 mL). Stirring at room temperature for several minutes gave a colorless solution. Addition of acetone to the concentrated solu-

Water-Soluble Dialkylplatinum(II) Complexes

tion of the reaction mixture gave white powder, which was washed with hexane and dried under vacuum. Recrystallization from water with acetone gave white powder of **1a**·4H₂O (80.1 mg, 80%). Anal. Found: C, 31.89; H, 2.92%. Calcd for $C_{38}H_{38}Na_6O_{22}P_2PtS_6$: C, 31.83; H, 2.62%. 1,5-COD liberated (95%). IR (KBr): 3331 (vOH), 1194 ($v_{as}S=O$), 1039 cm⁻¹ ($v_sS=O$). ¹H NMR (D₂O) δ 0.42 (m, ²J_{H-Pt} = 69 Hz, 6H, Pt-CH₃), 7.39 (t, ³J_{H-H} = 8 Hz, 6H, 5-CH of aryl), 7.53 (t, ³J_{H-H} = ³J_{H-P} = 8 Hz, 6H, 6-CH of aryl), 7.76 (d, ³J_{H-H} = 8 Hz, 6H, 4-CH of aryl), 7.79 (d, ³J_{H-P} = 8 Hz, 6H, 2-CH of aryl). ³¹P{¹H} NMR (D₂O) δ 29.3 (s, ¹J_{P-Pt} = 1855 Hz). Mp 186–190 °C (dec.).

[PtEt₂(TPPTS)₂] (**1b**)·4H₂O: Colorless powder from water/acetone. Yield 95.3 mg (72%). Anal. Found: C, 32.82; H, 3.19%. Calcd for C₄₀H₄₂Na₆O₂₂P₂PtS₆: C, 32.86; H, 2.90%. 1,5-COD liberated (101%). IR (KBr): 3442 (*v*OH), 1191 (*v*_{as}S=O), 1038 cm⁻¹ (*v*_sS=O). ¹H NMR (D₂O): δ 0.77 (m, ³J_{H-Pt} = 74 Hz, 6H, Pt-CH₂CH₃), 1.13 (m, ²J_{H-Pt} = 70 Hz, 4H, Pt-CH₂CH₃), 7.39 (t, ³J_{H-H} = 8 Hz, 6H, 5-CH of aryl), 7.52 (t, ³J_{H-H} = ³J_{H-P} = 8 Hz, 6H, 6-CH of aryl), 7.71 (d, ³J_{H-H} = 8 Hz, 6H, 4-CH of aryl), 7.85 (d, ³J_{H-Pt} = 8 Hz, 6H, 2-CH of aryl). ³¹P{¹H} NMR (D₂O) δ 29.0 (s, ¹J_{P-Pt} = 1677 Hz). Mp 158–164 °C (dec.).

[PtMe₂(THMP)₂] (**2a**): The compound was not isolated in a pure form and the yield was estimated by NMR in DMSO- d_6 as 82%. 1,5-COD liberated (93%). ¹H NMR (DMSO- $d_6/D_2O = 1/5$ (v/v)): δ 0.49 (brs, ² $J_{\text{H-Pt}} = 66$ Hz, 6H, Pt-CH₃), 4.29 (br, 12H, PCH₂OH). ³¹P{¹H} NMR (DMSO- $d_6/D_2O = 1/5$ (v/v)) δ 13.2 (s, ¹ $J_{\text{P-Pt}} = 1700$ Hz).

[PtEt₂(THMP)₂] (**2b**): The compound was not isolated in a pure form and the yield estimated by NMR in DMSO- d_6 was 86% . 1,5-COD liberated (96%). ¹H NMR (DMSO- $d_6/D_2O = 1/5$ (v/v)): δ 1.14 (m, 6H, Pt-CH₂CH₃), 1.2 (q, ³ $J_{H-H} = 8$ Hz, ² $J_{H-Pt} = 129$ Hz, 4H, Pt-CH₂CH₃), 4.33 (brs, 12H, PCH₂OH). ³¹P{¹H} NMR (DMSO- $d_6/D_2O = 1/5$ (v/v)) δ 8.9 (s, ¹ $J_{P-Pt} = 1470$ Hz).

[PtPh₂(THMP)₂] (**2c**): Colorless powder from ethanol/hexane. Yield 78.7 mg (58%). Anal. Found: C, 36.46; H, 4.50%. Calcd for C₁₈H₂₈O₆P₂Pt: C, 36.19; H, 4.72%. 1,5-COD liberated (92%). ¹H NMR (D₂O) δ 4.06 (s, ²*J*_{H-Pt} = 11 Hz, 12H, PCH₂OH), 6.79 (t, ³*J*_{H-H} = 7 Hz, 2H, *p*-Ph), 7.01 (t, ³*J*_{H-H} = 7 Hz, 4H, *m*-Ph), 7.41 (d, ³*J*_{H-H} = 7 Hz, ³*J*_{H-Pt} = 57 Hz, 4H, *o*-Ph). ³¹P{¹H} NMR (D₂O) δ 4.5 (s, ¹*J*_{P-Pt} = 1660 Hz).

[PtMe₂(DHMPE)] (**3a**): Colorless powder from ethanol/hexane. Yield 39.9 mg (63%). Anal. Found: C, 21.05; H, 4.66%. Calcd for C₈H₂₂O₄P₂Pt: C, 21.87; H, 5.05%. 1,5-COD liberated (100%). ¹H NMR (D₂O) δ 0.50 (t, ³J_{H-P} = 7 Hz, ²J_{H-Pt} = 69 Hz, 6H, Pt-Me), 1.96 (m, 4H, PC₂H₄), 4.14 (dd, ²J_{H-H} = 14 Hz, ²J_{H-P} = 2.1 Hz, 4H, PCH₂OH), 4.25 (d, ²J_{H-H} = 14 Hz, ³J_{H-Pt} = 12 Hz, 4H, PCH₂OH). ³¹P{¹H} NMR (D₂O) δ 49.3 (s, ¹J_{P-Pt} = 1640 Hz).

[PtEt₂(DHMPE)] (**3b**): The compound was not isolated in a pure form and the yield estimated by NMR in DMSO- d_6 was 91%. 1,5-COD liberated (94%). ¹H NMR (DMSO- $d_6/D_2O = 1/5$ (v/v)) $\delta 1.25$ (q, ${}^{3}J_{\text{H-H}} = 8$ Hz, ${}^{2}J_{\text{H-Pt}} = 71$ Hz, 4H, Pt-CH₂CH₃), 1.26 (m, 6H, Pt-CH₂CH₃), 1.88 (m, 4H, PC₂H₄), 4.09 (dd, ${}^{2}J_{\text{H-H}} = 14$ Hz, ${}^{2}J_{\text{H-P}} = 3$ Hz, 4H, PCH₂OH), 4.22 (d, ${}^{2}J_{\text{H-H}} = 14$ Hz, ${}^{2}J_{\text{H-Pt}} = 11$ Hz, 4H, PCH₂OH). ${}^{31}P{}^{1}H{}$ NMR (DMSO- $d_6/D_2O = 1/5$ (v/v)) δ 48.3 (s, ${}^{1}J_{\text{P-Pt}} = 1460$ Hz).

[PtPh₂(DHMPE)] (**3c**): Colorless powder from ethanol/hexane. Yield 54.2 mg (64%). Anal. Found: C, 38.38; H, 4.81%. Calcd for C₁₈H₂₆O₄P₂Pt: C, 38.37; H, 4.65%. ¹H NMR (D₂O) δ 2.10 (m, 4H, PC₂H₄), 4.11 (m, 8H, PCH₂OH), 6.85 (t, ³J_{H-H} = 7 Hz, 2H, *p*-Ph), 7.08 (t, ³J_{H-H} = 7 Hz, 4H, *m*-Ph), 7.46 (t, ³J_{H-H} = ⁴J_{H-P} = 7 Hz, ³J_{H-Pt} = 52 Hz, 4H, *o*-Ph). ³¹P{¹H} NMR (D₂O) δ

43.9 (s, ${}^{1}J_{P-Pt} = 1600$ Hz).

Thermolysis of Water-Soluble *cis*-Dialkylplatinum(II) Complexes. Thermolysis reactions were carried out in glass bottles (10 mL) under reduced pressure. Typically, **2b** (21.0 mg, 0.0144 mmol) was placed in a glass bottle with a serum cap and the system was evacuated. Water (2.0 mL) was then added through the serum cap by using a hypodermic syringe. Methane (1.19 mL) was added by using a calibrated hypodermic syringe as an internal standard. The solution was heated to 80 °C and the aliquots (20 μ L) of the gas phase were periodically taken with a gas-tight microsyringe for quantitative GC analysis (Porapak Q column).

Protonolysis of Water-Soluble cis-Dialkylplatinum(II) Complexes. Protonolysis of 1a is given as a typical example. 1a (14.3 mg, 0.0194 mmol) was placed in a glass bottle (10 mL) with a serum cap and the system was degassed. A large excess of 12 M hydrochloric acid was added by using a hypodermic syringe, liberating only methane. Ethane (1.19 mL) was added as an internal standard and methane (184%/Pt) was detected by GC method. For 1b (17.1 mg, 0.0123 mmol), the yield of ethane liberated was 166%/Pt. For **3a** (10.8 mg, 0.0246 mmol), the yield of methane liberated was 201%/Pt. Protonolysis of other cis-dialkylplatinum(II) complexes with THMP or DHMPE ligands (2a-b, 3b) were performed by using in-situ prepared samples in DMSO. A typical procedure for 2a is given. The DMSO solution (200 µL) of 2a was prepared in situ from [PtMe₂(1,5-COD)] (5.0 mg, 0.015 mmol) and THMP (3.9 mg, 0.032 mmol) in a glass bottle (10 mL) with a serum cap and the system was degassed. Dry ether solution of hydrogen chloride (0.38 M, 1 mL) was added by using a hypodermic syringe at room temperature. Ethane (0.113 mL) was added as an internal standard. Methane (203%/Pt) was detected by GC. For 2b and 3b, 208%/Pt and 154%/Pt of ethane were detected.

Deuterium Labeling Study. [Pt(CH₂CD₃)₂(TPPTS)₂] was prepared by the reaction of [Pt(CH₂CD₃)₂(1,5-COD)] (24.1 mg, 0.0668 mmol) with two equivalents of TPPTS (72.0 mg, 0.127 mmol). Yield 90.3 mg (88%). The deuterium NMR spectrum indicates no incorporation of D in the methylene group and the D content in the methyl group was estimated as 89% by ¹H NMR. [Pt(CH₂CD₃)₂(TPPTS)₂] (69.1 mg, 0.0471 mmol) in water (2.0 mL) was heated to 80 °C for 2 h. The evolved gases were collected by using a Toepler pump through the cold trap (-40 °C) and the IR spectrum of the gas was measured using a gas-cell with KRS-5 windows. The following bands (cm⁻¹) were observed: 1387 (CH2=CD2), 1339 (cis-CHD=CHD), 1301 (trans-CHD-=CHD), 987 (trans-CHD=CHD), 943 (CH2=CD2), 918 (CHD=CD₂), 842 (cis-CHD=CHD), 764 (CHD=CD₂), 751 (CH2=CD2), 725 (CHD=CD2, trans-CHD=CHD). No characteristic bands for C_2H_4 , C_2H_3D , and C_2D_4 were observed.⁷

Results and Discussion

Synthesis of Water-Soluble Diorganoplatinum(II) Complexes. When (1,5-cyclooctadiene)dimethylplatinum(II), [PtMe₂(1,5-COD)] was treated with two equivalents of TPPTS in ethanol/H₂O (ca. 2:1) at room temperature, immediate ligand displacement took place to give *cis*-dimethylbis-(TPPTS)platinum(II), *cis*-[PtMe₂(TPPTS)₂] (**1a**) in 80% yield with liberation of 1,5-COD (95%) (Scheme 1). Addition of excess acetone to the concentrated aqueous solution gave analytically pure colorless powder of **1a**. The diethylplatinum(II) analog **1b** was also prepared in a similar manner in 72% yield.

R = Me (3a), Et (3b), Ph (3c)

Scheme 1.

They are soluble in water and thermally stable at room temperature, but started to darken above 150 °C without melting in the solid state.

³¹P{¹H} NMR spectrum of **1a** in D₂O shows a singlet at δ 29.3 with ¹⁹⁵Pt satellites. The ${}^{1}J_{Pt-P}$ value of 1855 Hz is relatively small, suggesting that two phosphorus nuclei are placed trans to the methyl ligands with strong trans influence, as would be consistent with the square planar cis configuration of **1a.**⁸ The ¹H NMR displays a characteristic second order A₃XX'A'₃ multiplet centered at δ 0.42 due to the Pt-Me groups of cis-[PtMe₂(PR₃)₂] with ¹⁹⁵Pt satellites (${}^{2}J_{\text{H-Pt}} = 69 \text{ Hz}$).⁹ **1b** also shows two multiplets having 195 Pt satellites centered at δ 0.77 (${}^{3}J_{\text{H-Pt}} = 74 \text{ Hz}$) and 1.13 (${}^{2}J_{\text{H-Pt}} = 70 \text{ Hz}$) assignable to methyl and methylene protons of the Et groups. The ${}^{31}P{}^{1}H{}$ NMR spectrum of **1b** in D₂O shows a singlet at δ 29.0 with ¹⁹⁵Pt satellites (${}^{1}J_{P-Pt} = 1677 \text{ Hz}$). Addition of free TPPTS to a D₂O solution of **1b** did not cause any apparent line broadening or chemical shift change of the signals of the coordinated and uncoordinated TPPTS in the ³¹P{¹H} NMR, implying that fast phosphine ligand exchange process does not take place on the NMR time scale.

Dimethyl-, diethyl-, and diphenylplatinum(II) derivatives with THMP or DHMPE ligands were similarly prepared $[PtR_2L_2: L = THMP, R = Me (2a), Et (2b), Ph (2c); L_2 =$ DHMPE, R = Me (3a), Et (3b), Ph (3c)]. The ¹H NMR of dimethylplatinum(II) complexes 2a and 3a displays a triplet at δ 0.49 and 0.50 with ¹⁹⁵Pt satellites assignable to the Pt-Me. For **3a** a characteristic second-order multiplet at δ 1.96 $(AX_2X'_2A')$ assignable to the bridging methylene protons of the DHMPE ligand was observed. Consistently, diastereotopic methylene protons of CH2OH groups in the coordinated DHMPE ligand in **3a** appear as an AB quartet at δ 4.14 and 4.25: the latter involves Pt satellites, suggesting chelation of the DHMPE ligand. Diphenyl derivatives 2c and 3c with THMP or DHMPE ligands were also isolated and show the ortho-H protons of the phenyl groups with ¹⁹⁵Pt satellites. Diethylplatinum(II) analogues cis-[PtEt₂L₂] with these ligands $(L_2 = 2 \text{ THMP } (\mathbf{2b}), \text{ DHMPE } (\mathbf{3b}))$ were difficult to be isolated in a pure form, but the formation was unambiguously determined by the ¹H and ³¹P{¹H} NMR. Signals due to methylene and methyl protons of the ethyl groups in **2b** and **3b** are very close to each other giving a complicated multiplet at δ 1.1–1.2 with distinct ¹⁹⁵Pt satellites of only the methylene quartet signal. The phosphorus ligands in **2a–c** are also considered to occupy positions *trans* to the ethyl ligand, similar to other dialkylplatinum(II) complexes, because the *J*_{P-Pt} values are relatively small (1700 Hz for **2a**, 1470 Hz for **2b**, 1660 Hz for **2c**).

While dimethylplatinum(II) complex 1a is also stable in water for more than two weeks at 50 °C, diethylplatinum(II) complex 1b slowly decomposed under similar conditions to give a mixture of ethylene and ethane in a day at room temperature. However, when 1a or 1b was treated with concentrated hydrochloric acid, immediate protonolysis took place to evolve methane (184%/1a) or ethane (166%/1b). Protonolysis of 1a with weaker acids such as acetic acid and formic acid proceeded much more slowly in water and dimethyl malonate did not react with 1a at all at room temperature. On the other hand, dimethylplatinum(II) complexes 2a or 3a having THMP or DHMPE ligand are relatively unstable in water at room temperature in comparison with 1a, slowly liberating methane. The fact suggests additional protonolysis pathways probably enhanced by THMP and DHMPE ligands, though the detailed mechanism is not clear at present. Protonolyses of 2a and 3a with strong acid such as HCl also immediately liberated quantitative amounts of methane (203%/2a, 160%/3a). Diphenylplatinum(II) complexes 2c and 3c are very stable even in water at room temperature and the aqueous solution stood without decomposition for a few days at room temperature. They are thermally more stable than dimethyl- or diethylplatinum(II) complexes in water. While 2a completely decomposed at 50 °C in 7 h, 2c slowly decomposed during seven days to give benzene (163%) under the same conditions.

Thermolysis of *cis*-Diethylplatinum(II) Complexes in Water. Of particular interest is the thermolysis of *cis*-diethylplatinum(II) complex **1b**, since it may undergo competing β -hydrogen elimination reaction and/or hydrolysis. Heating of

1b in water at 80 °C liberated ethylene and ethane in an approximately 1:1 ratio in 2 h, indicating that disproportionation of the ethyl groups preferentially took place over protonolysis even in water [Eq. 1]. Thermolyses of other diethylplatinum(II) complexes **2b** and **3b** in D₂O at 80 °C for 30 min also liberated a mixture of ethylene and ethane, however, the ratios of ethylene to ethane were approximately 0.35 and 0.5 for **2b** and **3b**, respectively, indicating that concomitant protonolysis of the ethyl groups was also taking place simultaneously in addition to disproportionation of the ethyl groups. This protonolysis may also be enhanced by the hydroxy group in THMP or DHMPE ligands.

$$\mathbf{1b} \xrightarrow{\mathbf{80} \,^{\circ}\mathbf{C}}_{\mathbf{H}_{2}\mathbf{O}} \xrightarrow{\mathbf{CH}_{2}=\mathbf{CH}_{2}}_{\mathbf{94\%}} + \begin{array}{c} \mathbf{CH}_{3}\mathbf{CH}_{3} \\ \mathbf{90\%} \end{array}$$
(1)

On the other hand, the ratio of ethylene to ethane was approximately constant during the thermolysis of 1b, indicating occurrence of clean disproportionation of the ethyl groups. Figure 1 shows the time-yield curves of ethylene and ethane for the thermolysis of 1b in H₂O. Platinum(0) product may be formed, as previously reported in the thermolysis of dialkylplatinum(II) complexes in aprotic solvents.¹⁰ Such a clean disproportionation of the ethyl groups also excludes the possible free radical mechanism, since the ethyl radical is known to favor coupling rather than disproportionation.¹¹ Thus the concerted β -hydrogen elimination giving a ethyl(ethylene)hydridoplatinum(II) intermediate, followed by reductive elimination of ethane at Pt, would be the most plausible mechanism. In order to get more mechanistic insight of the β -hydrogen elimination process, the effect of added TPPTS on the time-course of thermolysis was examined (Fig. 1).

The thermolysis reactions were found to obey first-order kinetics with rate constant k_{obsd} .

Fig. 1. Time-courses of thermolysis of **1b** at 80 °C in water. Ethylene (\bigcirc) and ethane ($\textcircled{\bullet}$) evolved in the absence of TPPTS ([**1b**] = 7.2 mmol/L); ethylene (\square) and ethane (\blacksquare) evolved in the presence of TPPTS ([**1b**] = 7.0 mmol/L, [TPPTS] = 34.8 mmol/L).

$$-\frac{\mathrm{d}}{\mathrm{d}t}[\mathrm{PtEt}_2(\mathrm{TPPTS})_2] = k_{\mathrm{obsd}}[\mathrm{PtEt}_2(\mathrm{TPPTS})_2] \qquad (2)$$

Estimated rates constants $k_{\rm obsd}$ are 5.6 imes 10⁻⁴ s⁻¹ and 2.7 imes 10^{-5} s⁻¹ in the absence and presence of free TPPTS ([TPPTS] = 34.8 mmol/L), respectively. Addition of five equivalents of free TPPTS suppressed the reaction rate to ca. 1/20. Such retardation effect is considered to arise from the competitive coordination of TPPTS to 1b to block the fifth coordination site at Pt for β -hydrogen elimination¹² and/or from preventing the prerequisite formation of 3-coordinate intermediate which would be formed by dissociation of one TPPTS ligand.¹³ However, neither 3-coordinate species [PtEt2(TPPTS)] nor 5coordinate species [PtEt2(TPPTS)3] was detected by NMR in the presence or absence of added TPPTS, indicating that the complex 1b always keeps its square planar 4-coordinate structure during the thermolysis. If the competitive association of TPPTS to 4-coordinate species is responsible for the retardation effect, a considerable amount of 5-coordinate species should be detected in the presence of TPPTS, and therefore the former associative mechanism is excluded. Thus, a reaction mechanism via rate limiting dissociation of TPPTS giving an unstable three coordinate T-shape intermediate is proposed, as previously described by Whitesides^{10a,b} and us^{10c} as shown in Scheme 2.

The reversibility of the β -hydrogen elimination was also examined by the deuterium labeling experiment. $1b-d_6$, cis-[Pt(CH₂CD₃)₂(TPPTS)₂] was prepared and decomposed in water at 80 °C. The ethylene liberated in the thermolysis was analyzed by studying the IR spectrum of the gas and was found to consist of only CH2=CD2, cis- and trans-CHD=CHD, and CD₂=CHD, while no absorptions due to C₂H₄, CH₂=CHD, and C₂D₄ were detected. Deuterium scrambling in evolved ethylene and absence of ethylene- d_0 , d_1 , and d_4 clearly indicate that the facile H-D exchange was taking place within one ethyl ligand and the other ethyl group was not participate this H-D exchange process. The facile and reversible β -hydrogen elimination giving a ethyl(ethylene)hydridoplatinum(II) intermediate, followed by re-insertion into the Pt-H bond, is proposed as a mechanism as shown in Scheme 3. This process must take place after the prerequisite phosphine dissociation as well as before the reductive elimination of ethane. Such a dissociative

process is essentially the same as the mechanism established in the thermolysis of $[PtR_2(PPh_3)_2]$ in non-aqueous organic solvents.¹⁰ It is interesting to note that the thermolysis of **1b** in water in the absence of excess phosphine proceeds slightly faster than that of triphenylphsophine analog $[PtEt_2(PPh_3)_2]$ in CH₂Ph₂. The effect of added phosphine ligand is less pronounced in water. This suggests that the phosphine dissociation of **1b** for β -hydrogen elimination in water is slower than that of $[PtEt_2(PPh_3)_2]$ in CH₂CPh₂, probably due to the weaker electron-donating ability of TPPTS than PPh₃, and/or that the rate of β -hydrogen elimination followed by elimination of ethylene and ethane and the rate of association of TPPTS to the 3coordinate intermediate are in the same order.¹³

The present results display the intrinsic thermal stability of the Pt–C bond in water and the occurrence of a typical organometallic reaction such as β -hydrogen elimination in preference to hydrolysis even in water, suggesting that transition metalmediated organic transformations and catalyses via organometallic intermediates, which are frequently performed in aprotic solvents, can be extended to the reactions in aqueous medium.

This work was supported by New Energy and Industrial Technology Development Organization (NEDO) and Japan Chemical Innovation Institute (JCII) through the R&D program for the Next-Generation Chemical Process Technologies.

References

1 a) "Aqueous-Phase Organometallic Catalysis, Concepts and Applications," ed by B. Cornils and W. A. Herrmann, Wiley-VCH, Weinheim (1998) and references cited therein. b) "Applied Homogeneous Catalysis with Organometallic Compounds," ed by B. Cornils and W. A. Herrmann, VCH, Weinheim (1996), Vols. 1 and 2. c) J. P. Arhancet, M. E. Davis, J. Merola, and E. Hanson, J. Catal., 121, 327 (1990). d) T. Bartik, B. B. Bunn, B. Bartik, and E. Hanson, Inorg. Chem., 33, 164 (1994). e) A. Fukuoka, W. Kosugi, F. Morishita, M. Hirano, L. McCaffrey, W. Henderson, and S. Komiya, Chem. Commun., 1999, 489. f) G. A. Papadogianaki and R. Sheldon, New J. Chem., 20, 175 (1996). g) B. Cornils and E. Wiebus, Chemtech, 1995, 33. h) F. Gassner and W. Leitner, J. Chem. Soc., Chem. Commun., 1993, 1465. i) J. Kovacs, T. D. Todd, J. H. Reibenspies, F. Joo, and D. J. Darensbourg, Organometallics, 19, 3963 (2000). j) C. S. Chin, W.-T. Chang, S. Yang, and K.-S. Joo, Bull. Korean Chem. Soc., 18, 324 (1997). k) J. Cermak, M. Kvicalova, and V. Blechta, Collect. Czech. Chem. Commun., 62, 355 (1997). 1) P. T. Hoye, P. G. Pringle, M. B. Smith, and K. Worboys, J. Chem. Soc., Dalton Trans., 1993, 269.

2 D. P. Aterniti and J. D. Atwood, *Chem. Commun.*, **1997**, 1665.

3 J. E. Ellis, K. N. Harrison, P. T. Hoye, A. G. Orpen, P. G. Pringle, and M. B. Smith, *Inorg. Chem.*, **31**, 3026 (1992).

4 S. Komiya, M. Ikuine, N. Komine, and M. Hirano, *Chem. Lett.*, **2002**, 72.

5 H. C. Clark and L. E. Manzer, J. Organomet. Chem., 59, 411 (1973).

6 a) K. A. Petrov, V. A. Parshima, and M. B. Luzanova, *Zh. Obshch. Khim.*, **32**, 553 (1962). b) G. F. Nickerz, T. J. R. Wearkly, W. K. Miller, B. E. Miller, D. K. Lyon, and D. R. Tyler, *Inorg. Chem.*, **35**, 1721 (1996).

7 B. L. Crawford, Jr., J. E. Lancaster, and R. G. Inskeep, *J. Chem. Phys.*, **21**, 678 (1953).

8 A. Yamamoto, "Organotransition Metal Chemistry, Fundamental Concepts and Applications," Wiley Interscience, New York (1986), p. 180.

9 R. J. Goodfellow, M. J. Hardy, and B. F. Taylor, *J. Chem. Soc. Dalton Trans.*, **1973**, 2450.

10 a) G. M. Whitesides, *Pure Appl. Chem.*, **53**, 287 (1981). b) T. J. McCarthy, R. G. Nuzzo, and G. M. Whitesides, *J. Am. Chem. Soc.*, **103**, 1676, 3396, 3404 (1981). c) S. Komiya, Y. Morimoto, A. Yamamoto, and T. Yamamoto, *Organometallics*, **1**, 1528 (1982).

11 Disproportionation-combination rate constant ratio is 0.14 for Et radical and the value is relatively invariable in various solvents: "Free Radicals," ed by J. K. Kochi, Wiley-Interscience Publication, New York (1973), Vol 1, p. 11.

12 If the competitive coordination of TPPTS to **1b** to block the fifth coordination site at Pt for β -hydrogen elimination is responsible for the retardation effect, the following rate equation is derived by assuming pre-equilibrium of competitive coordination of TPPTS and β -hydrogen to Pt. In order to obtain the present retardation effect of added TPPTS, a significant amount of [PtR₂L₃] should be observed during the thermolysis. However, the complex **1b** always keeps its square planar 4-coordinate structure during the thermolysis and the equilibrium constants K_1 and K_2 [TPPTS] estimated by NMR were too small (at least smaller than 0.01) to show the effect, excluding the associative mechanism (Scheme 4 and Eq. 3).

+ TPPTS

$$[PtEt_{2}(TPPTS)_{3}] \xrightarrow{K_{2}} [PtEt_{2}(TPPTS)_{2}] \xrightarrow{K_{1}} [PtEt_{2}(TPPTS)_{2}]^{*}$$
- TPPTS

$$k \downarrow$$

$$Pt(0) + CH_{3}CH_{3} + CH_{2}=CH_{2}$$

Scheme 4.

$$-\frac{\mathrm{d}}{\mathrm{d}t}[\mathrm{PtEt}_{2}]_{\mathrm{total}} = \frac{kK_{1}}{1 + K_{1} + K_{2}[\mathrm{TPPTS}]}[\mathrm{PtEt}_{2}]_{\mathrm{total}}$$
(3)

13 The steady state approximation of the 3-coordinate inter-

mediate, from which a facile reversible β -hydrogen elimination takes place followed by reductive elimination of ethane and liberation of ethylene, gives the following rate equation which is consistent with the experimental data with approximate values of k_1 and k_{-1}/k_2 are $5.6 \times 10^{-4} \text{ s}^{-1}$ and $5.7 \times 10^2 \text{ L/mol}$. The observed weaker magnitude of the retardation effect of added TPPTS suggests the considerably smaller $1/k_2K$ value for **1b** than [PtEt₂-(PPh₃)₂]. This may be due to larger phosphine dissociation constant and/or facile succeeding processes of **1b**.

- TPPTS

$$[PtEt_{2}(TPPTS)_{2}] \xrightarrow{k_{1}} [PtEt_{2}(TPPTS)] \xrightarrow{k_{2}} Pt(0) + CH_{3}CH_{3} + CH_{2}=CH_{2}$$

$$+ TPPTS$$

Scheme 5.

$$-\frac{\mathrm{d}}{\mathrm{d}t}[\mathrm{PtEt}_2(\mathrm{TPPTS})_2] = \frac{k_1k_2}{k_2 + k_{-1}[\mathrm{TPPTS}]}[\mathrm{PtEt}_2(\mathrm{TPPTS})_2](4)$$