

Subscriber access provided by Weizmann Institute of Science

Reactions of 2-Methyltetrahydropyran on Silica Supported Nickel Phosphide, in Comparison with 2-Methyltetrahydrofuran

Phuong P. Bui, S. Ted Oyama, Atsushi Takagaki, Brad P. Carrow, and Kyoko Nozaki ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.6b01033 • Publication Date (Web): 01 Jun 2016 Downloaded from http://pubs.acs.org on June 7, 2016

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Catalysis is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
ОС 51	
51	
52	
53	
54	
50	
50	
57	
50	
60	
00	

Reactions of 2-Methyltetrahydropyran on Silica Supported Nickel Phosphide, in Comparison with 2-Methyltetrahydrofuran Phuong P. Bui^{1,2}, S. Ted Oyama^{1,2*}, Atsushi Takagaki¹, Brad P. Carrow^{3,4}, Kyoko Nozaki³ 1. The University of Tokyo, Department of Chemical Systems Engineering, 7-3-1 Hongo, Tokyo, 13-8656, Japan. 2. Virginia Tech, Department of Chemical Engineering, Blacksburg, VA, USA 3. The University of Tokyo, Department Department of Chemistry and Biotechnology, 7-3-1 Hongo, Tokyo, 13-8656, Japan.. 4. Princeton University, Department of Chemistry, Princeton, NJ, USA. Corresponding author email: oyama@vt.edu

Abstract

The reactions of 2-methyltetrahydropyran (2-MTHP, C₆H₁₂O) on Ni₂P/SiO₂ provide insights on the interactions between a cyclic ether, an abundant component of biomass feedstock, with a transition metal phosphide, an effective hydrotreating catalyst. At atmospheric pressure and a low contact time, conditions similar to those of a fast pyrolysis process, 70% of products formed from the reaction of 2-MTHP on Ni₂P/SiO₂ were deoxygenated products, 2-hexene and 2pentenes, indicating a good oxygen removal capacity. Deprotonation, hydrogenolysis, dehydration, and decarbonylation were the main reaction routes. The reaction sequence started with the adsorption of 2-MTHP, followed by ring-opening steps on either the methyl substituted side (Path I) or the unsubstituted side (Path II) to produce adsorbed alkoxide species. In Path I, a primary alkoxide was oxidized at the α -carbon to produce an aldehyde which subsequently underwent decarbonylation to 2-pentenes. The primary alkoxide could also be protonated to give a primary alcohol which could desorb or form the final product 2-hexene. In Path II, a secondary alkoxide was oxidized to produce a ketone or was protonated to a secondary alcohol that was dehydrated to give 2-hexene. The active sites for the adsorption of 2-MTHP and O-intermediates were likely to be Ni sites.

Keywords: Hydrodeoxygenation; 2-methyltetrahydropyran; nickel phosphide; contact time studies; reaction network.

ACS Catalysis

1. Introduction

Meeting the ever-growing demand for transportation fuels and chemical feedstocks is of significant worldwide importance. Among the various renewable energy types, like solar, wind, or wave, only bioresources satisfy both needs, and continuous efforts have been expended in developing biomass processing technology [1,2,3]. Data obtained from different sciences such as analytical chemistry [4,5], fundamental catalysis [6,7,8], and mathematical modelling [9,10,11] are used to improve the technology for biomass conversion. Our work contributes to understanding the interactions between a catalyst and a compound, 2-methyltetrahydropyran ($C_6H_{12}O$), whose structure is close to those of components in the biomass resources. Specifically, many compounds derived from cellulose and hemicellulose have six-membered rings with internal ether linkages like the pyran ring.

A central issue of biomass and bio-oil treatments is the removal of large amounts of multifunctional oxygenate compounds as they decrease heating value and cause chemical and physical instability in the final fuel products [12]. The complex composition requires thorough research on how each component reacts on a catalyst, thus mechanistic studies on model compounds of these constituents provide valuable insights to this end. This study describes the reactions of 2-methyltetrahydropyran (2-MTHP) on silica-supported nickel phosphide. The reactant has a six-member ether ring with a methyl group attached to one alpha-carbon. Analogous compounds with five-member ether rings such as furan and furan derivatives were investigated on various catalysts including conventional hydrotreating catalysts [13-19], noble metals [20-31], metals [32-34], and metal phosphides [35-39].

Metal phosphides are a promising class of materials that show excellent reactivity in hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation (HDO) [40-42]. The phosphides have physical properties similar to those of both ceramics such as high strength and hardness, and of metals such as good thermal and electrical conductivity. The catalysts provide active sites that facilitate hydrogenation, hydrogenolysis as well as nucleophilic substitution. Moreover, the relatively strong metal to phosphorus interaction enhances the phosphides' resistance to S- or N- compounds. It has been shown that Ru₂P/SiO₂ is nearly three times more active than Ru/SiO₂ and significantly more active than the traditional hydrotreating catalyst CoMo/Al₂O₃ in the HDO of furan [39]. The phosphide catalysts show preference towards hydrogenolysis products, i.e. C4 hydrocarbons while the metal catalysts favor decarbonylation products, i.e. C3 hydrocarbons. The HDO of 2-methyltetrahydrofuran on phosphide catalysts shows higher reactivity than Ru/C and Pd/Al₂O₃ [35,36,37,38]. The proposed reaction network involves the adsorption of 2-MTHF on a metallic site, followed by a rate-determining opening of the ether ring to produce the adsorbed intermediates 1-pentoxide or 2-pentoxide, depending on which side the ring is opened. Similar reactions occur with 2-methyltetrahydropyran on Ni₂P/SiO₂ (vide infra) but with distinctive differences, such as lower reactivity.

2. Experimental

2.1 Synthesis of 2-methyltetrahydropyran

Amounts (~250 mL) of 2-methyltetrahydropyran (2-MTHP) were synthesized in three steps. First, hydrogen chloride was added to the starting material, 3,4-dihydro-2H-pyran (DHP)

to produce 2-chlorotetrahydropyran (Cl-THP), second, the Grignard reagent was prepared, and third, the Grignard reagent was reacted with 2-chlorotetrahydropyran to produce 2methyltetrahydropyran as final product. Details are given in the Supplementary Information.

2.2 Materials and characterization

The Ni₂P catalyst was synthesized via temperature programmed reduction of a phosphate precursor. Details of the method were reported earlier [35, 43, 44]. Briefly, 2 mL of an aqueous solution containing 337 mg of nickel (II) nitrate (Ni(NO₃)₂.6H₂O – Alfa Aesar, 99.6%) and 306 mg of ammonium hydrogen phosphate ((NH₄)₂HPO₄ – Aldrich) was impregnated onto 1 g of silica (Cab-osil ® EH5). After drying at 120 °C for 4 h and calcining at 600 °C for 6 h, the mixture was cooled and then pressed and pelletized to 16/20 mesh size (0.8-1.2 mm in diameter) particles. The precursor particles were reduced to nickel phosphide in a H₂ stream (1 L min⁻¹ of H₂ per gram of precursor) as the temperature was increased from 25 °C to 615 °C at a rate of 3 °C min⁻¹. After reduction the sample was cooled to room temperature in a He stream and was passivated in a 0.5 % O₂/He stream for 2 h.

The surface area of the catalyst was estimated by N_2 physisorption using the Brunauer Emmett Teller (BET) method. The active phase of nickel phosphide was determined by X-ray diffraction and the surface sites were quantified by carbon monoxide (CO) chemisorption.

The amount of acid sites on the catalyst was probed by temperature programmed desorption of ammonia. First a sample of 100 mg of passivated Ni_2P/SiO_2 was activated in H₂ (100 cm³ min⁻¹) at 500 °C (3 °C min⁻¹ heating rate) for 2 h. After the sample was cooled in He (50 cm³ min⁻¹) to 120 °C and held at this temperature for 0.5 h, a 10% NH₃/He stream (50 cm³ min⁻¹)

was introduced for 0.5 h. The saturated sample was flushed with pure He (50 cm³ min⁻¹) for 0.5 h and then the temperature was increased from 120 °C to 700 °C at a heating rate of 10 °C min⁻¹. Masses 16 and 17 were monitored during the desorption by a mass spectrometer.

2.3 Reactivity studies

For the reactivity tests of 2-methyltetrahydropyran (2-MTHP), an amount of Ni₂P/SiO₂ equivalent to 12.6 µmol of active sites was mixed with 1.5 g of quartz chips of the same size and the mixture was packed in a tubular quartz reactor of 8 mm in diameter. The catalyst was reactivated in H₂ with the temperature raised from 25 °C to 500 °C (5 °C min⁻¹) and held at this level for 2 h, followed by cooling to 350 °C. A liquid pump was used to inject a solution of 96 mol% 2-MTHP and 4 mol% benzene as internal standard at a rate of 0.02 g min⁻¹ (3.5 μ mol s⁻¹ total) into a vaporizer kept at 300 °C where mixing with a hydrogen stream occurred. Benzene was easily distinguished in the gas chromatograms and it was verified that benzene was not hydrogenated at the reaction conditions. The feed concentration was held at 2.6 mol% of reactant in a H₂ flow (180 cm³ min⁻¹, 123 µmol s⁻¹). The catalyst was stabilized for 12 h after the introduction of 2-MTHP then temperature was varied in the following order: $350 \degree C \rightarrow 400 \degree C$ → 450 °C → 500 °C → 475 °C → 425 °C → 375 °C → 350 °C, with the temperature held for 3h at each temperature. The components in the exit stream were analyzed with a gas chromatograph equipped with a flame ionization detector and an HP-1 (0.25mm x 100m) column. In the experiments, the contact time was kept constant at 3.9 s. Contact time is defined as $\tau = \frac{L}{E_{AC}}$, in which τ is the contact time (s) based on active sites, F_{A0} is the molar flow rate of 2-MTHP (3.2 μ mol s⁻¹), L is the number of active sites (12.6 μ mol) approximated by the CO uptake (45 μ mol)

ACS Catalysis

g⁻¹ x 0.28 g). Note that the contact time based on catalyst bed volume $\tau_V = \frac{v}{v}$ has a value of 0.5 s, where V is the bed volume (1.5 cm³) and v is the volumetric flow rate (180 cm³ min⁻¹).

The contact time study for 2-MTHP reactions was carried out in the same manner, except at a fixed temperature of 450 °C and various contact times from 0.6 to 14.0 s. The contact time was adjusted by changing the flow rate of the feed while keeping the feed concentration constant.

For the reactivity tests of 2-methyltetrahydrofuran (2-MTHF) a catalyst amount equivalent to 30 µmol of active sites mixed with 1.5 g of quartz chips were packed into a quartz tubular reactor. The catalyst was pretreated in the same manner as with 2-MTHP. A stream of 3.3 mol% 2-MTHF in H₂ (200 cm³ min⁻¹) made by flowing H₂ through a bubbler carried 2-MTHF to the reactor. The bubbler had 95 volume% of 2-MTHF and 5 volume% of heptane as internal standard and was kept at 0 °C. The n-heptane was easily distinguished in the gas chromatograms and it was verified that it did not undergo cracking at the reaction conditions. The reaction was stabilized for 12h then temperature was varied as follows: $350 \text{ °C} \rightarrow 300 \text{ °C} \rightarrow$ $250 \text{ °C} \rightarrow 275 \text{ °C} \rightarrow 325 \text{ °C} \rightarrow 350 \text{ °C} \rightarrow 375 \text{ °C}$, with each temperature was held for 4 h. The contact time was kept at 6.8 s. The contact time of the 2-MTHP was lower at 3.9 s. It would have been better to have used the same contact time, but it's lower reactivity was unexpected, and there were supply limitations because of the need for a lengthy synthesis. In fact, we do not recommend studies of 2-MTHP because of this preparation limitation (it is not available commercially) and the complexity of the product mixture.

Mathematical modelling was carried out to evaluate the proposed reaction network. Assuming that the reactions were first-order, a set of ordinary differential equations (ODEs) describing the consumption rate of 2-MTHP (A) and the formation rates of products (P_i) was

established, following a general form of $\frac{d[A]}{dt}$ or $\frac{d[P_i]}{dt} = f(k_i, [A], [P_i])$ where k_i are the corresponding rate constants and [A] and [P_i] are the gaseous concentration of the reactant 2-MTHP and the products in the effluent stream. The surface reactions involving adsorbed reactant A* and surface species P_i^* were also modelled in a similar manner, $\frac{d[A^*]}{dt} or \frac{d[P_i^*]}{dt} =$ $g(k_i, [A], [P_i], [*], [A *], [P_i *])$ where [A*] and [P_i*] are the surface concentration of the adsorbates. The concentration of total active sites was set constant and equal to the sum of vacant sites [*] and occupied sites $[A^*]$ and $[P_i^*]$. Details of the modelling equations, initial conditions, and units are given in the supplementary information. A programming language, Python 2.7, was used to solve the ODEs simultaneously while adjusting the rate constants to minimize the difference between the experimental data and the simulated data. The objective function for the minimization was the sum of time-weighted residuals: $SS_{tres} = \sum_i t_i^{-0.5} (f_i - y_i)^2$ where t_i is the contact time value, f_i is the predicted data, and y_i is the experimental data. The function was defined so as to achieve better fitting at lower contact times. Two minimization methods were applied: 1. the sequential least square programming method, SLSQP, and 2. the limited-memory Broyden-Fletcher-Goldfarb-Shanno, L-BFGS-B, method.

The fit between the model and experimental data was reported using the coefficient of determination defined as $R^2 = \frac{SS_{reg}}{SS_{res}+SS_{reg}}$ where SS_{reg} is the regression sum of squares and SS_{res} is the residual sum of squares. The regression sum of squares expresses the variance of the model's predictions to the observed data: $SS_{reg} = \sum_i (f_i - \bar{y})^2$ where f_i is the predicted value and \bar{y} is the mean of the observed data. The residual sum of squares shows the difference between the predicted data and the experimental data: $SS_{res} = \sum_i (f_i - y_i)^2$ in which f_i is the predicted

value and y_i is the experimental data. The R^2 value has a range from 0 to 1. A good fit occurs when the SS_{res} value is minimized and so the R^2 value is maximized (~1).

Results and Discussion

3.1 Synthesis of 2-methyltetrahydropyran

For the synthesis of 2-methyltetrahydropyran the first step consisted of the addition of hydrogen chloride (HCl) to the starting material 3,4-dihydro-2H-pyran (DHP) under dry conditions to avoid water addition to the double bond. A yield of 90% of the 2-Cl-THP product was obtained, the ¹H NMR spectrum of which is shown in the Supplementary Information. The 2-Cl-THP product was converted to the 2-MTHP by use of a methyl Grignard reagent.

Figure 1. ¹H NMR spectra of 2-methyltetrahydropyran.

The proton NMR spectrum of the 2-MTHP (Figure 1) shows strong proton peaks of the methyl group at 1.1 ppm, followed by protons of the methylene groups of aliphatic carbons at 1.8~1.2 ppm, and finally the protons of the alpha carbons at 3.4 and 3.9 ppm. The spectrum confirms the successful synthesis of 2-MTHP.

3.2 Characterization and reactivity results

Figure 2. X-ray diffraction pattern of Ni₂P/SiO₂ before (top) and after (bottom) reactions.

The synthesized Ni₂P/SiO₂ had a BET surface area of 138 m² g⁻¹, a CO uptake of 45 μ mol g⁻¹ and a NH₃ uptake of 202 μ mol g⁻¹. The phosphide phase showed signature XRD peaks at 42, 44, 47, and 55 °, confirming its presence on the catalyst (Figure 2). After reaction, the crystal structure of Ni₂P/SiO₂ was retained, indicating stability throughout the reactions (Figure 2). From the Scherrer equation the crystallite size of the reduced, passivated catalyst was 10 nm and that of the used catalyst was 11 nm. In accordance with this, the surface areadecreased from 138 to 121 m² g⁻¹ and the CO uptake from 45 to 27 µmol g⁻¹, indicating some sintering and blockage of the support and some loss of active sites during the reactions. Previous studies on guaiacol deoxygenation showed the nickel phosphide catalyst was slightly oxidized to nickel phosphate over the silica support, one of the reasons leading to the loss of active sites [7].

At atmospheric pressure, the conversion of 2-MTHP increased with increasing temperature as expected (Figure 3). The six-membered cyclic oxygenate showed a low reactivity even though the reaction temperatures were in a moderate to high range. For example, the total conversion was less than 10 % at temperatures up to 400 °C and rose to the highest 41 % at the maximum tested temperature of 500 °C. Using the same catalyst system, 2-MTHF, a five-membered ring compound homologous with 2-MTHP, showed a much higher reactivity with a total conversion over 90 % at 325 °C.

Turnover frequency indicates the amount of reactant converted per surface metal atom active site as estimated by CO chemisorption and gives a useful estimate of the intrinsic reactivity of the catalyst. The turnover frequency is calculated as $TOF = \frac{F_{A0}X}{L \ 100}$, where F_{A0} is the molar flow rate of 2-MTHP (3.2 µmol s⁻¹), X is total conversion (%), and L is the number of active sites (12.6 µmol). The profiles of turnover frequency of 2-MTHP and 2-MTHF are shown in the bottom graph of Figure 3. The observed trend reflects the conversion profile, which showed a lower reactivity of 2-MTHP compared to 2-MTHF. It should be noted that the contact time for 2-MTHP (3.9 s) was shorter than for 2-MTHF (6.8 s), so 2-MTHP molecules had less time to approach and interact with the active sites. This difference in contact time could give at most a factor of two greater conversion of 2-MTHF and does not account for the reactivity difference (*vide infra*).

The Arrhenius plots are linear at low temperature, and the apparent activation energies were 133 kJ mol⁻¹ for 2-MTHP and 116 kJ mol⁻¹ for 2-MTHF. The slightly higher value for 2-MTHP can be attributed to the lower ring strain, and thus lower ground state energy, of 2-MTHP that possesses a six-membered ring compared to 2-MTHF [45]. This results in a relatively larger activation energy in the ring opening reaction of 2-MTHP compared to 2-MTHF. At high

ACS Catalysis

temperature the turnover frequencies of both molecules level off due to mass transfer limitations (Figure 3). To compare the reactivity at the same temperature, for example at 400 °C, the turnover frequency of 2-MTHF can be extrapolated and it is found to be about two orders of magnitude larger than that of 2-MTHP at this temperature. The difference can be attributed to the ring size and the ring-strain energy of the compounds. For instance, tetrahydropyran with a six-membered ring is reported to have a strain energy of 2.1 kJ mol⁻¹ while tetrahydrofuran with a five-membered ring has a strain energy of 24.7 kJ mol⁻¹ [45]. Thus, for 2-MTHP ring opening is not as favorable as for 2-MTHF, and higher temperatures are needed. The 2-MTHF is a less-hindered *O*-ligand, because the molecule's planar structure has the neighboring H-atoms pointing away from the oxygen atom, while the 2-MTHP in the chair conformation has two of the H-atoms pointing in the same direction as the oxygen atom. The geometry causes tetrahydrofuran to have a smaller dipole moment of 1.74 compared to tetrahydropyran which has a dipole moment of 1.87 [46]. The nonplanarity of the 2-MTHP may lead to weaker binding and easier desorption from catalytic sites.

Figure 3. Reactivity of 2-MTHP and 2-MTHF on Ni₂P/SiO₂ in H₂, 1 atm: a) conversion vs. temperature and b) turnover frequency vs. inverse temperature.

A Weisz-Prater analysis was carried out for all reactivity experiments to determine the influence of pore diffusion on the reaction rates. The detailed analysis is provided in the Supplementary Information (SI). In Figure 3a, the lower conversion data satisfied the Weisz-Prater criterion (C_{WP}), indicating that internal diffusion limitations were negligible, whereas, the higher conversion data for 2-MTHF showed values of C_{WP} of ~ 1.4, indicating mass transfer limitations [47,48]. The Arrhenius plots in Figure 3b duly showed a flatter region for the higher temperature, higher conversion points on the left side of each plot, characteristic of diffusion limitations. It should be noted that the contact time studies to be presented later were carried out in the kinetic regime.

ACS Catalysis

The reactions of 2-MTHP on Ni₂P/SiO₂ produced mostly unsaturated products (Figure 4). This result is understandable thermodynamically since dehydrogenation is generally favored at high temperatures and the reactions of 2-MTHP at 1 atm occurred only at high temperatures (Figure 3). The products included C1-C4 hydrocarbons (6 %), 2-pentenes (10 %), 2-hexene (49 %), 2-hexanone (19 %), and dehydrogenated pyran derivatives (11%). Some hex-4-enal and hex-4-en-1-ol (3%) were formed at temperatures lower than 450 °C but were not observed at higher temperatures. Analogous products were observed from the reactions of 2-MTHF such as the cracking product, *n*-butane, the deoxygenation product, *n*-pentane, and the ketone, 2-pentanone. All of these products had saturated hydrocarbon chains, and in fact, very few unsaturated products were produced with the reactant 2-MTHF in contrast to 2-MTHP. This is partly because reactions of 2-MTHF proceeded at much lower temperatures with conversion more than 60% at 300 °C, where hydrogenation reactions dominated.

As temperature was raised, 2-MTHP was converted to increasing amounts of C5 products like 2-pentenes and decreasing quantities of deoxygenated products like 2-hexenes, suggesting that decarbonylation was favored with increasing temperatures. At the same time, the alcohol species, mostly primary, diminished while 2-hexanone remained significant. This indicates that these two species were formed by independent pathways.

The product distribution for the reaction of 2-MTHP indicates that ring opening can occur on both sides of the oxygen atom to give rise to primary-substituted (e.g. 1-hexenal/ol) and secondary-substituted (e.g. 2-hexanone) products. These different pathways will be denoted as Path I for the primary products and Path II for the secondary products in subsequent discussion. Overall at conditions similar to those of fast pyrolysis with low contact time and high temperatures, the total deoxygenation of 2-MTHP attained moderately high levels of 70%.

Higher deoxygenation levels require higher pressures, but not too high as 0.5 MPa already gives >98% deoxygenated products for 2-MTHF at 300 °C [37].

Figure 4. Product selectivities of reactions of 2-MTHP (top) and 2-MTHF (bottom) on

Ni₂P/SiO₂ at 0.1 MPa.

3.3 Simple reaction network

The reaction sequence of 2-MTHP on Ni_2P/SiO_2 can be inferred from the results of contact time measurements where the product selectivities reveal the sequence of product formation. Initial products are formed first and thus show non-zero selectivities at short contact time that decrease with increasing contact time. Intermediate products are produced from the initial species so they start out at zero then increase to a maximum before finally abating as they form final products. Final products in the sequence also start at zero but rise steadily with

Page 17 of 35

ACS Catalysis

contact time. In **Figure 5** the selectivities (left) and yields (right) of the products are presented for the four main groups: a) initial oxygenated products produced from the ring-opening on the methyl substituted side, in Path I: hex-4-en-1-ol and hex-4-enal, b) intermediate oxygenated products from the ring-opening on the unsubstituted side, in Path II: 2-hexanone, c) final deoxygenated products: 2-hexenes and 2-pentenes, and d) dehydrogenated products. The total conversion (indicated by the symbol X) is also shown in panel d). The curves presented are results from a simple kinetic analysis to be discussed later.

On the left side of **Figure 5**, the primary alcohol, hex-4-en-1-ol, and the aldehyde, hex-4enal, showed decreasing selectivities and yields with increasing contact time, exhibiting apparent initial product behavior. However, the amounts formed are very small (see scale on left of figure), and it's difficult to make an exact determination. In contrast, the ketone, 2-hexanone, exhibited increasing selectivity with contact time, and with high selectivities and yields. The deoxygenated products, 2-hexenes and 2-pentenes, also demonstrated the same trends. On the right side of **Figure 5**, the yields of 2-hexanone, 2-hexenes, and 2-pentenes rose slowly at first when contact time was less than 4 s, then increased rapidly. This growth lag at the start suggests that these products were formed later in the sequence. The secondary alcohol 2-hexanol was not detected in the gas phase probably because its formation amount was below the detection limit, as a result of the compound's affinity for the active sites that inhibited desorption. Meanwhile, the formation of 2-hexanone was preferred, with the desorption of 2-hexanone being dominant. The pyran derivatives included mostly dehydrogenated products and a small amount of isomerized products of 2-MTHP, which probably existed in equilibrium with 2-MTHP.

Figure 5. Contact time study of 2-MTHP reactions on Ni₂P/SiO₂ in H₂ at 0.1 MPa, 450 °C. Points are experimental data and lines are calculated using the rate constants in Scheme 1. a) Product selectivity and yield for hex-4-enal and hex-4-en-1-ol, b) Product selectivity and yieldfor 2-hexanone, c) Product selectivity and yieldfor 2-hexenes and 2-pentenes, d) Product selectivity and yield for pyran derivatives and conversion of 2-MTHP

Based on the contact time results, a preliminary reaction sequence is proposed as follows (Scheme 1). The first step is the adsorption of 2-MTHP on an active site followed by ringopening to give either primary or secondary alkoxide species depending on the cleavage position of the intra-ring C-O bond. The adsorbed primary alkoxide species in Path I, formed from ringopening on the methyl-substituted side, undergoes the following reactions: I a) protonation to

yield a primary alcohol, I b) hydrogen elimination to give an aldehyde which can be decarbonylated in a later step to 2-pentene, and I c) deoxygenation to 2-hexene. In path II, the adsorbed secondary alkoxide produced from cleavage on the unhindered side can II a) eliminate hydrogen to give 2-hexanone or can be II b) dehydrated to 2-hexene.

Scheme 1. Proposed simple reaction network of 2-MTHP on Ni₂P/SiO₂, 1atm, 450 °C. Gas phase species are shown in color, adsorbed species are in black. The rate constant values are indicated. Units are s⁻¹ for the surface reaction and desorption rate constants and cm³ µmol⁻¹ s⁻¹ for the adsorption rate constants.

Fitting results for the simple reaction network are shown in **Figure 5** and the rate constants in Table 1. The network takes into consideration the main observed gas phase species with the most minimal possible consideration of surface species. The R^2 value for the fitting of

ACS Paragon Plus Environment

the yields was 0.78 and for the selectivities was 0.75. The results are consistent with the observation that the simulated yields of the main products, 2-hexanone, 2-hexenes and 2-pentenes match more closely to the experimental data (**Figure 5**, two middle plots on the right side) compared to the other calculated yields and selectivities. It is realized that this simple scheme is inadequate in describing the reaction of 2-MTHP on Ni₂P/SiO₂ and that a more detailed model is required.

 Table 1: Rate constants for the simple reaction network (Scheme 1)

React	ant	Path I							Path II				
k _A	k _{-A}	\mathbf{k}_1	k_{1a}	k _{-1a}	k _{1b}	k _{-1b}	k_{1c}	k_{1d}	k ₂	k _{2a}	k _{2b}	k _{PYD}	k _{-PYD}
0.0039	0.21	0.31	4.8	4.0	3.3	45	25	117	0.35	93	23	4.5	46
cm ³	s^{-1}	s^{-1}	s^{-1}	s^{-1}	s^{-1}	s^{-1}	s^{-1}	s^{-1}	s^{-1}	s^{-1}	s^{-1}	cm ³	s^{-1}
µmol ⁻¹												µmol ⁻¹	
s ⁻¹												s ⁻¹	

3.4 Detailed reaction network

A comprehensive sequence is proposed in Scheme 2. The adsorbed alkoxide species progresses to form other intermediate surface species prior to desorption into the observed products. In Path I the primary alkoxide species transforms in two ways. It can convert to an adsorbed aldehyde or to an adsorbed primary alcohol. The aldehyde can desorb or go through decarbonylation into 2-pentenes and the alcohol may desorb or form 2-hexenes. In path II the secondary alkoxide species reacts to produce 2-hexanone or undergoes protonation then dehydration to generate 2-hexenes.

Scheme 2. Proposed detailed reaction network for 2-MTHP reactions on Ni₂P/SiO₂ at 1atm, 450 °C. Gas phase species are shown in color, adsorbed species are in black. Units for the rate constants are s⁻¹ for the surface reaction and desorption rate constants and cm³ μ mol⁻¹ s⁻¹ for the adsorption rate constants.

The fitting results for the detail scheme (Scheme 2) are plotted in **Figure 6**. The R^2 value for the fitting of the yields is 0.96 and for the selectivities is 0.90. The continuous lines showing the simulation results fit the experimental points well, indicating that the proposed network is consistent with the data.

Figure 6. Fitting results for the detailed reaction network of 2-MTHP on Ni₂P/SiO₂ in H₂ at 1 atm, 450 °C. Points are experimental data and lines are simulated data using the estimated rate constants in Scheme 2. a) Product selectivity and yield for hex-4-enal and hex-4-en-1-ol, b) Product selectivity and yieldfor 2-hexanone, c) Product selectivity and yieldfor 2-hexenes and 2-pentenes, d) Product selectivity and yield for pyran derivatives and conversion of 2-MTHP.

The estimated values for the rate constants in Scheme 2 indicate a slow adsorption of the 2-MTHP on a vacant active sites (Table 2). The ring-opening steps display the smallest values for rate constants compared to all subsequent surface reaction steps, suggesting that these are rate

determining steps. The rate constant for the ring-opening step at the less hindered side of 2-MTHP in Path II is slightly larger than the rate constant for reaction at the more hindered side of 2-MTHP in Path I. The trends of the values of rate constants observed here with the sixmembered-ring 2-MTHP molecule show similarity to those of the five-membered ring of 2-MTHF. The studies of both molecules show that the ring-opening steps are rate limiting and that the ring opening is faster on the less hindered side of 2-MTHP in path II than on the hindered side.

Reacta	int		Sur	face react		Path II						
Reacta k _A 0.012	k _{-A}	k ₁ 2.8 s ⁻¹ k _{ALD} 0.2	$\frac{\text{Sur}}{\text{k}_{1a}}$ $\frac{22}{\text{s}^{-1}}$ $Adsorj$ $\frac{\text{k}_{-ALD}}{15}$	$\frac{\text{face react}}{\text{k}_{-1a}}$ $\frac{18}{\text{s}^{-1}}$ $\frac{18}{\text{ption}} / \text{des}$ $\frac{k_{OL1}}{0.3}$	$\frac{\text{ions Pat}}{k_{1b}}$ 22 s ⁻¹ orption k _{-OL1} 8.6	$\frac{h I}{k_{-1b}}$ $\frac{29}{s^{-1}}$ Path I k_{1EN} 6.1	k _{PEN} 6.0	k ₂ 3.2 s ⁻¹ k _{-ONE} 30	$\begin{array}{c} \begin{array}{c} \text{Path II} \\ \hline k_{2b} \\ 35 \\ \text{s}^{-1} \\ \begin{array}{c} \text{Path II} \\ k_{2EN} \\ 11 \end{array}$	k-2b 5.4 s ⁻¹	k _{руд} 0.014	k. _{PYD} 3.5
cm^3 μmol^{-1} s^{-1}	s ⁻¹	$\begin{array}{c} cm^{3} \\ \mu mol^{-1} \\ s^{-1} \end{array}$	s^{-1}	cm^3 μmol^{-1} s^{-1}	s ⁻¹	s^{-1}	s ⁻¹	s ⁻¹	s^{-1}		cm^{3} μmol^{-1} s^{-1}	s^{-1}

Table 2: Estimated rate constants for detailed reaction network (Scheme 2)

Concentrations of the surface species are plotted in Figure 7. The results show a low adsorption of 2-MTHP on the catalyst, probably due to high temperature and low contact time. The adsorbed reactant is the dominant species, followed by the adsorbed species from Path I, and finally the adsorbed species from Path II. This order reflects the trend observed in Scheme 2 where Path I includes surface reactions and desorption steps with lower rate constants compared to those of Path II, so the intermediate species from Path I have longer residence on the active sites.

Figure 7. Concentrations of surface species calculated from the estimated rate constants from Scheme 2.

The nickel phosphide catalyst offers multiple active centers for hydrogen transfer and deoxygenation steps as suggested by the following discussion of the crystal structure of the catalyst [41, 49]. The metal-rich Ni₂P particles supported on silica have a crystal structure consisting of two types of Ni atoms, referred to as Ni(1) and Ni(2), as well as two types of P atoms, P(1) and P(2) [50-52]. The surface Ni atoms are positively charged by 0.07 e, and the P atoms are negatively charged by -0.07 e, so the Ni atoms provide binding sites for electron-rich adsorbates such as O-compounds. The P atoms may be associated with unreduced passivation oxygen to form acidic P-OH centers, although a recent diffuse reflectance infrared spectroscopy study suggests that at reducing conditions only the phosphate on the silica is oxidized [53]. The Ni(1) site has a near tetrahedral structure and favors hydrogenolysis reactions while the Ni(2) site

ACS Catalysis

has a square pyramidal structure and prefers hydrogenation reactions [54]. The bulk structure of Ni₂P has alternating layers of Ni₃P₂ and Ni₃P stacked along the (0001) direction [41,55,56]. The Ni₃P₂ layer contains Ni(1) and P(2) atoms and is reported to be more stable than the Ni₃P layer, which has Ni(2) and P(1) atoms. The surface (0001) should be dominated with Ni₃P₂ structure. Yet, the threefold hollow sites in a Ni(1) vacancy on a Ni₃P₂-terminated surface lack a P exposing dangling bonds that require stabilization, resulting in a surface with about 80% of P-covered Ni₃P₂ structure (or Ni₃P-P structure) and 20% of uncovered Ni₃P₂ structure [57,58]. A similar conclusion was reached for the (1010) plane in which all Ni atoms are P-terminated [59]. So, much of the active surface metallic Ni sites are covered with P atoms, leading to a much lower apparent number of active sites, quantified by CO chemisorption, than the theoretical value from the total surface area of Ni₂P crystallites.

The Ni(1) sites are active for adsorption of *S*-compounds and *O*-compounds [41,60] and are likely to be the adsorption sites for 2-MTHP and the intermediate species. Both Ni(1) and Ni(2) sites could be responsible for hydrogen dissociative adsorption, assisting the ring opening reactions [40,61]. Thus, both sites are involved in the reaction.

The role of surface P atoms is both beneficial and detrimental. The P atoms protect the stability of the nickel phosphide phase and break up Ni ensemble that can produce coke; yet, an excess of P atoms reduces the availability of active Ni sites. Nevertheless, theoretical studies indicate that the P sites are capable of adsorbing atomic hydrogen [62, 63] which can serve as a hydrogen source for various reactions. The hydrogen may spill over from nickel centers. Also, in oxidized form the P atom can serve as hydrogen acceptor. Such oxidized species have been observed by FT-IR spectroscopy [64]. The CO uptake was 45 μ mol g⁻¹ and the NH₃ uptake was 202 μ mol g⁻¹, indicating that there are more acid sites than metal sites. The NH₃ adsorption

method does not distinguish between Brønsted and Lewis sites, so no definite conclusions can be made on their role. It is speculated that the Brønsted acid sites are likely associated with oxidized phosphorus both on the phosphide and any excess on the support and are involved with the various proton transfer processes in the reactions of the adsorbed 2-MTHF and 2-MTHP. It is also surmised that the Lewis sites are associated with reduced Ni sites which are involved in interactions with the oxygen atoms in the adsorbates.

The detailed chemistry of the subsequent steps is presented in Scheme 3. For ring opening on the substituted side (Scheme 3, Path I), the reaction must involve atoms more distant from the hindered side, which would have only weak interactions with the active sites due to the steric blockage. So it is likely that a basic site abstracts a proton from a β -carbon in an E2 elimination, creating a hex-4-en-1-alkoxide species. This elimination requires the hydrogen to be antiperiplanar with the leaving group so the 2-MTHP molecule likely reacts in a chair conformation. An α -hydrogen elimination from the alkoxide produces an aldehyde species. The adsorbed aldehyde has a moderate interaction with the active site so it can desorb or go through a decarbonylation step to produce 2-pentene. The primary alkoxide could also be protonated to form an adsorbed primary alcohol. The surface adsorbed water and/or P-OH groups are possible proton donors. The adsorbed alcohol could simply desorb or undergo hydrogenolysis to 2-hexene. The process requires an attack by a hydride, possibly a metal hydride Ni-H⁻, on the α - carbon and a shift of the electron pair to a nearby proton, creating 2-hexene and an adsorbed hydroxyl group.

The ring opening on the unsubstituted side (Scheme 3, Path II), has less steric hindrance than Path I. The transformation is likely initiated by a hydride attack on the α -carbon, which cleaves the C-O bond in an S_N2 manner, yielding an adsorbed secondary alkoxide. The 2-

ACS Paragon Plus Environment

hexanone is produced by abstraction of a proton by a basic site from the substituted α -carbon. The secondary alkoxide can also undergo protonation and subsequent dehydration to form 2hexene. It is interesting that no secondary alcohol was detected. This is possibly because the adsorbed secondary alcohol precursor is very reactive and readily undergoes dehydration to 2hexene.

Scheme 3. Proposed detailed chemistry of the surface steps in the reaction network. Gas phase species are shown in color, adsorbed species are in black. Symbol * represents a surface site. The species in brackets depict suggested possible reaction steps.

In summary this second reaction network gives a good fit to the contact time data. It is acknowledged that the number of fitting constants is larger than the simpler scheme. However, what this indicates is that this type of analysis requires a realistic description of the elementary steps involved in a transformation. It should be recognized that confirmation of the model results is needed by independent measurements, for example, by spectroscopic observation of the adsorbed intermediates.

4. Conclusions

The six-membered ring compound 2-methyltetrahydropyran with less ring strain was much less reactive on Ni₂P/SiO₂ than the analogous five-membered ring compound 2methyltetrahydrofuran. At conditions similar to those of fast pyrolysis, i.e. low contact time and high temperature, nickel phosphide showed good deoxygenation capability (~70%) and produced 2-hexenes and 2-pentenes at all conversion levels. The reaction routes for 2-MTHP were similar to those for 2-MTHF and involved two main pathways, depending on the C-O bond that cleaved in the first step. Cleavage on the methyl-substituted side produced linear aldehyde and primary alcohol compounds while cleavage on the unsubstituted side formed a ketone product. Both routes generated 2-hexene as final products while Path I also produced 2-pentene. Metallic Ni sites are possibly the main active sites for the adsorption of reactants and the dissociative

ACS Paragon Plus Environment

ACS Catalysis

adsorption of hydrogen while P-OH sites provide protons. The reaction network was supported by fitting with a kinetic model. The obtained values of the rate constants showed that the slowest step was ring-opening of adsorbed 2-MTHP, consistent with previous results for the homologue 2-MTHF.

Acknowledgments

This work was supported by the US Department of Energy under grant DE-FG02-96ER 14669, and the Japan Society for the Promotion of Science for a Grant-in-Aid for Scientific Research (B) (no. 26289301).

Supporting Materials (SI)

The SI section describes 1) The detailed preparation of the 2-methyltetrahydropyran compound, 2) Calculations of the Weisz-Prater criterion for lack of diffusion limitations, 3) The equations used in the modeling of the reaction network. This material is available free of charge via the Internet at http://pubs.acs.org.

Table of Contents Graphic

ACS Catalysis

Refe	erences
1	Maity, S. K. Renew. Sus. Energy Rev. 2015, 43, 1446–1466.
2	Gunawardena, A. D.; Fernando, D. S. Methods and Applications of Deoxygenation for t
	Conversion of Biomass to Petrochemical Products. In Biomass Now - Cultivation and
	Utilization [Online]; Matovic, D. M., Ed; InTech, 2013; Chapter 11, pp 273-298.
	http://www.intechopen.com/books/biomass-now-cultivation-and-utilization/methods-an
	applications -of -deoxygenation -for -the -conversion -of -biomass -to -petrochemical-production of the second se
	(accessed Oct 07, 2015).
3	Linck, M.; Felix, L.; Marker, T.; Roberts, M. WIREs Energy Environ. 2014, 3, 575-581
4	Pham, T. N.; Shi, D.; Resasco, D. E. Appl. Catal., B 2014, 145, 10-23.
5	Mu, W.; Ben, H.; Ragauskas, A.; Deng, Y. BioEnergy Res. 2013, 6, 1183-1204.
6	Arun, N.; Sharma, R. V.; Dalai, A. K. Renew. Sus. Energy Rev. 2015, 48, 240-255.
7	Ruddy, D. A.; Schaidle, J. A.; Ferrell, J. A. III; Wang, J.; Moens, L.; Hensley, J. E. Gre
	<i>Chem.</i> 2014, 16, 454–490.
8	Nakagawa, Y.; Liu, S.; Tamura, M.; Tomishige, K. ChemSusChem 2015, 8, 1114-1132
9	Ng, L. Y.; Andiappan, V.; Chemmangattuvalappil, N. G.; Ng, D. K. S. Ind. Eng. Chem.
	<i>Res.</i> 2015, 54, 5722–5735.
10	Paul, S.; Sarkar, B.; Bose, P. K. Renew. Sus. Energy Rev. 2015, 48, 256-263.
11	Li, Q.; Zhang, Y.; Hu, G. Bioresour. Technol. 2015, 191, 88-96.
12	Yang, Z.; Kumar, A.; Huhnke, R. L. Renew. Sus. Energy Rev. 2015, 50, 859-870.
13	Badawi, M.; Cristol, S.; Paul, J.; Payen, E. C. R. Chimie 2009, 12, 754-761.
14	Chiranjeevi, T.; Kumaran, G. M.; Gupta, J. K.; Dhar, G. M. Pet. Sci. Technol. 2008, 26
	690-703.
15	Chiranjeevi, T.; Kumaran, G. M.; Gupta, J. K.; Dhar, G. M. Thermochim. Acta 2006, 44
	87-92.
16	Chiranjeevi, T.; Kumaran, G. M.; Gupta, J. K.; Dhar, G. M. Catal. Comm. 2005, 6, 101
	106.
17	Furimsky, E. Appl. Catal. 1983, 6, 159-164.
18	Pratt, K. C., Christoverson, V. Fuel Process. Technol. 1983, 8, 43-51.

19	Furimsky, E. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 31-34.
20	Mironenko, A. V.; Gilkey, M. J.; Panagiotopoulou, P.; Facas, G.; Vlachos, D. G.; Xu, B. J.
	<i>Phys. Chem. C</i> 2015, 119, 6075–85.
21	Chia, M.; Pagán-Torres, Y. J.; Hibbitts, D.; Tan, Q.; Pham, H. N.; Datye, A. K.; Neurock,
	M.; Davis, R. J.; Dumesic. J. A. J. Am. Chem. Soc. 2011, 133, 12675-12689.
22	Bradley, M. K.; Robinson, J.; Woodruff, D. P. Surf. Sci. 2010, 604, 920-925.
23	Horiuchi, C. M.; Medlin. J. W. Langmuir 2010, 26, 13320-13332.
24	Caldwell, T. E.; Land, D. P. Polyhedron 1997, 16, 3197–3211.
25	Bartók, M.; Szöllösi, G.; Apjok, J. React. Kinet. Catal. Lett. 1998, 64, 21-28.
26	Vannice, M. A. Catal. Today 1992, 12, 255-267.
27	Kreuzer, K.; Kramer, R. J. Catal. 1997, 167, 391-399.
28	Gennari, U.; Kramer, R.; Gruber, H. L. Appl. Catal. 1988, 44, 239-250.
29	Gennari, U.; Kramer, R.; Gruber, H. L. Appl. Catal. 1984, 11, 341-351.
30	Notheisz, F.; Bartok, M. J. Catal. 1981, 71, 331-336.
31	Bartok, M.; Notheisz, F. J. Catal. 1981, 68, 209-212.
32	Maity, S. K.; Rana, M. S.; Bej, S. K.; Ancheyta-Juarez, J.; Dhar, G. M.; Rao, T. S. R. P.
	<i>Catal. Lett.</i> 2001, 72, 115-119.
33	Rao, K. S. P.; Khajamasthan, S.; Muralidhar, G.; Chary, K. V. R.; Subrahmanyam, V. S. J.
	Chem. Soc., Chem. Commun., 1988, 375-376.
34	He, Z.; Wang, X. Catal. Today, 2014, 240, 220–228.
35	Bui P.; Cecilia, J. A.; Oyama, S. T.; Takagaki, A.; Infantes-Molina, A.; Zhao, H.; Li, D.;
	Rodríguez-Castellón, E.; Jiménez-López, A. J. Catal. 2012, 294, 184-198.
36	Cho, A.; Kim, H.; Iino, A.; Takagaki, A.; Oyama, S. T. J. Catal. 2014, 318, 151-161.
37	Iino, A.; Cho, A.; Takagaki, A.; Kikuchi, R.; Oyama, S. T. J. Catal. 2014, 311, 17-27.
38	Cho, A.; Shin, J.; Takagaki, A.; Kikuchi, R.; Oyama, S. T. Top. Catal. 2012, 55, 969-980.
39	Bowker, R. H.; Smith, M. C.; Pease, M. L.; Slenkamp, K. M.; Kovarik, L.; Bussell, M. E.
	ACS Catal. 2011, 1, 917–22.
40	Oyama, S. T.; Gott, T.; Zhao, H.; Lee, Y-K. Catal. Today, 2009, 143, 94-107.
41	Prins, R.; Bussell, M. E. Catal. Lett. 2012, 142, 1413-1436.
42	Kanda, Y.; Uemichi, Y. J. Jap. Pet. Ins. 2015, 58, 20-32.
	32
	ACS Paragon Plus Environment

ACS Catalysis

43	Zhao, H. Y.; Li, D.; Bui, P.; Oyama, S. T. Appl. Catal., A 2011, 391, 305-310.
44	Li, D.; Bui, P.; Zhao, H.Y.; Oyama, S. T.; Dou, T.; Shen, Z. H. J. Catal. 2012, 290, 1-12
45	Eigenman, H. K.; Golden, D. M.; Benson, S. W. J. Phys. Chem. 1973, 77, 1687-1691.
46	Soundararajan, S.; Anantakrishnan, S. V. Proc. Indian Acad. Sci., A 1953, 37, 578-583.
47	Weisz, P. B.; Prater, C. D. Adv. Catal. 1954, 6, 143-196.
48	Vannice, M. A. Kinetics of Catalytic Reactions; Springer US, 2005, Chapter 4, pp 63-62
49	Yuan, Q.; Ariga, H.; Asakura, K. Top. Catal. 2015, 58, 194-200.
50	Oyama S. T.; Gott T.; Asakura K.; Takakusagi S.; Miyazaki K.; Koike, Y.; Bando K. K
	Catal. 2009, 268, 209-222.
51	Bando, K. K.; Wada, T.; Miyamoto, T.; Miyazaki, K.; Takakusagi, S.; Koike, Y.; Inada
	Y.; Nomura, M.; Yamaguchi, A.; Gott, T.; Oyama, S. T.; Asakura, K. J. Catal. 2012,
	286,165-171.
52	Wada, T.; Bando, K. K.; Miyamoto, T.; Takakusagi, S.; Oyama, S. T.; Asakura, K. J.
	Synchrotron Radiat. 2012, 19, 205-209.
53	Badaria, C. A.; Lónyi, F., Drotára, E.; Kaszonyi, A.;, Valyona, J. J. Appl. Catal. B: Env.
	2015,164, 45-60.
54	Zhao, H.Y.; Oyama, S. T.; Freund, H-J.; Wlodarczyk, R.; Sierka, M. Appl. Catal., B 20
	164, 204-216.
55	Nelson, A. E.; Sun, M.; Junaid, A. S. M. J. Catal. 2006, 241, 180-188.
56	Oyama, S. T.; Zhao, H.; Freund H-J.; Asakura, K.; Wlodarczyk, R.; Sierka, M. J. Catal
	2012, 285, 1–5.
57	Hernandez, A. B.; Ariga, H.; Takakusagi, S.; Kinoshita, K.; Suzuki, S.; Otani, S.; Oyam
	S. T.; Asakura, K. Chem. Phys. Lett. 2011, 513, 48-52.
58	Ariga, H, Kawashima, M.; Takakusagi, S.; Asakura, K. Chem. Lett. 2013, 42, 1481-148
59	Guo, D.; Nakagawa, Y.; Ariga, H.; Suzuki, S.; Kinoshita, K.; Miyamoto, T.; Takakusag
	S.; Asakura, K.; Otani, S.; Oyama, S. T. Surf. Sci. 2010, 604, 1347-1352.
60	Moon, J. S.; Kim, E. G.; Lee, Y-K. J. Catal. 2014, 311, 144-152.
61	Suzuki, S.; Moula, G. M.; Miyamoto, T.; Nakagawa, Y.; Kinoshita, K.; Asakura, K.;
	Oyama, S. T.; Otani, S. J. Nanosci. Nanotechnol. 2009, 9, 195-201.

3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
20
26
27
28
29
30
31
31
32
33
34
35
36
27
37
38
39
40
41
42
43
11
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
5/
58
59

1 2

- 62 Liu, P.; Rodriguez, J. A.; Asakura, T.; Gomes, J.; Nakamura, K. *J. Phys. Chem. B* 2005, 109, 4575-4583.
- 63 Ariga, H.; Kawashima, M.; Takakusagi, S.; Asakura, K. Chem. Lett. 2013, 42, 1481-1483.
- 64 Lee, Y.-K; Oyama, S.T. J. Catal. 2006, 239, 376–389.

 ACS Catalysis

