SYNTHESIS OF (S)-2-FLUORO-L-DAUNOSAMINE AND (S)-2-FLUORO-D-RISTOSAMINE

HANS H. BAER AND ALINA JAWORSKA-SOBIESIAK

Ottawa-Carleton Institute for Research and Graduate Studies in Chemistry*, Ottawa (Canada) (Received November 2nd, 1984; accepted for publication, December 4th, 1984)

ABSTRACT

Derivatives of (S)-2-fluoro-L-daunosamine and (S)-2-fluoro-D-ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy-D-glucose which was converted, according to the literature, into methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)- α -D-glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro- α -D-altropyranoside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro- α -D-gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian–Hullar reaction. Dehydrobromination of $\mathbf{6}$, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzovlation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2fluoro-3-trifluoroacetamido- β -L-galactopyranoside. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido- α -D-altropyranoside. The ¹H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal ¹H-¹⁹F coupling constants, in comparison with the reported effects of oxygen substituents.

INTRODUCTION

The clinical use of the important anticancer drugs adriamycin and daunorubicin is limited by their high cardiotoxicity, and worldwide efforts have been directed for many years toward improving the therapeutic value of these anthracyclines by chemical modification both in the aglycon and the glycon moiety. As far as alteration in the sugar component is concerned, promising leads have developed as a result of work involving the replacement of the natural daunosamine (3-amino-2,3,6-trideoxy-L-*lyxo*-hexose) by certain stereoisomers, structural variants, and other sugars¹⁻³. It was originally believed that, for modified anthracyclines to show

^{*}Mailing address: Department of Chemistry, University of Ottawa, Ottawa K1N 9B4, Canada.

high antitumor activity, the 3'-amino group should be retained and C-2' should remain unsubstituted. However, Horton and his coworkers have synthesized 3'-deamino-3'-hydroxy (and acetoxy) analogs of daunorubicin and adriamycin which displayed enhanced antitumor activity and(or) lowered toxicity², and recently³, they reported that introduction of halogen (especially axial iodine) at C-2' in such deamino analogs resulted in a further enhancement of efficacy *in vivo*. Fluorine substitution was not included in these studies, and analogs halogenated in the sugar moiety with retention of the 3'-amino function have not been recorded.

We therefore decided, in continuation of our own program on synthesis of aminopolydeoxy sugars^{4,5} (some of which⁵ may serve as daunosamine substitutes for modified anthracyclines), to prepare some related amino sugars bearing a fluorine atom at C-2, with a view to future coupling to anthracyclinone aglycons. A rationale for preparing such analogs is founded in the expectation that the strong, electron-withdrawing inductive effect of the fluorine substituent will increase their stability toward hydrolytic deactivation in vivo, whilst its small van der Waals radius should ensure minimal interference with the steric requirements of drug binding and transport. In the course of this project, it is planned to synthesize pairs of C-F epimers in order to test the influence of axial vs. equatorial halo substitution, which may well be expected to be less significant in fluoro analogs than in³ iodo analogs. It is pertinent to note in this context that Tsuchiya et al.⁶, having introduced fluorine to replace a methoxy group in the aminoglycoside antibiotic sporaricin A, observed lowered acute toxicity and, for the axial and equatorial fluoro epimers, antibacterial activities comparable to that of the parent compound. Furthermore, the availability of synthetic aminofluoro derivatives might benefit research into the involvement of the amino group as pertaining to the dual features of antitumor activity and cardiopathogenicity in natural anthracyclines.

RESULTS

We describe here the synthesis of 3-amino-2,3,6-trideoxy-2-fluoro-L-galactose [(S)-2-fluoro-L-daunosamine] and its D-altro isomer [(S)-2-fluoro-D-ristosamine], which were prepared as the N-trifluoroacetylated methyl glycosides **11** and **15**, respectively. The starting point was the known methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro- α -D-altropyranoside (**4**). This compound had been obtained, in 35% yield, by Hough *et al.*⁷ who had treated methyl 2-benzamido-4,6-Obenzylidene-2-deoxy-3-O-tosyl- α -D-glucopyranoside (**1**) with tetrabutylammonium fluoride in hexamethylphosphoric triamide or acetonitrile solution. We performed the same reaction with the corresponding 3-mesylate **2** in acetonitrile and isolated **4** in 63% yield, together with 6% of a crystalline isomer which proved to be the 2-benzamido-3-fluoro analog having the D-gluco configuration (**5**). Although Hough and his coworkers, who have demonstrated⁷ the transformation of **1** to proceed through the N-benzoylepimine **3**, had on other occasions⁸ encountered similar ring-openings of N-acylepimines (including that of **3** with ammonium chloride) which additionally gave minor proportions of 2,3-diequatorially substituted products, they⁷ did not observe the formation of 5 from 1. We noticed that 5 was difficult to distinguish from intermediary 3 by t.l.c., so that it may have escaped detection. The combined yield of isolated fluoro glycosides (4 and 5) being only 75%, the fate of a considerable proportion of the starting sulfonate 2 remained unknown; the presence of chromatographically slow-moving, unidentified but fluorine-free by-products⁷ was confirmed in our hands. Nevertheless, it remains a valid conclusion that introduction of fluoride (as that of other nucleophiles⁸) via the epimine 3 occurs predominantly by the diaxial mode^{*}.

The three crucial steps that followed emulated the pioneering daunosamine synthesis of Horton and Weckerle⁹. Thus, the benzylidene acetal 4 was converted, by Hanessian-Hullar reaction with N-bromosuccinimide in carbon tetrachloride, into methyl 3-benzamido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-2-fluoro-α-D-altropyranoside (6), isolated crystalline in 82% yield. Dehydrobromination of 6 was performed with silver fluoride in pyridine by the established, general procedure¹⁰, to afford a 93% yield of the crystalline, 5,6-unsaturated derivative 7. Catalytic hydrogenation of 7 in the presence of palladium-on-barium sulfate furnished stereoselectively the 2-fluorodaunosamine derivative 8, isolated crystalline in 62% yield. The mother liquor contained a mixture of 8 and the 5-epimer 12, according to the ¹H-n.m.r. spectrum, indicating that the hydrogenation was not fully stereospecific under the conditions employed. Catalytic addition of hydrogen to hex-5enopyranosides generally takes place at the face of the molecule opposite to the anomeric group, with good to excellent stereoselectivity^{9,11-17}. Catalysts that have been used were platinum oxide¹¹, palladium black¹², palladium-on-barium sulfate^{9,13}, palladium-on-carbon¹⁴⁻¹⁶, and Raney nickel^{15,17}; and in at least one instance¹⁵, selectivity was influenced by the choice of catalyst. Substrates successfully employed were 4-benzoates^{13a,15,16} (such as 7) and 4-acetoxy^{11,12,17a} as well as 4hydroxy^{9,13b,c,17b} analogs but, in some cases, difficulties were encountered with 4benzoates and were overcome by prior O-debenzoylation^{14,17c}. The survey suggests that improvements in the present synthesis might be achievable by such variations in procedure.

Compound 8 was then saponified with sodium hydroxide in 2methoxyethanol-water, which effected simultaneous O- and^{8,18} N-debenzoylation, to provide crystalline methyl 3-amino-2,3,6-trideoxy-2-fluoro- β -L-galactopyranoside [9, methyl (s)-2-fluoro- β -daunosaminide] in 85% yield. Pertrifluoroacetylation of 9 should furnish the N,O-protected glycoside 10 which, on the basis of precedents recorded in the literature¹, should be convertible into a glycosyl halide for the purpose of eventual coupling with anthracyclinone aglycons. The acylation was per-

^{*}An alternative pathway from a 3-sulfonate (1 or 2) to 5, involving O-participation of the N-benzoyl group to form an intermediary oxazoline which, on nucleophilic opening at C-3, would generate the 2-benzamido-3-fluoro structure, can probably be discounted because the oxazoline in question, independently prepared, has been found to be very resistant toward nucleophilic attack even by azide ion in boiling N,N-dimethylformamide⁸.

formed, but the crude N, O-di(trifluoroacetyl) derivative (10) was immediately O-deacetylated by methanolysis at room temperature¹⁹, in order to produce the morestable N-trifluoroacetyl compound 11 that can be stored conveniently, and reesterified as and when required. The yield of crystalline 11 from 9 was 83%.

To obtain the D-altro isomer 15, the key intermediate 6 was first reductively debrominated with tributyltin hydride (which does not affect the fluoro substituent)²⁰, to yield quantitatively the crystalline 2-fluoro-D-ristosamine derivative 12. The latter underwent saponification with sodium hydroxide in aqueous 2-methoxyethanol, affording a quantitative yield of syrupy methyl 3-amino-2,3,6-trideoxy-2-fluoro- α -D-altropyranoside [13, methyl (S)-2-fluoro- α -D-ristosaminide], fully characterized by spectroscopy. It crystallized (62% recovery) on storage and, by the procedure described for the isomer 9, was converted via 14 (characterized only by t.l.c.) into the crystalline target trifloroacetamide 15, isolated pure in 60% yield.

The structures of all the new compounds described were ascertained by elemental microanalyses, mass-spectral and i.r. data, and n.m.r. spectroscopy; see Table I for the ¹H-n.m.r. data, and Table II for the ¹³C-n.m.r. data. Although the structures could be deduced readily and unambiguously from the spectra by routine interpretation, a few details of the ¹H-n.m.r. data (Table I) will be discussed, especially because of some interesting observations that were made in regard to ¹⁹F-¹H coupling interactions.

Thus, the α -D-gluco configuration of the minor product 5 (obtained besides the known⁷ isomer 4) was clearly indicated by the size of the ring-proton, ¹H-¹H coupling constants (${}^{3}J_{1,2}$ 3.7, ${}^{3}J_{2,3}$, ${}^{3}J_{4,5}$ 9–10 Hz), and the position of the fluorine substituent at C-3 was confirmed by the ¹⁹F-¹H couplings that were present in the H-3 signal (${}^{2}J_{F-3,H-3}$ 53.6 Hz) and the vicinal-proton signals (${}^{3}J_{F-3,H-2}$ and ${}^{3}J_{F-3,H-4} \sim 12$ Hz, in harmony with gauche H-C-C-H arrangements). Additionally, 5 showed small, long-range couplings ${}^{4}J_{F-3,H-1}$ and ${}^{5}J_{F-3,H-6e}$ due to W and extended W orientations of the nuclei involved. By contrast, all of the α -D-altro compounds, namely 6, 12, 13, and 15, showed a very small (1.5 Hz) vicinal proton-proton coupling for H-1,2, small couplings for H-2,3 (3-3.5 Hz) as well as H-3,4 (4-4.5 Hz), and a large vicinal coupling for H-4,5 (9–10 Hz), indicative of the assigned configuration in the normal, ${}^{4}C_{1}(D)$ conformation. (Compound 6, of course, could a priori be assumed to have that configuration by virtue of its stereochemically unambiguous derivation from known 4.) The 5-enoside 7 displayed ${}^{3}J_{HH}$ values closely similar to those of the foregoing altrosides, as required for the α -D-arabino configuration depicted. The compounds 8, 9, and 11, on the other hand, exhibited ${}^{3}J_{H-1,2}$ 7.5, ${}^{3}J_{H-2,3}$ 10, ${}^{3}J_{H-3,4}$ 3.5, and ${}^{3}J_{H-4,5}$ 1 Hz, revealing clearly the β -L-galacto configuration in the normal, ${}^{1}C_{4}(L)$ conformation. The position of the fluorine substituent on C-2 in either series was readily apparent from a splitting of each H-2 signal into two equal parts, each integrating to 0.5 proton, with ${}^{2}J_{FH}$ values to be found in the narrow ranges of 45-46 Hz for the D-altro compounds (and 7), and 51-53 Hz for the Lgalacto compounds. Inspection of Table I also reveals a striking, groupwise corre-

	I					1		ANTA-ANALASIA SALAAAAN						e management of the second
Compound ^a	Chemic	cal shifts (a(8)											
алтоновили и молосони от технологии и технологии и технологии и технологии и технологии и технологии и технолог	I-H		H-2	Н-3	4	4	Н-5	9-H	-H	6'	ΗN	C-M	le	0-Me
S.	4.89~	÷	4.43cm	4.97dt	4	.05dt	3.72dt	4.28dd	d [∉] 3.8	57t	8.79d			3.34
9	5.01d	put	4.70ddd	5.30tt	Ś	.40ddd	4.25ddd	3.61dd	3.5	ppls	7 31d			3.65
7	5.03d	but	4.86ddd	5.24cm	а 5.	bbb86.		4.97t	4.8	3r	7.03 d			3.62
3 0	~4.62 n	n,	4.55ddd	4.80m	Ś	.65ddd	4.05dq				6.32d	1.27	p	3.66
9ŕ	4.36d	p	4.17ddd	3.02dd	ld 3.	.62dt	3.68dq					1.35	p	3.56
119	4.55d	and e	4 46ddd	4.30cm	3.	.81td	3.90dq				8.65b	1.26	p	3.48
1	4.92d	Int	4.67ddd	5.23cm	1 5.	.28ddd	4.16dq				7.33d	1.32	p	3.58
13/1	4.75d	Int	4.57ddd	3.45m	ιų.	.26m	3.60dq					1.34	đ	3.40
15'	4.84d	Int	4.60ddd	4.73qn	1 3.	.83m	3.76dq				7.56b	1.36	p	3.52
	First-or	idnos rəbi	ling (Hz),	J _{H,H} value.	8		e osaniotada managamen e e e e e meno	onenne a - vo yerne men ve en	(Independent Production Andread and Andread Andread Andread Andread Andread Andread Andread Andread Andread And	J _{F,H} valu	es			
	J _{1,2}	$J_{I,3}$	J _{2,3}	$\mathbf{J}_{3,4}$	J _{4,5}	J _{5,6(6')}	J _{5, Me}	J _{6,6'}	J _{H,NH}	$\mathbf{J}_{F,I}$	$\mathbf{J}_{F,2}$	$\mathbf{J}_{F,3}$	$J_{F,4}$	Other
ŝ	3.7		9.8	9.4	0.6	4.8.10.3		10.0	8.1	ñ~	12.1	53.6	12.4	0.7i, 1.9k
9	1.5		3.5	4.0	10	2.4.8.2		10.9	6~	œ	45	6~	7	
7	2.0	~1.5	4	48		$(1.5)^{1}$		1.5	10	œ	46	×	3.3	
×	7.4		10.7	3.7	1.0		6.4		×	3.0"	52.9m	12.5	~2~	
6	7.6		9.5	ę	~		6.5			3.3	51.0	13	ι.ŋ	
п	7.4		10.4	3.1	1.1		6,4			<0.5	50.7"	13.5	3.1	
12	1.5	~1.5	3.2	4	9.8		6.3		6	×	45.3	-6-8	2	
13	1.6	~1.5	3.2	0	10		6.2			10.2	45.5	0		
15	1.5	~1.5	3.5	45	6		6.6			7.8	45.0	6		
	:	;			; • ;						c t			
"In chlorolorm- d l was at $\delta \leq 74^{-b}$ Sio	uniess indu	cated oth teristics:	h hroad	vil aryl-sub	istituted bev mul	compounds tinlet d d	s snowed ti oublet m	ne approp	riate sign	als in the	s o /ð. artet: on	U region; 1 mintet	t trinlet	In singlet of 5
sulfoxide-d _h . dH-6	eq. Signa	l overlap	ped by d	ownfield p	vart (dd)	of the H-2	2 signal (d	dd). Sing	lets due 1	to OH al	nd NH, o	occurred a	it 8 2.17	and 2.29 #In
acetone-d ₆ ^h Broa	d signals a	ut 8 1.9-2	2.3 due to	OH and	NH ₂ . B	road single	t at § 2.16	(OH). ^{J4} J	F-3.H-5 val	ue. <i>k5J</i> _{F.3}	. _{H-6} value	, 'Refers t	to allylic	coupling J46.
"Measured splittir determined becaus	ig, not net se of ill-res	cessarily t solved sig	the true J mal.	value beci	ause of s	econd-orde	er effects.	Approxin	nated froi	m the pat	ttern of t	he comple	х, Н-3 n	ultiplet. "Not
		,												

206

¹H-N M R -SPECTRAL DATA AT 300 MHz

TABLE I

TABLE II

¹³ C-N	M	R	SPECTRAL DATA	
-------------------	---	---	---------------	--

Compound ^a	Chemic	al shifts ^b (¹³ (C- ¹⁹ F coupli	ngs, Hz, in p	arentheses)		
	C-1	C-2	C-3	C-4	C-5	C-6	ОМе
6 ^c	98.5 (30.7)	86.6 (179.8)	47.0	67.7	67.0	31.9	56.2
7 ^d	100.1 (31.5)	86.9 (180.1)	48.5 (27.3)	66.7	149.8	99.5	56.4
8 °	102.3 (21.5)	88.9 (187.5)	52.7 (17.5)	73.2 (7.8)	70.9	16.4	57.2
9 °	101.6 (23.0)	92.7 (180.4)	55.6 (18.1)	72.2 (8.3)	71.9	16.3	56.7
11 ^{d,e}	102.6 (22.4)	89.1 (184.0)	55.5 (16.1)	71.2 (7.8)	72.1	16.4	56.4
12 ^c	98.4 (30.8)	86.9 (179.2)	46.9 (18.1)	70.1 (8.3)	62.7	17.5	56.0
13 ^d	98.5 (32.0)	89.1 (~176)	50.6 (24.0)	67.8	64.5	17.6	55.4
15 ^d	97.7 (30.2)	86.1 (178.0)	49.9 (28.1)	68.7	64.4	17.4	55.8

^aIn chloroform- d_6 , unless indicated otherwise. ^bWith reference to the tetramethylsilane signal (p.p.m.). ^cAt 75.43 MHz. ^dAt 20.00 MHz. ^eIn acetone- d_6 .

spondence of vicinal F-2,H-1 couplings, which amounted to 8–10 Hz in the α -Daltro series (and in 7), but to only ~0-3 Hz in the β -L-galacto series, even though the angular relation of the coupled nuclei is similar (gauche) in both series. For the nuclei F-2,H-3 (gauche likewise), the values observed were 8–9 Hz for altrosides^{*}, and ~13 Hz for the galactosides.

The regularities in the ¹⁹F–¹H coupling interactions just mentioned deserve comment. Phillips and Wray²¹ have evaluated a large body of such data, pertaining to fluorinated carbohydrates²², as have the groups of Hall and Foster (partly in joint research)²³. In these studies, empirical rules were advanced for some dependencies of coupling constants on molecular geometry and on the nature of substituents present. Thus, geminal ¹⁹F–¹H coupling in fluoropyranose systems varies in a consistent manner within a range of ~5 Hz, depending on the electronegativity of vicinal substituents (with oxygen and halogen substituents only having been considered), and it varies similarly, and again consistently, with the spatial orientation of those substituents. Individual contributions of such substituent effects behave additively, and have been tabulated, so that ²J_{F,H} can be calculated for any given fluoropyranose structure, by adding (positive or negative) increments to a basic value of 50 Hz, derived from measurements in unperturbed model-systems^{21b}. If

^{*}Our data (Table I) agreed completely with the geminal and vicinal $J_{F,H}$ values (44-46 and 8-9 Hz, respectively) reported (ref. 7) for the α -D-altro compound 4 and the 4,6-dibenzoate and -diacetate prepared from it following debenzylidenation.

one uses this procedure^{21b} for the present series of aminofluoro sugars, tentatively allowing the parameters proposed for oxygen substituents to apply, unchanged, to the various nitrogen substituents (i.e., without initially attempting to differentiate any effects of electronegativity), then one obtains ${}^{2}J_{\rm EH}$ values of 47 Hz for the α -D-altro compounds, 50 Hz, for the β -L-galacto compounds, and 52 Hz for the α -D-gluco compound 5. It is satisfying to note that the trend in these empirically calculated figures accords well with the trend actually observed (45.0 ± 1 , 51.8 ± 1.1 , and 53.6); evidently, the approximations made in using parameters originally elaborated for oxygen rather than nitrogen substituents caused no deviations larger than those to be expected (1-2 Hz)^{21b} from this method in any event. In fact, the use of modified increments reflecting the lower electronegativity of nitrogen, which might seem appropriate, would lead to a convergence of the calculated values toward the base value of 50 Hz, and thus to an *increased* discrepancy with the experimental data. Moreover, it is noteworthy that each pair of configurationally identical amino- and trifluoroacetamido-glycosides (9/11 and 13/15) showed no significant difference in ${}^{2}J_{\rm FH}$. The observations tend to suggest that an additional factor operates in amino-nitrogen substituents, compensating for differential electronegativities.

Let us now turn to the vicinal ${}^{19}F^{-1}H$ interactions, where the situation appears to be more complex. Similar calculation procedures have been proposed^{21a}, permitting the prediction of variations, in gauche couplings, from the unperturbed value (16.0 Hz) observed in fluoroethane. The standard deviations from experimental data for a large variety of fluorinated pyranoses was less than 1 Hz, independently of the nature of oxygen substituent (OH, OMe, OBz, or OAc)^{21a}. Three additively contributory factors were used (numerical increments in parentheses): a_{i} the number of substituent oxygen atoms on the carbon atoms of the coupling fragment (-2.5 Hz each); b, the presence of an oxygen atom antiperiplanar to the fluorine atom via the coupling pathway (-7 Hz); and c, the presence of an oxygen group vicinal and antiperiplanar to the C-C bond of the coupling pathway (-2 Hz when the coupled nucleus, either F or H, that is situated on the central carbon atom of the system is equatorial, or +2 Hz when it is axial). So calculated, ${}^{3}J_{E2 H_{1}}$ = 2 Hz is predicted for 2-deoxy-2-fluoro- β -L-galactopyranose- ${}^{1}C_{4}$. The values found for the 3-aminated derivatives 8, 9, and 11 were quite close (<0.5-3.3 Hz), indicating that factor c, which is the only one having experienced structural changes, is not particularly sensitive to replacing the oxygen by an amino or acylamino group. By contrast, the ${}^{3}J_{F-2H-1}$ values of 8–10 Hz found for the 3-aminated altrosides 6, 12, 13, and 15 (and also for the related enoside 7) differed substantially from the value of 4 Hz calculated for 2-deoxy-2-fluoro- α -D-altropyranose- ${}^{4}C_{1}$. In this case, factor c does not enter into the computation, as the (axial) 3-substituent is not antiperiplanar with the C-1,2 bond. Evidently, an axial amino or acylamino group, trans-vicinal to an axial fluorine atom but situated *outside* the coupling pathway (as opposed to the situation in factor b, above), makes an appreciable, *positive* contribution (4-6 Hz) to the amount of gauche F,H coupling.

For ${}^{3}J_{F,2 H,3}$ in 2-deoxy-2-fluoro- β -L-galactopyranose- ${}^{1}C_{4}$ the calculated value is 11.5 Hz, and the analogs 8, 9, and 11 showed 12.5-13.5 Hz, indicating that the factor a also is not very sensitive to exchanging oxygen for nitrogen as an (equatorial) substituent atom. The marginal, if at all significant, effect of this exchange appears to parallel that observed for factor c, and in both cases the power to decrease vicinal coupling was, in nitrogen, nearly the same as, or at most slightly smaller than, that in oxygen (In terms of factor c, the NHCOCF₃ group appeared slightly more effective; see the exceptionally small F-2,H-2 coupling in 11.) Convincing support for this general notion was provided by the two vicinal F.H couplings present in the 2-benzamido-3-fluoroglucoside 5, which possesses for either coupling pathway the structural features defining factors a and c: for the F-3,H-2 interaction, a is due to the 2-benzamido group and c, to the O-4 atom; and for the F-3,H-4 interaction, these same features apply in reverse order. The calculated $J_{\rm FH}$ values (implying OH instead of NHBz) are identical (11.5 Hz), and the values found were 12.1 and 12.4. However, as far as factor a is concerned, the foregoing congruity holds only for *equatorial* nitrogen substituents on the coupling fragment. Thus, the altrosides 6, 12, and 15, as well as those referred to in a preceding footnote, and also the enoside 7 (all of which possess an axial nitrogen substituent, constituting factor a for the F-2,H-3 coupling) displayed $J_{F-2,H-3}$ 8–10 Hz, whereas the value calculated for 2-deoxy-2-fluoro- α -D-altropyranose is 4.5 Hz. In the latter molecule, the OH-3 group, simultaneously embodying factors a and b, contributes -9.5 Hz to the calculation, and it is seen that a nitrogen substituent in the same place is only about half as active in diminishing the vicinal coupling, with a contribution of -4 to -6 Hz. In summary, then, the foregoing comparison of substituent effects on ¹⁹F-¹H coupling in fluoropyranosides indicates that the effects of oxygen and (amino) nitrogen substituents may be near-equivalent in some cases, but markedly different in others, depending upon the substitution pattern. Good correlations in $J_{\rm FH}$ values among structurally comparable sets of aminofluoroglycosides were noted.

After this work had been completed, a new approach to L-daunosamine was described¹⁶, similar in concept to the present synthesis of **8**; it employed the known reaction⁸ of **1** to give the 2-chloro analog of **4**, with the chlorine atom to be removed reductively at a subsequent stage. Several further, 2,3-vicinal aminofluoro-glycosides were recently synthesized²⁴ by fluorination of 2,3-(N,N-diallylaziridinium)pento- and hexo-pyranosides, followed by N-deallylation.

EXPERIMENTAL

General methods. — The following solvent combination (v/v) were employed for chromatography: A, 3:7 ethyl acetate-cyclohexane; B, the same solvents, but 1:4; C the same, but 1:9; D, ethyl acetate-hexane, 3:2; E, the same solvents, but 3:7; F the same, but 1:4; G, 1:4 ether-benzene; H, the same, but 1:9; I, 3:2 acetone-benzene; and J, the same, but 1:9. In t.l.c., spots were made visible by spraying the plates with 5% sulfuric acid in ethanol, and heating them briefly on a hot-plate. Optical rotations were measured with a Perkin–Elmer 241 polarimeter at $\sim 25^{\circ}$, and refer to chloroform solutions unless indicated otherwise.

Methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro- α -D-altropyranoside (4) and methyl 2-benzamido-4,6-O-benzylidene-2,3-dideoxy-3-fluoro- α -Dglucopyranoside (5). — Methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)- α -D-glucopyranoside (2) was prepared as described²⁵; m.p. 196°, $[\alpha]_{\rm D}$ +76.8°; lit.²⁵ m.p. 195–195.5°, $[\alpha]_{\rm D}$ +77.5°. In the operations that follow, scrupulous exclusion of moisture was mandatory; oven-dried apparatus and a dry nitrogen atmosphere were provided for the reaction, and solutions were transferred by syringe in a drybox. Tetrabutylammonium fluoride trihydrate (31.5 g, 0.1 mol) was dehydrated by heating it for 3 days at 55°, in an oil-pump vacuum over a large quantity of phosphorus pentaoxide, and then dissolved in acetonitrile (36 mL, previously distilled from P₂O₅), and the solution stored over 4Å molecular sieve. Onethird of the volume of this reagent (containing 0.033 mol of the anhydrous fluoride) was used for the reaction with 2 (2.0 g, 4.32 mmol). The crystalline sugar was mixed with part of the reagent (~ 11 mmol), the mixture was stirred and gently heated (oil bath, 80°), the remainder of the reagent (22 mmol) was added dropwise in the course of 5 h, and heating was then continued for 18-20 h. Monitoring by t.l.c. (solvent A) indicated rapid consumption of **2** and gradual formation of two, slightly faster-moving products, together with slow-moving by-products. The fastermoving spot that appeared first was judged to be due to the N-benzoylepimine 3 (by comparison with an authentic sample²⁶), and the second spot, which appeared more slowly (and migrated faster than the first), was due to the fluoroaltroside 4. The spot corresponding to 3 gradually decreased in intensity but did not disappear completely because, as was subsequently ascertained, the minor reaction product 5 has almost the same $R_{\rm F}$ value in the system employed. The slow-moving material seen additionally consisted of at least two by-products, as was revealed by t.l.c. with solvent D (which did not differentiate 3, 4, and 5).

The mixture was poured into ice-water, and the precipitate was collected, washed with water, dissolved in ethyl acetate, and combined with an ethyl acetate extract of the aqueous filtrate. The organic solution was washed with water, dried (MgSO₄), concentrated, and chromatographed on a dry-packed column of silica gel (80 g, 60-200 mesh) with solvent C followed by solvent B as eluants, to give 4 (1.05 g, 63%) as an amorphous, and 5 (100 mg, 6%) as a crystalline solid.

The 2-fluoroaltroside 4 showed $[\alpha]_D$ +107.5° (c 1.2), and its ¹H-n.m.r. data agreed with those reported⁷.

The 3-fluoroglucoside **5** showed, after recrystallization from ethyl acetatehexane, m.p. 274–275°, $[\alpha]_D$ +77° (c 0.1); mass spectrum (c.i., ether): m/z 388; see Table I for the ¹H-n.m.r. data.

Anal. Calc. for C₂₁H₂₂FNO₅ (387.4): C, 65.10; H, 5.72; N, 3.62. Found: C, 64.92; H, 5.80; N, 3.46.

Methyl 3-benzamido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-2-fluoro-α-D-altro-

pyranoside (6). — To a solution of 4 (1.14 g, 2.9 mmol) in dry carbon tetrachloride (40 mL, previously passed through a layer of neutral aluminum oxide) was added N-bromosuccinimide (540 mg, 3 mmol) and barium carbonate (0.3 g). The mixture was boiled under reflux for 3 h and then filtered, and the filter residue was washed several times with hot carbon tetrachloride. The combined filtrate was evaporated, and the resulting solid dissolved in ether. Washing with water, drying (MgSO₄), and evaporation of the solution led to a foam that crystallized from ether-hexane to give 6 (1.123 g, 82.4%), m.p. 112–114°, $[\alpha]_D$ +101° (c 1.3); mass spectrum (c.i., ether), m/z 466 and 468.

Anal. Calc. for C₂₁H₂₁BrFNO₅ (466.3): C, 54.09; H, 4.54; N, 3.00. Found: C, 54.03; H, 4.67; N, 2.90.

Methyl 3-benzamido-4-O-benzoyl-2,3,6-trideoxy-2-fluoro- α -D-arabino-hex-5enopyranoside (7). — A solution of **6** (322 mg, 0.69 mmol) in dry pyridine (5 mL) containing a few crystals of 4-(dimethylamino)pyridine was stirred with silver fluoride (160 mg, 1.26 mmol) for 6 h at room temperature, in the dark. Several solvent systems that were tried failed to separate **6** and the product **7** satisfactorily in t.l.c.; with solvent *E*, the $R_{\rm F}$ values were quite similar, but the spots had distinguishable colors (violet and brownish, respectively). The mixture was diluted with ether (30 mL) and filtered, and the filter residue was washed exhaustively with ether. Evaporation of the filtrate gave a syrup from which several portions of added toluene were evaporated. A solution of the syrup in ether was then passed through a short column of silica gel, and evaporated, to give **7** that crystallized from hexane-ether; yield, 253 mg (93%); m.p. 120–122°; $[\alpha]_{\rm D}$ +131.5° (c 0.45); mass spectrum (e.i.): m/z 385.

Anal. Calc. for $C_{21}H_{20}FNO_5$ (385.4): C, 65.45; H, 5.23; F, 4.93; N, 3.63. Found: C, 65.37; H, 5.11; F, 4.78; N, 3.47.

Methyl 3-benzamido-4-O-benzoyl-2,3,6-trideoxy-2-fluoro- β -L-galactopyranoside (8). — Brown palladium oxyhydrate on barium sulfate (Kuhn catalyst²⁷, 0.66 g) suspended in methanol (15 mL) was prehydrogenated, compound 7 (544 mg) in methanol (15 mL) was then added, and hydrogenation was performed at ordinary temperature and pressure for 2 h. The conversion of 7 into more slowly migrating 8 (major product) and its 5-epimer 12 (minor product) was monitored by t.l.c. (solvent H). Filtration, exhaustive washing of the catalyst with methanol, and evaporation of the filtrate gave a material that was chromatographed on a dry-packed column of silica gel (25 g, 60–200 mesh), by use of solvent H (30 mL) followed by solvent G. Early fractions contained mixtures of 12, 8, and traces of 7. Later fractions yielded pure 8 which crystallized on trituration with ether and hexane as white needles (338 mg, 62%), m.p. 194–196°, $[\alpha]_D$ –154.4° (c 0.8); mass spectrum (c.i., ether): m/z 388.

Anal. Calc. for C₂₁H₂₂FNO₅ (387.4): C, 65.10; H, 5.72; N, 3.61. Found: C, 64.97; H, 5.71; N, 3.63.

Methyl 3-amino-2,3,6-trideoxy-2-fluoro- β -L-galactopyranoside (9). — Compound 8 (426 mg) was saponified by boiling it under reflux in a solution of sodium

hydroxide (1 g) in 3:1 (v/v) 2-methoxyethanol-water (25 mL) for 18 h, followed by further boiling (3 h) with additional sodium hydroxide (0.2 g) in 2:3 (v/v) 2methoxyethanol-water (10 mL). Formation of a single, slow-moving, ninhydrinpositive product was indicated by t.l.c. (solvent *I*). The cooled mixture was diluted with water, extracted with chloroform (5 ×), concentrated to a conveniently small volume, and subjected to an overnight, continuous extraction with chloroform. The combined extracts were dried (MgSO₄), and evaporated, to give crystalline material. Recrystallization from ethyl acetate-ether-hexane furnished pure **9** (168 mg, 85.3%), m.p. 177–178°, $[\alpha]_D + 9.4^\circ$ (c 1.2); mass spectrum (c.i., ether): *m/z* 180.

Anal. Calc. for C₇H₁₄FNO₃ (179.2): C, 46.92; H, 7.88; N, 7.82. Found: C, 46.85; H, 7.70; N, 7.60.

Methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido- β -L-galactopyranoside (11). — A chilled solution of 9 (44 mg) and trifluoroacetic anhydride (0.6 mL) in anhydrous ether (1.8 mL) was stirred for 3 h at 0°. T.l.c. with solvent I then revealed a single, fast-moving product (the N, O-diacyl derivative 10). The solvent was evaporated, with repeated additions of fresh ether, and the residue was dissolved in methanol (2.5 mL) and allowed to stand for 16 h at room temperature. Complete conversion of 10 ($R_{\rm F}$ 0.5) into 11 ($R_{\rm F}$ 0.15) was indicated by t.l.c. (solvent F). Following evaporation of the methanol, the product was crystallized from ethyl acetate-hexane; yield, 56 mg (83%), m.p. 238-240° with sublimation, [α]_D -67.7° (c 0.3, methanol); mass spectrum (c.i., ether): m/z 276.

Anal. Calc. for C₉H₁₃F₄NO₄ (275.2): C, 39.28; H, 4.76; N, 5.09. Found: C, 39.42; H, 5.00; N, 4.99.

Methyl 3-benzamido-4-O-benzoyl-2,3,6-trideoxy-2-fluoro- α -D-altropyranoside (12). — The 6-bromoglycoside 6 (569 mg, 1.22 mmol), tributyltin hydride (0.80 mL, 3 mmol), and azobis(isobutyronitrile) (26 mg) were heated, under nitrogen, in dry benzene (10 mL, distilled over sodium) at the reflux temperature for 6.5 h. The conversion of 6 into slightly slower-moving 12 was monitored by t.l.c. (solvent G). A faster-moving spot was due to non-carbohydrate material. After cooling, a small amount of silica gel was added to the mixture, and the solvent was evaporated. The impregnated gel was placed onto a dry-packed column (20 g of SiO₂), which was eluted with solvent F. The fractions containing only 12 gave the product in almost quantitative yield (466 mg, 98.5%), crystallized from ether-hexane; m.p. 119–120°, $[\alpha]_{\rm D}$ +159.4° (c 0.5); mass spectrum (c.i., ether): m/z 388.

Anal. Calc. for $C_{21}H_{22}FNO_5$ (387.4): C, 65.10; H, 5.72; N, 3.61. Found: C, 65.27; H, 5.81; N, 3.53.

Methyl 3-amino-2,3,6-trideoxy-2-fluoro- α -D-altropyranoside (13). — Compound 12 (470 mg) was saponified by boiling it for 29 h in a solution of sodium hydroxide (1.4 g) in 2-methoxyethanol (26 mL) and water (9 mL). T.I.c. with solvent J revealed the complete conversion of 12 into a single, slow-moving, ninhydrin-positive product. The cooled mixture was diluted with some water and extracted with chloroform (6 times). The dried extract was concentrated to give a yellow syrup which was passed through a bed of silica gel with chloroform followed by ethanol. Evaporation of the effluent gave **13** (216 mg, 99%), still syrupy and not entirely pure but securely characterized by its ¹H- and ¹³C-n.m.r. spectra. On storage in a refrigerator, slow crystallization occurred, and recrystallization from ether-hexane then gave 131 mg (62%) of **13** showing m.p. 79-81° and $[\alpha]_D$ +146° (c 0.2).

Anal. Calc. for C₇H₁₄FNO₃ (179.2): C, 46.92; H, 7.87; N, 7.82. Found: C, 47.06; H, 7.75; N, 7.91.

Methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido- α -D-altropyranoside (15). — The trifluoroacetylation of 13 (94 mg) to give the N, O-diacyl derivative 14 (R_F 0.48, solvent F; characterized by t.l.c. only), and the subsequent methanolysis to give 15 (R_F 0.25), were performed in full analogy to the operations described for 11, except that the reaction times were 9 and 12 h, respectively. The product was purified by passage through a small column of silica gel by means of solvent F, and it crystallized on storage at 0°. Recrystallization from ether-hexane gave 15 (87 mg, 60%), m.p. 95–96.5°, [α]_D +28.4° (c 0.32); mass spectrum (c.i., ether): m/z 276.

Anal. Calc. for $C_9H_{13}F_4NO_4$ (275.2): C, 39.28; H, 4.76; N, 5.09. Found: C, 39.55; H, 4.83; N, 5.10.

ACKNOWLEDGMENT

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

- 1 F. ARCAMONE, *Doxorubicin, Anticancer Antibiotics*, Academic Press, New York, 1981; D. HORTON AND W. PRIEBE, in H. EL KHADEM (Ed.), *Anthracycline Antibiotics*, Academic Press, New York, 1982, pp. 197-224.
- 2 E.-F. FUCHS, D. HORTON, W. WECKERLE, AND E. WINTER-MIHALY, J. Med. Chem., 22 (1979) 406-411; D. HORTON AND W. R. TURNER, Carbohydr. Res., 77 (1979) c8-c11; D. HORTON, W. WECKERLE, E.-F. FUCHS, T. M. CHEUNG, B. WINTER, AND R. J. SORENSON, U.S. Pat. 4,201,773 (1980); D. HORTON, W. PRIEBE, AND W. R. TURNER, Carbohydr. Res., 94 (1981) 11-25; D. HORTON AND W. PRIEBE, J. Antibiot., 34 (1981) 31-37.
- 3 D. HORTON, W. PRIEBE, AND O. VARELA, Abstr. Pap. Int. Carbohydr. Symp., 11th, (1982) Abstr. I-41; D. HORTON AND W. PRIEBE, U.S. Pat. 4,427,664 (1984); idem, J. Antibiot., 36 (1983) 1211-1215; D. HORTON, W. PRIEBE, AND O. VARELA, J. Antibiot., 37 (1984) 853-858; idem, Carbohydr. Res., 130 (1984) C1-C3.
- 4 H. H. BAER AND Z. S. HANNA, Carbohydr. Res., 94 (1981) 43-55; Can. J. Chem., 59 (1981) 889-906;
 H. H. BAER AND F. F. Z. GEORGES, Can. J. Chem., 55 (1977) 1348-1353; H. H. BAER AND C.-W. CHIU, Can. J. Chem., 52 (1974) 122-124; Carbohydr. Res., 31 (1973) 347-357.
- 5 H. H. BAER AND H. R. HANNA, Can. J. Chem., 58 (1980) 1751–1758; H. H. BAER AND F. F. Z. GEORGES, Carbohydr. Res., 55 (1977) 253–258; Can. J. Chem., 55 (1977) 1100–1103; H. H. BAER, K. ČAPEK, AND M. C. COOK, Can. J. Chem., 47 (1969) 89–97.
- 6 T. TSUCHIYA, T. TORII, Y. SUZUKI, AND S. UMEZAWA, Carbohydr. Res., 116 (1983) 277-287.
- 7 L. HOUGH, A. A. E. PENGLIS, AND A. C. RICHARDSON, Carbohydr. Res., 83 (1980) 142-145.
- 8 Y. ALI, A. C. RICHARDSON, C. F. GIBBS, AND L. HOUGH, Carbohydr. Res., 7 (1968) 255-271.
- 9 D. HORTON AND W. WECKERLE, Carbohydr. Res., 44 (1975) 227-240.
- 10 M. J. BLAIR, Methods Carbohydr. Chem., 2 (1963) 415-418.
- 11 L. HOUGH, R. KHAN, AND B. A. OTTER, Adv. Chem. Ser., 74 (1968) 120-123; R. KHAN AND L. HOUGH, Carbohydr. Res., 24 (1972) 147-151.

- 12 D. IKEDA, T. TSUCHIYA, AND S. UMEZAWA, Bull. Chem. Soc. Jpn., 33 (1971) 2529-2537.
- 13 (a) T. M. CHEUNG, D. HORTON, AND W. WECKERLE, Carbohydr. Res., 58 (1977) 139–151; (b) C. MONNERET, C. CONREUR, AND Q. KHUONG-HUU, *ibid.*, 65 (1978) 35–45; (c) I. PELYVÁS, F. SZTARICSKAI, L. SZILÁGYI, R. BOGNÁR, AND J. TAMÁS, *ibid.*, 76 (1979) 79–84.
- 14 T. M. CHEUNG, D. HORTON, R. J. SORENSON, AND W. WECKERLE, Carbohydr. Res., 63 (1978) 77-89.
- 15 L. E. S. BARATA, A. J. MARSAIOLI, L. VALENTE, A. OLESKER, G. LUKACS, AND T. T. THANG, Carbohydr. Res., 90 (1981) 326-328.
- 16 M. K. GURJAR, V. J. PATH, J. S. YADAV, AND A. V. RAMA RAO, Carbohydr. Res., 129 (1984) 267-270.
- (a) G. DESCOTES, A. FAURE, AND J. C. MARTIN, J. Carbohydr. Nucleos. Nucleot., 1 (1974) 133–159;
 (b) J. BOIVIN, M. PAIS, AND C. MONNERET, Carbohydr. Res., 64 (1978) 271–278; (c) T. F. GALLAGHER AND D. HORTON, *ibid.*, 116 (1983) 227–237.
- 18 R. D. GUTHRIE AND G. P. B. MUTTER, J. Chem. Soc., (1964) 1614-1622.
- 19 F. ARCAMONE, S. PENCO, A. VIGEVANI, S. REDAELLI, G. FRANCHI, A. DI MARCO, A. M. CASAZZA, T. DASDIA, F. FORMELLI, A. NECCO, AND C. SORANZO, J. Med. Chem., 18 (1975) 703–707.
- 20 H. G. KUIVILA, Synthesis, (1970) 499-509.
- 21 (a) L. PHILLIPS AND V. WRAY, J. Chem. Soc. (B), (1971) 1618–1624; (b) J. Chem. Soc., Perkin Trans. 2, (1974) 928–933; (c) J. W. EMSLEY, L. PHILLIPS, AND V. WRAY, Progr. Nucl. Magn. Reson. Spectrosc., 10 (1976) 83–756.
- 22 A. A. E. PENGLIS, Adv. Carbohydr. Chem. Biochem., 38 (1981) 195-285.
- L. D. HALL AND J. F. MANVILLE, Can. J. Chem., 47 (1969) 19–30, 361–377, 379–385; A. B. FOSTER, R. HEMS, AND L. D. HALL, *ibid.*, 48 (1970) 3936–3945; J. S. BRIMACOMBE, A. B. FOSTER, R. HEMS, J. H. WESTWOOD, AND L. D. HALL, *ibid.*, 48 (1970) 3496–3952; L. D. HALL, R. N. JOHNSON, A B FOSTER, AND J. H. WESTWOOD, *ibid.*, 49 (1971) 236–240; J. ADAMSON, A. B. FOSTER, L. D. HALL, R. N. JOHNSON, AND R. H. HESSE, Carbohydr. Res., 15 (1970) 351–359; A. B. FOSTER, R. HEMS, J. H. WESTWOOD, AND L. D. HALL, *ibid.*, 23 (1972) 316–318; A. B. FOSTER, J. H. WESTWOOD, B. DONALDSON, AND L. D. HALL, *ibid.*, 25 (1972) 228–231; and further articles by these groups cited therein, and in refs. 21b and 22.
- 24 D. PICQ, D. ANKER, C. ROUSSET, AND A. LAURENT, Tetrahedron Lett., 24 (1983) 5619-5622.
- 25 C. F. GIBBS, L. HOUGH, AND A. C. RICHARDSON, Carbohydr. Res., 1 (1965) 290-296.
- 26 D. H. BUSS, L. HOUGH, AND A. C. RICHARDSON, J. Chem. Soc., (1963) 5295-5301.
- 27 R. KUHN AND H. J. HAAS, Angew. Chem., 67 (1955) 785.