Sulfurization of Azines; Part IX. (1-Chloroalkylthio)-azines¹

Andrzej Maślankiewicz*, Leszek Skrzypik

Department of Organic Chemistry, Chair of Bioorganic and Biophysical Chemistry, Silesian School of Medicine, Pl-41-200 Sosnowice, Poland

Chlorination of 2-, 3-, or 4-alkylthioquinolines (or -pyridines) with N-chlorosuccinimide or sulfuryl chloride affords 2-, 3-, or 4-(1-chloroalkylthio-quinolines (or -pyridines), respectively, which in the case of ethyl or propyl compounds can be dehydrochlorinated to 1-alkenylthio derivatives, 4-Chloro-3-(1-chloroalkylthio)-quinolines react with thiourea to give 2-alkyl-1,3-dithiolo[4,5-c]quinolines.

Several papers deal with the halogenation of alkylthioazines, e.g., the preparation of 5-bromo-8-alkylthioquinolines via bromination of 8-alkylthioquinolines², or the formation of 4-chloroquinolines by "wet" chlorination of 4-benzylthioquinolines^{3,4}. However, there are no reports concerning preparation and properties of (1-chloroalkylthio)-azines.

(1-Chloroalkylthio)-quinolines (2) can be obtained by chlorination of the previously prepared 2-,3-, and 4-methylthioquinolines⁵ and 4-chloro-3-alkylthioquinolines⁶ (Schemes A and B). Taking into account the well established reactivity of 1-chloroalkylthio compounds⁷, an extension of the synthetic applicability of quinoline sulfurization products (converted into S-alkyl derivatives) is thus apparent.

In order to obtain (1-chloroalkylthio)-azines 2, N-chlorosuccinimide, N-bromosuccinimide, sulfuryl chloride, and

Scheme A

836 Communications SYNTHESIS

Table 1. α-Chlorination of (Alkylthio)-azines 1 and of Methyl Phenyl Sulfide, and Attempted Bromination

Subst	trate 1	Halogenating Agent	Reaction	Pro- duct	Conver- sion of	Yield of 2		Molecular Formula ^b	
Azinyl Group R			(Method)	Time [h]	auct	sion of 1 [%] ^a	[%]	[°C]	Formula
la	2-pyridinyl	Н	NCS (A)	0.75	2a	96	90 ^d	oil	C ₆ H ₆ CINS (159.6)
1 b	3-pyridinyl	Н	NCS (A)	1	2 b	58	50 ^d	oil	C ₆ H ₆ CINS (159.6)
1c	4-pyridinyl	Н	NCS (A)	1	2e	17	7	oil	C ₆ H ₆ CINS (159.6)
14	4-pyridinyl	CH ₃	NCS (A)	1	2d	85	72 ^d	oil	C ₇ H ₈ CINS (173.6)
1e	2-quinolinyl	Н	NCS (A)	1	2 e	94	89 ^d	52-55	C ₁₀ H ₈ CINS (209.7)
			SO_2Cl_2 (B)	3	2e	25	18°		
			NBS (A)	5	e	6	6°		
1f	2-quinolinyl	CH ₃	NCS (A)	1	2f	100	100	oil	C ₁₁ H ₁₀ CINS (223.7)
			SO_2Cl_2 (B)	3	2f	29	22°		
			$SO_2Cl_2(B)$	24	2 f	100	91°		
			$SO_2Cl_2(B)^g$	2.5	2ff	100	80°		
			$SOCl_2^{-g}$	10	h	70	31°		
1 g	3-quinolinyl	Н	NCS (A)	1	2g	65	58ª	oil	C ₁₀ H ₈ ClNS (209.7)
1h	3-quinolinyl	CH ₃	NCS (A)	1	2h	100	100	oil	$C_{11}H_{10}CINS$ (223.7)
li	4-quinolinyl	Н	NCS (A)	0.5	2i	14	6	oil	C ₁₆ H ₈ CINS (209.7)
1j	4-quinolinyl	СН3	NCS (A)	1	2j	90	80 ^d	oil	$C_{11}H_{10}CINS$ (223.7)
1k	4-chloro-3-quinolinyl	Н	NCS (A)	1	2k	82	75 ^d	82–85	$C_{10}H_7Cl_2NS$ (244.1)
			NBS (A)	3	e	~3	~3°		
			SO_2Cl_2 (B)	48	$2k^f$	100	92°		
#1	4-chloro-3-quinolinyl	CH_3	NCS (A)	0.5	21	100	100	oil	$C_{11}H_9Cl_2NS$ (258.2)
			SO_2Cl_2 (B)	24	$2l^{f}$	56	49°		
			$SO_2Cl_2(B)$	48	21 ^f	100	89°		
			SOCl ₂ g	18		0	0		
1 m	4-chloro-3-quinolinyl	C_2H_5	NCS (A)	1	2m	100	100	oil	$C_{12}H_{11}Cl_2NS$ (272.2)
ìn	8-quinolinyl	Н	NCS (A)	0.5	2n	30	24°		
10	1-isoquinolinyl	Ĥ	NCS (A)	1	20	96	91 ^d	oil	C ₁₀ H ₈ CINS (209.7)
	methoxybenzene (anisole)		NCS (A)	1	-	0			
	methyl phenyl sulfide (methylthiobenzene)		NCS (A)	1	i	87	74	b.p. 103-104°C/ 12 torr	Ref. 14, b.p. 98°C/12 torr

The reaction mixture contained product 2 and unconverted substrate 1. Conversion of 1 estimated by ¹H-NMR spectrometry.

thionyl chloride were examined as halogenating agents for alkylthioazines. We found that the reaction of alkylthioazines (1) with a 5-10% molar excess of N-chlorosuccinimide (Scheme A) gives high yields of (1-chloroalkylthio)-azines 2; it appears to be the most convenient method.

The reactions of 2-methylthio-, 2-ethylthio-, 4-chloro-3methylthio-, and 4-chloro-3-ethylthioquinolines (1e, f, k, l) with sulfuryl chloride (Scheme B) are slower than those with N-chlorosuccinimide. The reaction products 2e, f, k, l are sometimes accompanied by small amounts of undefined compounds.

The microanalyses were in good agreement with the calculated values: $C \pm 0.21$, $H \pm 0.12$, $N \pm 0.18$, $S \pm 0.20$, $Cl \pm 0.23$.

Yield of 2 formed in the chlorination reaction, estimated by ¹H-NMR spectrometry.

Yield of isolated product 2 (preparative TLC on silica gel using 5:2 cyclohexane/ethyl acetate as eluant) based on amount of 1 reacted. This product was a bromo analog of compound 2e or compound 2k, respectively.

The reaction mixture contained also 5-7% undefined compounds.

E The reaction was performed in boiling chloroform.

The reaction mixture contained about equal amounts of substrate 1f, product 2f, vinyl derivative 3, and some amounts of undefined compounds.

Chloromethyl phenyl sulfide (chloromethylthiobenzene).

Table 2. (1-Alkenylthio)-azines (3) and 1,3-Dithiolo[4,5-c] quinolines (4) Prepared

Substrate 2			Product	Yield	m.p. [°C] or b.p. [°C]/torr	Molecular Formula ^b	MS (15 eV) ^c
	Azinyl Group in 2 and 3	R		[_/0_]	or o.p. [C.j.tom		$m/e (M^+)$
2d	4-pyridinyl	Н	3d	80	oi)	C ₇ H ₇ NS (137.2)	137 (100%)
f	2-quinolinyl	Н	3f	61	oil	$C_{11}H_9NS(187.3)$	187 (41.2%)
lh .	3-quinolinyl	H	3h	81	oil	$C_{11}H_9NS$ (187.3)	187 (100%)
2j	4-quinolinyl	H	3j	80	oil	$C_{11}H_9NS$ (187.3)	187 (100%)
21	4-chloro-3-quinolinyl	Н	31	87	m.p. 70-72 b.p. 140-143/1	C ₁₁ H ₈ CINS (221.7)	221 (100%)
2m	4-chloro-3-quinolinyl	CH ₃	3m	77	m. p. 65-67 b. p. 176-178/0.8	C ₁₂ H ₁₀ CINS (235.7)	235 (100%)
	Azinyl Group in 2	R					s ann amh 1999 a' an ann amh 1990 a tha ann an ann an an an an ann an an an an
2k	3-quinolyl	Н	4a	82	m.p. 101-102	C ₁₀ H ₇ NS ₂ (205.1)	205 (100%)
21	3-quinolyl	CH ₃	4b	71	m. p. 81-83 b. p. 188-189/1	$C_{11}H_9NS_2$ (219.3)	219 (100%)
m	3-quinolyl	C_2H_5	4c	64	b. p. 185-186/1	$C_{12}H_{11}NS_2$ (233.2)	233 (59%)

Yield of isolated pure product.

Scheme B

The chlorination of ethylthio and propylthio compounds 1f, h, l, m with N-chlorosuccinimide (and in the case of compound 1f also with sulfuryl chloride) proceeds cleanly without formation of any alkenylthioquinolines 3; i.e., the HCl-elimination products of compounds 2)⁸.

4-Methylthiopyridine (1c) and 4-methylthioquinoline (1i) exhibited low reactivity toward N-chlorosuccinimide as compared to the 4-ethylthio compounds 1d and 1j and also to the 2- and 3-methylthio- and ethylthio derivatives 1a, b, e, f, g.

In contrast to the reactions with sulfuryl chloride and N-chlorosuccinimide, the reactions of alkylthioquinolines 1e and 1k with N-bromosuccinimide (Scheme B) or of compound 1e with thionyl chloride are ineffective.

The (1-chloroalkylthio)-azines 2 can be thermally transformed into the 1-alkenylthio derivatives 3:

$$\begin{array}{c|c} & Cl \\ Azinyl-S-CH-CH_2-R' & \xrightarrow{xylene,\triangle} & Azinyl-S-CH=CH-R' \\ & 2d,f,h,j,l,m & 61-87\% & 3d,f,h,j,l,m \end{array}$$

The reaction of 4-chloro-3-(1-chloroalkylthio)-quinolines $(2\mathbf{k}, \mathbf{l}, \mathbf{m})$ with thiourea produces 2-alkyl-1,3-dithiolo[4,5- ϵ]quinolines $(4\mathbf{a}, \mathbf{b}, \mathbf{c})$; Scheme **D**). These products are probably formed *via* chloro-monoisothiouronium salts which are hydrolyzed to give intermediate chloro-thiols (5). The transformation of chloro-thiols (5) into dithiols (5). The transformation of chloro-thiols (5) into dithiols (5) into the well-known reaction of 4-chloroquinolines with mercaptans applied to the preparation of alkyl or aryl (5) or aryl (5) aryl (5) in (

The microanalyses were in good agreement with the calculated values: $C \pm 0.15$, $H \pm 0.13$, $N \pm 0.17$, $S \pm 0.17$, $Cl \pm 0.18$.

^c Recorded on a LKB 9000 mass spectrometer.

d The structure of compound 3f was confirmed by its reaction with bromine 13.

838 Communications SYNTHESIS

Table 3. ¹H-NMR (CDCl₃) Data of Compounds 2, 3, 4^a

Compound	δ[ppm]
2a	5.18 (s, 2 H, S—CH ₂ Cl); 6.75–7.53 (m, 3 H, 3-H, 4-H,
2b	5- <u>H</u>); 8.35-8.43 (m, 1H, 6- <u>H</u>) 4.78 (s, 2H, S—С <u>H</u> ₂ Cl); 7.0-7.86 (m, 2H, 4- <u>H</u> , 5- <u>H</u>);
40	8.38–8.68 (m, 2H, 2-H, 6-H)
2c	4.78 (s, 2H, S—CH ₂ Cl); 7.08–7.15 (m, 2H, 3-H, 4-H);
2.1	8.33–8.43 (m, 2H, 2- $\underline{\text{H}}$, 6- $\underline{\text{H}}$) 1.77 (d, $J = 7$ Hz, 3H, CH—CH ₃); 5.83 [q, $J = 7$ Hz,
2d	1H, S—CH(Cl)—CH ₃]; 6.78-6.91 (m, 2H, 3-H, 5-
	H); 8.11–8.23 (m, 2H, 2-H, 6-H)
2e	5.38 (s, 2H, S—CH ₂ Cl); 7.03–8.0 (m, 6H _{arom})
2f	1.75 (d, $J = 7$ Hz, 3H, CH—CH ₃); 6.37 [q, $J = 7$ Hz, 1H, S—CH(Cl)—CH ₃]; 7.0–8.02 (m, 6 H _{arom})
2g	4.77 (s, 2H, S—CH ₂ Cl); 7.35–8.27 (m, 5H _{arom}); 8.85
-	(d, J = 1.8 Hz, 1 H, 2-H)
2h	1.78 (d, $J = 7$ Hz, 3 H, CH—CH ₃); 5.37 [q, $J = 7$ Hz, 1H, S—CH(Cl)—CH ₃]; 7.3–8.32 (m, 5 H _{arom}); 8.9 (d,
	J = 1.8 Hz, 1 H, 2 -H
2i	4.98 (s, 2H, S—CH ₂ Cl); 7.08 (d, $J = 4.2$ Hz, 1H, 3-
	H); 7.35–7.6 (m, 2H, 6-H, 7-H); 7.87–8.23 (m, 2H, 5-
7 :	H, 8-H); 8.62 (d, $J = 4.2$ Hz, 1H, 2-H) 1.73 (d, $J = 7$ Hz, 3H, CH—CH ₃); 5.67 [q. $J = 7$ Hz,
2j	1H. S-CH(Cl)-CH ₃]; 7.06 (d, $J = 4.2$ Hz, 1H, 3-
	H); 7.32–7.57 (m, 2 H, 6-H, 7-H); 7.84–8.21 (m, 2 H, 5-
	\underline{H} , 8- \underline{H}); 8.6 (d, $J = 4.2 \text{ Hz}$, 1H, 2- \underline{H}) 4.92 (s, 2H, S—C \underline{H}_2 CI); 7.43–7.82 (m, 2H, 6- \underline{H} , 7- \underline{H});
2k	4.92 (s, 2 H, 5 - С. <u>H</u> ₂ CH), 7.45 - 7.82 (m, 2 H, 0 - H), 8.02 - 8.25 (m, 2 H, 5 - <u>H</u> , 8 - <u>H</u>); 9.02 (s, 1 H, 2 - <u>H</u>)
21	$1.77 \text{ (d. } J = 7 \text{ Hz, } 3 \text{ H, CHCH}_3); 5.45 \text{ [q. } J = 7 \text{ Hz,}$
	1H, S—CH(Cl)—CH ₃]; 7.43–7.87 (m, 2H, 6-H, 7-
2m	H); $8.0-8.28$ (m, 2H, 5-H, 8-H); 9.03 (s, 1H, 2-H) 0.94 (t, $J = 7$ Hz, 3H), CH_2CH_3); 1.9 (m, 2H,
2m	CH-CH ₂ -CH ₃); 5.17 [t, $J = 7$ Hz, 1H,
	S—CH(Cl)—CH ₂ CH ₃]; 7.33–7.77 (m, 2H, 6-H, 7-
	H); 7.92–8.2 (m, 2H, 5-H, 8-H); 8.95 (s, 1H, 2-H) 5.24 (s, 2H, S—CH ₂ Cl); 7.26–7.48 (m, 4H _{aron}); 8.04
2n	$(dd, J = 8 \text{ Hz}, J = 1.7 \text{ Hz}, 1 \text{ H}, 4 \cdot \text{H}); 8.95 (dd, J)$
	= 4 Hz, J = 1.7 Hz, 1 H, 2 -H
20	5.38 (s, 2H), S—CH ₂ Cl); 7.27–7.72 (m, 4H _{arom}); 7.85–
3 d	8.07 (m, 1H _{arom}); 8.27 (d, $J = 6$ Hz, 111, 3-H) 5.11–5.4 (m, 2H, CH—CH ₂); 6.0–6.43 (m, 1H.
.50	S—CH=CH ₂); 6.67–6.8 (m, 2H, 3-H, 5-H); 8.0–8.12
	(m, 2H, 2-H, 6-H)
3f	5.2-5.5 (m, 2H, CH=CH ₂); $6.76-7.9$ (m, 7H, rest of
3h	protons) $4.92-5.33$ (m, 2H, CH=CH ₂); $6.05-6.5$ (m, 1H,
./	$S-CH=CH_2$); 7.03-7.93 (m, $5H_{arom}$); 8.7 (d, J
	= 1.8 Hz, 1H, 2-H)
3j	5.3–5.6 (m, 2H, CH=C $_{12}$); 6.2–6.6 (m, 1H, S—C $_{12}$ =C $_{12}$); 7.03 (d, J = 4.2 Hz, 1H, 3-H); 7.27–
	7.52 (m, 2H, 6-H, 7-H); 7.8-8.17 (m, 2H, 5-H, 8-H);
	8.56 (d, $J = 4.2 \text{ Hz}$, 1H, 2-H)
31	5.35–5.67 (m, 2H, CH=CH ₂); 6.32–6.75 (m, 1H), S—CH=CH); 7.4–7.75 (m, 2H, 6-H, 7-H); 7.9–8.2
	(m, 2H, 5-H, 8-H); 8.58 (s, 1H, 2-H)
3m	1.64 (d. $J = 5$ Hz, 3H, =CH-CH ₃); 5.87-6.17 (m,
	2H, CH=CH); 7.4 7.73 (m, 2H, 6-H, 7-H); 7.85-8.15 (m, 2H, 5-H, 8-H); 8.57 (s, 1H, 2-H)
4a	4.7 (s, 2H, S-C $_{12}$ -S); 7.45-7.7 (m, 3H, 7- $_{11}$, 8- $_{11}$,
-ru	9-H); 7.96-8.08 (m, 1H, 6-H); 8.63 (s, 1H, 4-H)
4b	1.4 (d, $J = 7$ Hz, 3 H, CH—CH ₃); 4.83 (q, $J = 7$ Hz,
	1H, CH—CH ₃); 7.4–7.68 (m, 3H, 7-H, 8-H, 9-H); 7.9–8.04 (m, 1H, 6-H); 8.61 (s, 1H, 4-H)
4e	0.9 (t, $J = 7 \text{ Hz}$, 3H, $CH_2 - CH_3$); 1.69 (m, 2H,
	CH $-$ CH $_2-$ CH $_3$); 4.79 (t, $J=7$ Hz, $\frac{1}{2}$ Hz, $$
	- C CH _CH CH \-7.41 7.74m &H (*H X:F) 9-11 F

The spectra were recorded on a Varian Anaspect EM 360 spectrometer at 60 MHz.

involving the formation of a 4-chloroquinolinium cation and a thiolate anion followed by nucleophilic displacement of the Cl-substituent by thiolate ion, has been proposed¹¹.

4-Chloro-3-alkylthioquinolines are purified as follows: a hot solution of the crude compound⁶ in tetrachloromethane is filtered; the filtrate is concentrated, and distilled under reduced pressure: 1k, b.p. $158-9^{\circ}\text{C}/0.6$ torr, m.p. $105-6^{\circ}\text{C}$ (ethanol); 1l, b.p. $160-2^{\circ}\text{C}/0.6$ torr, m.p. $59-61^{\circ}\text{C}$ (methanol); 1m, b.p. $169-170^{\circ}\text{C}/1$ torr, m.p. $42-44^{\circ}\text{C}$ (methanol).

3-Alkylthioquinolines (1g, h)¹²:

Tin (1.79 g, 0.015 g-atom) and 20% hydrochloric acid (50 ml) are added to the 4-chloro-3-alkylthioquinoline (1k or 1l; 10 mmol) and the mixture is stirred at $85-90^{\circ}$ C for 24 h. After cooling to room temperature, tin chloride complex of 3-alkylthioquinoline is filtered off and alkalized with an excess of 10% sodium hydroxide solution. 3-Alkylthioquinoline is extracted with ether (3×15 ml). The extract is dried with sodium sulfate, and distilled under reduced pressure to give the product 1g, h.

3-Methylthioguinoline (1 g); yield: 1.3 g (74%); b.p. 131~133°C/0.8 torr; m.p. 30~32°C (pentane).

MS (15 eV): m/e = 175 (M⁺, 100 %).

¹H-NMR data in agreement with Ref.⁵

3-Ethyithioquinoline (1 h); yield: 1.4 g (74%); b.p. 137-138 °C/0.8 to r.

MS (15 eV): $m/e = 189 \text{ (M}^+, 100 \%)$.

¹H-NMR (CDCl₃): $\delta = 1.03$ (t, 31I, J = 7 Hz, S-CH₂-CH₃); 2.60 (q, 2 H. J = 7 Hz, S-CH₂-CH₃); 7.38-7.88 (m, 3 II, 5-H, 6-H, 7-H); 7.94-8.33 (m, 2 H, 4-H, 8-H); 8.86 ppm (d, 1 H, J = 1.7 Hz, 2-H).

(1-Chloroalkylthio)-azines (2); General Procedures:

Method A, Chlorination of Alkylthioazines 1 with N-Chlorosuccinimide: A mixture of the alkylthioazine 1 (10 mmol), N-chlorosuccinimide (10.5–11 mmol), and anhydrous tetrachloromethane (50 ml) is irradiated with a 300 W lamp located at a distance of 10 cm. The mixture is boiled for 30–60 min with stirring, then allowed to cool to room temperature. Succinimide is filtered off and the filtrate is evaporated to dryness under reduced pressure. [For isolation of products 2c, i, see below]. In order to remove the residual succinimides, a solution of the crude product in dichloromethane (80 ml) is filtered through a 3 cm layer of neutral aluminum oxide. The filtrate is concentrated in vacuum. The compounds 2 thus obtained are stable in the refrigerator (4°C) for a period of serveral days.

In the case of the chlorination of 4-methylthiopyridine (1e) and 4-methylthioquinoline (1i), the chlorination products 2 are isolated from the semi-solid mixture of succinimides and product 2 (remaining after decantation of the tetrachloromethane solution) by shaking with saturated sodium hydrogen carbonate solution (30 ml) and extraction with tetrachloromethane (2×20 ml). The extract is dried with sodium sulfate, filtered and concentrated in vacuum to give compound 2c or 2i.

Method B, Chlorination of Alkylthioazines 1 with Sulfuryl Chloride: A mixture of the alkylthioquinoline 1e, f, k, 1 (10 mmol), freshly distilled sulfuryl chloride (2.70 g, 20 mmol), and dichloromethane (50 ml) is stirred and gently boiled for 24 h. After cooling to room temperature, the mixture is washed with aqueous 5% sodium hydrogen carbonate (30 ml). The organic layer is dried with sodium sulfate and the solvent is evaporated at water-bath temperature to give the product 2.

(1-Alkenylthio)-azines (3); General Procedure:

Method A, in the Absence of Base: A solution of the (1-chloroalkylthio)-azine 2 (10 mmol) in xylene (50 ml) is gently boiled for 3 h and then cooled to room temperature and extracted with 5% hydrochloric acid (50 ml). The aqueous layer is neutralized with 5% sodium hydrogen carbonate solution and extracted with tetra-chloromethane (2×20 ml). The extract is dried with sodium sulfate, filtered, and evaporated under reduced pressure to give the product

Method B, in the Presence of a Base: A solution of the (1-chloroalkylthio)-azine **2** (10 mmol) in xylene (50 ml) containing N,N-dimethylaniline (~ 1.9 ml, 15 mmol) is gently boiled for 3 h, and then cooled to room temperature. The solution is decanted from N,N-dimethylaniline hydrochloride, and distilled under reduced pressure; yield of products **3**: 61-87%.

1,3-Dithiolo[4,5-c]quinolines (4); General Procedure:

A mixture of the 4-chloro-3-(1-chloroalkylthio)-quinoline 2 (10 mmol), thiourea (0.761 g, 10 mmol), and anhydrous ethanol (50 ml) is stirred at room temperature to give a clear solution (\sim 15 min), then kept at 50 °C for 1 h, and refluxed for 15 min. After cooling to room temperature, the mixture is poured into water (200 ml), made alkaline with aqueous 10 % sodium hydroxide, and allowed to stand for 1 h. The product is extracted with tetra-chloromethane (2 × 20 ml); the extract is dried with sodium sulfate, and concentrated under reduced pressure to give the product 4.

Received: February 7, 1985 (Revised form: February 6, 1986)

Part VIII: Maślankiewicz, A., Pluta, K., Szmielew, M., Kowalska, A. Polish J. Chem. 1984, 58, 925.

² Buchmann, G., Schmuck, R. J. prakt. Chem. 1962, 288, 314.

³ Baker, R. H., Dodson, R. M., Riegel, B. J. Am. Chem. Soc. **1946**, 68, 2636.

¹ Kwart, H., Miller, L.J. J. Am. Chem. Soc. 1958, 80, 884.

⁵ Maślankiewicz, A. *Polish J. Chem.* **1980**, *54*, 2069.

⁶ Maślankiewicz, A., Pluta, K. Synthesis 1982, 54, 872.

⁷ Pokonova, Yu.V., Galoidsulfidy, *Izd. Leningradskogo Univ.*, Leningrad 1977, chapters 1.3. and 2.3.

⁸ Bordwell, F.G., Pitt, B.M. J. Am. Chem. Soc. 1955, 77, 572. reported that the chlorination of alkyl sulfides containing a β-hydrogen with sulfuryl chloride failed to yield 1-chloroalkyl sulfides; interpreted these results as elimination reactions. On the other hand, chlorination of methyl and ethyl sulfides with N-chlorosuccinimide (E. Vilsmaier, W. Sprüdel, Liebigs Ann. Chem. 1971, 747, 151) afforded the corresponding α-chlorination products.

⁹ Hamana, M., Kumadaki, S. Yakugaku Zasshi 1968, 88, 672. C. A. 1968, 69, 106503.

¹⁰ Renfrew, A. J. Am. Chem. Soc. 1946, 68, 1433,

¹ Iluminati, G., Linda, P., Marino, G. J. Am. Chem. Soc. 1967, 89, 3521.

² Rubtsov, M.V. Zh. Obshch. Khim. 1943, 13, 593.

³ Skvortsova, G. G., Kim, D. G., Kim, L. M. USSR Patent 854 930 (1981); C. A. 1982, 96, 35234.

⁴ Böhme, H., Fischer, H., Frank, R., *Liebigs Ann. Chem.* **1949**, *563*, 54.