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ABSTRACT: We herein report an iridium-catalyzed 
enantioselective -C(sp3)-H borylation of a wide range of 
azacycles. The combination of an iridium precursor and a chiral 
bidentate boryl ligand has shown effectively differentiating 
enantiotropic methylene C-H bonds from a single carbon center, 
affording a variety of synthetically useful azacycles from 
readily available starting materials with good to excellent 
enantioselectivities.

Optically active -functionalized azacycles, particularly 
tetrahydroisoquinolines (THIQs), pyrrolidines, and piperidines 
are a large family of natural products with extensive structural 
diversity and biological activity (Figure 1).1 The importance of 
these structures has been evidenced by their frequent use in 
drug discovery,1e,2 synthetic chemistry,3 and organocatalysis.4 
Accordingly, the development of efficient methods for the 
stereo-controlled synthesis of these frameworks has, therefore, 
attracted a great deal of attention. Generally, the de novo ring-
closure is a commonly used strategy to assemble these 
frameworks.5 On the other hand, direct asymmetric 
transformations of readily available azacycles also provide 
effective methods, including examples of hydrogenations 
isoquinolines and dihydroisoquinolines,6,7 deracemizations 
and cross-dehydrogenative couplings of THIQs,8,9 
dearomatization of pyridinium salt,10 and -functionalization 
of pyrrolidines (Scheme 1A).11 Another attractive alternative 
approach to the synthesis of these structures is transition-
metal-catalyzed enantioselective -C(sp3)-H functionalization 
of methylene C-H bonds (Scheme 1B).12 In this context, Yu and 
coworkers reported the first elegant example of Pd-catalyzed 
enantioselective -C(sp3)-H arylation of azacycles with 
arylboronic acids using thioamides as directing groups.13 The 
Glorius group developed a Rh-catalyzed thioamide-directed -
C(sp3)-H arylation of azacycles with aryl iodides.14 Nonetheless, 
this area is still underexplored and there remain distinct 
challenges. Firstly, the reaction type is limited to C-Ar bond 
formations; Secondly, the direct C(sp3)-H activation of THIQs’ 
C1 positions remains elusive. In views of the importance of the 
C1-functionalized THIQs, and the diversity of -substituents of 
saturated azacycles, it is appealing to develop novel and 
complementary α-C(sp3)-H functionalization methods. In this 
regard, the development of C(sp3)-H borylation could provide 

an attractive protocol in combination with well-established 
stereospecific transformations of the stereogenic C-B bonds.15 
It should also be noted that the borylated products, namely -
aminoboronates, have also served as key constituents in 
medicinal chemistry (Figure 1),1e and their stereo-controlled 
synthesis usually depends on chiral auxiliaries1e and catalytic 
asymmetric borylation of -unsaturated bonds.16 Their atom- 
and step-economic synthesis remains a formidable challenge.17
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Figure 1. Selected examples of bioactive chiral -functionalized 
azacyles.

Scheme 1. Asymmetric Synthesis of -Functionalized 
Azacycles via -C-H Functionalization
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Enantioselective transition-metal-catalyzed C-H 
borylation has emerged as a viable approach to obtain 
enantioenriched organoboron compounds with atom- and 
step-economy.17,18 However, it still suffers from limited 
reaction types. For example, although several elegant systems 
have been established to control regioselectivity of methylene 
C-H borylation of heterocycles enabled by Ir- and Rh-
catalysis,19 their asymmetric variants remain underdevloped.17 
The deficiency of research may arise from the lack of an 
adequate catalyst12b and difficulty in chiral differentiation of 
two enantiotopic methylene C-H bonds from a single carbon 
center.12a,13, 17,20 Recently, we disclosed Ir-catalyzed 
asymmetric C(sp2)-H borylation of diarylmethylamines19d and 
C(sp3)-H borylation of cyclopropanes19e using chiral bidentate 
boryl ligands (CBLs). The chiral induction was accomplished by 
desymmetrization of two enantiotropic carbons. As a 
continuous effort in this field, we herein report an Ir-catalyzed 
enantioselective methylene -C(sp3)-H borylation of azacycles 
using modified CBLs for the first time (Scheme 1C). Notably, the 
borylation occurs at C1 positions of the THIQ substrates. 
Table 1. Optimization of Reaction Conditions for 
Iridium-Catalyzed Enantioselective C(sp3)-H Borylation 
of 1aa.a

N

H H
N

Bpin

5 mol% CBL
2.5 mol% [IrCl(cod)]2

B2pin2, n-hexane
75 C, 18 h

1aa 2aa

N

N

pinB

pinB
O

NEt2

O

NEt2

NEt2

O

NEt2

O

I

II

entry CBL rrb yield (%)c ee (%)d

1 CBL1 63:37 27 30
2 CBL2 80:20 78 53
3 CBL3 90:10 88 64
4 CBL4 60:40 57 72
5 CBL5 94:6 86 85
6 CBL6 98:2 69 82
7 CBL7 >99:1 81 88
8 CBL8 >99:1 90 88
9 CBL9 >99:1 91 93
10e CBL9 >99:1 90 94
11e CBL10 >99:1 73 94
12e CBL11 >99:1 78 94
aUnless otherwise noted, all the reactions were carried out 
with 1aa (0.20 mmol), B2pin2 (0.30 mmol), CBL (0.01 mmol), 
[IrCl(cod)]2 (0.005 mmol) in n-hexane (2.0 mL) at 75 °C for 18 
h. brr refers to the regioisomeric ratio of 2aa/(I+II) and was 
determined by GC analysis. cIsolated yield. dThe enantiomeric 
excesses were determined by HPLC on a chiral stationary AD-
H column. eThe reaction was carried out at 70 ˚C for 18 h. 
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Our research commenced with the optimization of 
reaction conditions using THIQ 1aa with the directing group 
diethylcarbamoy as the pilot substrate. Preliminary 
experiment of 1aa with B2pin2 (Bis(pinacolato)diboron) in the 
presence of of 2.5 mol% of [IrCl(cod)]2 (cod = 1,5-
cyclooctadiene) and 5.0 mol% of CBL1 (R1 = 3,5-Me2C6H3, R2 = 
H) in n-hexane at 75 ˚C for 18 h afforded C1-borylated 2aa as a 
sole C(sp3)-H product in 27% yield with 30% ee (Table 1, entry 
1). Meanwhile, the reaction could not complete and a 
significant amount of C(sp2)-H borylated products I and II were 
also observed. The regioisomeric ratio (rr) of 2aa/(I+II) is 
63:37. These initial results encouraged us to further investigate 
the effects of ligand substituents on both rr and 
stereoselectivity. CBL2 bearing R1 of Me and R2 of H resulted in 
complete conversion with elevated rr (80:20) and 53% ee 
(Table 1, entry 2). When CBL3 containing R1 of Et and R2 of H 
was used, the reaction performed superiorly in terms of both 
rr (90:10) and ee (64%) compared to CBL2 (Table 1, entry 3). 
Then, we moved on to CBL with R1 and R2 being both alkyl 
substituents. Pleasingly, the use of CBL5 bearing both R1 and 
R2 of ethyl groups gave excellent rr (94:6) and good 
enantioselectivity (Table 1, entry 5). To further suppress 
C(sp2)-H by-products and improve the enantioselectivity, we 
then focused on the effect of the pyridine ring substituent. To 
our great delight, CBLs with 2,6-Ph2C6H3 at pyridine’s C5-
position could afford 2aa as a sole product with superior ee 
(Table 1, entries 7-9). Particularly, 2aa was obtained in 91% 
isolated yield with 93% ee when CBL9 was used (Table 1, entry 
9). Further examination of other reaction conditions including 
temperature and solvent revealed that n-hexane and 70 ˚C 
were optimal,21 giving 2aa with 90% yield with 94% ee (Table 
1, entry 10). The use of CBL10 and CBL11 under otherwise 
identical reaction conditions showed lower reactivity although 
almost the same level of enantioselectivities was achieved 
(Table 1, entries 11 and 12).  

Having optimized reaction conditions in hand (Table 1, 
entry 10), we then investigated the additional substrate scope 
of the current reaction as displayed in Table 2. In addition to 
the diethylcarbamoyl, pivaloyl group could also result in 
complete conversion, affording 2ac with inferior 
enantioselectivity (76%) along with the formation of 8% C3-
borylated by-product. Switching from the diethylcarbamoyl 
(1aa) to the diisopropylcarbamoyl (1ab) did not affect the 
enantioselectivity (2ab vs 2aa). Next, we surveyed THIQs 
having different substituents on the fused aromatic ring while 
maintaining N-substituent of the diethylcarbamoyl. Most of C5, 
C6, and C7 substituted substrates gave the corresponding 
products (2ba-2oa) in good yields (68-89%) with consistently 
excellent ee values (90-94%). Disubstituted THIQs 1pa and 
1qa showed inferior reactivity, affording products 2pa and 
2qa with 86% and 92% ee, respectively. The chiral induction 
for the reaction of isoindoline 1ra was inferior, yielding 2ra 
with only 42% ee. Heteroaromatic ring fused substrates could 
also be well tolerated, giving products 2sa-2va in 94-97% ee. 
The C(sp2)-H borylation of 1sa and 1ta is probably caused by 
more reactive and sterically less hindered C(sp2)-H bond of 
thiophene compared to benzene ring.22 We also investigated 
the tolerance of chiral substrate. The reaction of substrate with 
stereogenic center at C4 position in the presence of CBL9 gave 
product 2wa in 78% yield with 11:1 d.r. (diasteromeric ratio). 
The diasteromer of 2wa (2wa’) was obtained in 63% yield with 
9:1 d.r. when the enantiomer of CBL9 (ent-CBL9) was applied. 
We also tested arene-fused substrates 3a-h, which either 
showed very low/no reactivity or gave undesired products.     
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To further extend the generality of the current protocol, we 
then investigated the reaction scope of saturated azacycles. We 
chose pyrrolidine 4a to re-optimize reaction conditions and 
CBL10 bearing a cyclohexyl group gave the best results in 
terms of both reactivity and stereoselectivity, delivering 5a in 
99% yield with 94% ee.21 Pleasingly, All the reactions of 
pyrrolidine derivatives underwent smoothly (Table 3), 
affording most borylated products (5a-g) with excellent ee 
values (90-96%). Other saturated azacycles with 
TABLE 2. Substrate Scope of THIQ 1 a

N

O

NEt2

Bpin

N

O

NEt2

Bpin
MeO

MeO

N

O

NEt2

Bpin

MeO

N

O

NEt2

Bpin
Me

CBL9 (5 mol%)
[IrCl(cod)]2 (2.5 mol%)

B2pin2

n = 0,1

n-hexane, 70 C, 18-48 h

N

O

NEt2

Bpin

pinB

N

O

NEt2

Bpin
F3C

2ha
83% yield, 90% ee

2ga
73% yield, 94% ee

2pa
48% yield, 86% eed

N

O

NEt2

Bpin

O

O

N

O

NEt2

Bpin

Ph

2ia
78% yield, 93% ee

2ra
62% yield, 42% ee

N

O

NEt2

Bpin

S

2na
76% yield, 91%ee

2oa
76% yield, 83% ee

crystal structure of 2aab

2wa: 78% yield, 11:1 d.r.f

2sae: from C5-H (1sa)
71% yield, 97% ee

2qa
55% yield, 92% ee

pinB

n

N

O

NEt2

Bpin

Cl

2fa
89% yield, 94% ee

1 2

N
DG

H H

R Ar

n = 0,1

n

N
DG

R Ar

Bpin

2tae: from C5-H (1ta)
62% yield, 94% ee

2ta: from C5-Bpin (1ta')
56% yield, 97% ee

N NEt2

Bpin

S
pinB

1
5

4 3

24
5

1 2

3

N

O

NEt2

Bpin

F

2ba
87% yield, 93% ee

N

O

NEt2

Bpin

Cl

2ca
74% yield, 93% ee

N

O

NEt2

Bpin

F

2ea
71% yield, 94% ee

N

O

NEt2

Bpin

2da
81% yield, 94% ee

CF3

N
O

NEt2

Bpin

2uae

61% yield, 94% ee

N

O

NEt2

Bpin

S
Cl

N

O

NEt2

Bpin

TBSO

2ja
52% yield, 88% ee

NO

O

O

NEt2

Bpin

N

O

NEt2

Bpin
MeO

2ma
68% yield, 91% ee

N

O

NEt2

Bpin
Cl

2la
82% yield, 91% ee

N

O

NEt2

Bpin
F

2ka
81% yield, 92% ee

N NEt2

OBpin

Me

2wa': 63% yield, 9:1 d.r.f

with ent-CBL9

2va
96% yield, 95% ee

*

N

N
B

N

Ph Ph

SiMe2Ph Et

CBL9

Ph

Ph

Et

aUnless otherwise noted, all the reactions were carried out at 70 °C for 18-48 hours. bFor the sake of
clarity, all the hydrogen atoms are omitted for the crystal structure of 2aa. cThe ratio of C1:C3 was
determined by GC analysis. dThe reaction were carried out 80 °C with 10 mol% catalyst. e3.0
equivalents of B2pin2 were used. fThe d.r. values were determined by 1H NMR.
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N
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O
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N

Cl

N

O
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X

N
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3a 3b: X = Br (low reactivity)
3c: X = OH (no reaction)
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Me

Me
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3i

N

O

N(i-Pr)2

Bpin

2ab
97% yield, 93% ee

2aa
90% yield, 94% ee

2ac
73% yield, 76% ee

C1:C3 = 92:8c

N

O

t-Bu

Bpin

CCDC 1966381

varying ring size (4h-s) were also investigated. For example, 
borylated azetidine 5h was obtained in 75% yield with 76% ee 
in the presence of CBL5.21 In order to suppress competitive 
methylene C(sp3)-H borylation of N-ethyl group, directing 
group N,N-diisopropylcarbomyl was used when the ring size of 
saturated azacylcle is greater than five. Piperidine derivatives 
could afford 5i-m in good yields with enantioselectivity 
ranging from 81% to 98%. The current reaction is also 
compatible with azepane 4q, providing 5q in 88% yield with 
81% ee. Morpholine and piperazine derivatives could also be 
well tolerated with adequate ligands,21 affording 5n-p with 

good ee values (80-84%).  When the ring size of substrate is 
greater than 7, inferior both reactivity and enantioselectivity 
were observed (5r and 5s) with optimized ligand CBL11 was 
used.21 Absolute configurations of 2aa and 5a were 
determined to be R by single crystal X-ray diffraction analysis.23 
The configurations of other products were assigned as the 
same tentatively by analogy.

Next, we examined the borylation of several azacycle 
related bioactive compounds as shown in Figure 2. Both CBL9 
and ent-CBL9 gave excellent d.r. values for the reaction of 
estradiol-derived THIQ. The borylation of α-D-galactopyranose-
derived piperidine 
 Table 3. Substrate Generality Saturated Azacycles 3 a

N

Et2N O

Bpin
N

Et2N O

Bpin

Me Me

N

OEt2N

Bpin

N

N O

Bpin

5a (CBL10)
99% yield, 94% ee

5c (CBL10)
88% yield, 93% ee

5h (CBL5)
75% yield,c 76% ee

crystal structure of 5ab

N

Et2N O

Bpin

5e (CBL10)
70% yield, 92% ee

5d (CBL10)
58% yield, 92% ee

CBL(5 mol%)
[IrCl(cod)]2 (2.5 mol%)

B2pin2

N

N
B

N

Ph Ph

SiMe2Ph Rn-hexane, 70 C, 24-48 h
5

N

OR'2N

Bpin

4

N

OR'2N

H
Hn n

n = 0-5

R R

N

MeMe

O(i-Pr)2N

N

O(i-Pr)2N

N

O(i-Pr)2N

N

O

O(i-Pr)2N

N

N

O(i-Pr)2N

Ph

N

O(i-Pr)2N

N

(i-Pr)2N O

N

O(i-Pr)2N

Bpin

Bpin

Bpin

Bpin

Bpin

BpinBpin Bpin

Me
Me

N

N

O(i-Pr)2N

Bpin

5l (CBL10)
79% yield, 98% ee

CBL10: R = Cy
CBL11: R = t-Bu

Ph

Ph

5i (CBL10)
83% yield, 90% ee

N

O(i-Pr)2N

Bpin

5k (CBL10)
90% yield

95:5 d.r.d, 83% ee

Ph

5j (CBL10)
72% yield, 81% ee

5n (CBL10)
42% yield, 84% ee

5q (CBL10)
88% yield, 81% ee

5p (CBL11)
57% yield, 80% ee

5o (CBL11)
86% yield, 84% ee

5r (CBL11)
58% yield, 62% ee

5s (CBL11)
63% yield, 86% ee

N

O(i-Pr)2N

Bpin

TBSO

5m (CBL10)
75% yield, 98:2 d.r.e

5m' (ent-CBL10)
62% yield, 4:96 d.r.e

N

Et2N O

Bpin

5f (CBL10)
86% yield, 90% ee

N

Et2N O

Bpin

5g (CBL10)
88% yield, 96% ee

H H
HHH H

aUnless otherwise noted, all the reactions were carried out at 70 °C for 24-48 hours. bFor the sake
of clarity, all the hydrogen atoms are omitted for the crystal structure of 5a. cThe yield and ee
value of 5h refer to its vinylation product, see Supporting Information for more details. dThe
relative configuration of 5k was determined by single crystal X-ray diffraction analysis (CCDC
1998616). eThe d.r. values were determined by GC analysis.

OO
t-Bu

N

(i-Pr)2N O

Bpin

5b (CBL10)
92% yield, 94% ee

*

CCDC 1966380

and the key motif of Zamifenacine occurred smoothly using 
CBL10, giving respective products 7 and 8 with >95:5 d.r. 
values. Inferior performance was observed for when ent-
CBL10 was applied. Borylation of N-carbamoyl Paroxetine and 
Lorcaserin using CBL10, however, showed very low reactivity. 
Borylation of N-carbamoyl Paroxetine and Lorcaserin using ent-
CBL10 afforded corresponding products 9’ and 10’ in 54% and 
91% yields with 15:85 and 2.5:97.5 d.r. values. These results 
show that the current protocol provides a promise of enabling 
late-stage functionalization of azacycle related bioactive 
compounds.
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Figure 2. C(sp3)-H borylation of bioactive related azacycles. 

The current reaction is also amendable to gram-scale 
synthesis with 1 mol% catalyst loading while maintaining 
enantioselectivity (Figure 3). To further demonstrate the 
synthetic utility, a series of transformations of 2 were 
conducted as depicted in Figure 2. The pinacol group of 2aa 
could be easily removed by KHF2 to afford difluoroborane 11 
in 94% yield with 95% ee.24 The C-B bond of compound 2aa 
could undergo arylation, homologation, and 
homologation/oxidation, affording corresponding products 
12-15 in 62-80% yields without erosion of stereochemistry 
under various reaction conditions.18d,25 Importantly, the 
diethylcarbamoyl group of 16 could be easily removed by LiOH, 
providing alkaloid (+)-calycotomine26 17 in 87% yield.
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Figure 3. Gram-scale C(sp3)-H borylation of 1aa and synthetic 
utility of borylated product 2. 
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We found that the ee value of 2aa is not only independent 
of the ratio of CBL9/[IrCl(cod)]2, but also proportional to the 
optical purity of CBL9,27 indicating that the most plausible 
reactive catalytic species is a monomeric Ir complex in which 
the ratio of CBL9/Ir is 1:1. Together with in-situ NMR 
evidence,27 the plausible catalytic scenario is similar to C-H 
borylation that we previously reported,18d,18e in which a 14-
electron chiral trisboryl Ir complex is responsible for both 
regio- and enantioselectivity.28 According to the known 
reaction mechanism, the C-H activation step is synergistically 
assisted by Ir-B bond.18d,29 Thus, two putatively transition 
states TS-S and TS-R that lead to S and R isomers, respectively, 
are proposed in Figure 4A to explain the origin of 
enantioselectivity. In TS-S, the THIQ ring points to the phenyl 
group of the (1S,2S)-DPEN ((1S,2S)-diphenylethylenediamine) 
moiety and pyridine’s C5 substitution, which causes the 
repulsive interaction. On the other hand, there is no such 
repulsion in the TS-R. Therefore, it should be lower in energy 
barrier to undergoing oxidative addition, favoring the product 
with R configuration. To explain why CBL9 could prohibit 
C(sp2)-H borylation, two putative reactant complexes (RC) RC-
1 and RC-2 for the CBL5 and CBL9 are proposed respectively 
in Figure 4B. Obviously, the planarity of the pyridine ring in RC-
1 causes the apical vacancy of the iridium center to be exposed 
to the external C(sp2)-H bonds approaching from pyridine’s 
side, while the other directions are blocked by Bpin, 1aa (DG), 
ligand scaffold, and N-aryl substitution. This 16-electron 
trisboryl iridium complex is similar to that in the 
dtbpy/iridium system (dtbpy = 4,4’-di-tert-butyl-2,2’-
bipyridine),27a which could cleave sterically less hindered 
C(sp2)-H bond of another molecule of 1aa. In contrast, the 
vacant site of RC-2 is in part shielded by the group of 2,6-
Ph2C6H3 of the pyridine ring. As a result, it could kinetically 
prevent another molecule of 1aa from approaching to suppress 
competitive C(sp2)-H borylation.

In summary, we have developed a highly efficient Ir-
catalyzed enantioselective -C(sp3)-H borylation of azacycles 
using CBLs for the first time. This method could tolerate a wide 
range of functional groups, providing a series of 
enantioenriched -borylated products in good yields with good 
to excellent enantioselectivities. Further utilization of products 
and application of CBLs in other contexts of asymmetric 
transformations are currently underway in our laboratory.
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