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Table 1. Data on Phosphate-Catalyzed Keto-Enol Tautomerism of 
Aldehydes and Compound I Reactions with Enols at 35 OC' 

equilibrium rate constants, M-I s-I 
constant keto + enol + 

[enol]/[keto] phosphate phosphate 
K:nd k', kl 

butanal 5.5 x IO+ 1.0 x 10-4 19 

2-methylpropanal 1.2 X 6.0 X 0.5 
propanal 8.0 X IOd 1.5 X IOd 19 

I? ionic strength 0.67 M and pH 7.4; to cQrrect for hydrate formation, 
multiply K:,,, and k', by the factor ( 1  + Khyd). 

Table I. For 2-methylpropanal K,,,, is 1.7 X and k l  8.6 X 
These 

results compare favorably with those obtained by other experi- 
mental and theoretical methods2 

Both propanal and butanal have cis-trans isomers in their enol 
forms. Our results can be fit with a single exponential curve for 
the burst phase which is followed by the linear zero-order phase. 
The burst results indicate either that there is no detectable dif- 
ference in reactivity of the two geometric isomers with compound 
I, which would appear likely because of the known lack of se- 
lectivity in compound I reactions, or that one isomer is dominant. 
The observed linear behavior following the burst could be the sum 
of two zero-order reactions, one for each isomer. 

Thus we have described a unique technique using peroxidase 
compound I for measuring rates and equilibria of keto-enol 
tautomerism which could readily be applied to a study of the 
influence of acid-base catalysts upon the rates. 

M-' s-l with a correction for hydrate formation.6 

(6) Pocker, Y. ;  Dickerson, D. G. J .  Phys. Chem. 1969, 73, 4005-4012. 
Green, L. R.; Hine, J. J .  Org. Chem. 1973, 38, 2801-2806. 
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During the last decades, two of the most fascinating areas in 
chemistry have been the synthesis and reactivity of electron-de- 
ficient species and of p,-p, multiply bonded heavier main- 
group-element derivatives. We have recently prepared the first 
a-diazophosphines A and have shown by intermolecular trapping 
reactions that the corresponding a-phosphinocarbene B is a 
synthetic equivalent of phosphorus-arbon multiple-bonded species 
C or D.'q2 
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Scheme 1 

Here we wish to report that, although phosphinocarbenes always 
possess a multiple-bond character, intramolecular rearrangements 
typical of either carbene or ylide behavior may occur, depending 
on the nature of the diazo-carbon substituent. 

Bis(phosphin0)diazomethane 33 was prepared by a two-step, 
one-pot reaction from the [ bis(diisopropylamino)phosphine]dia- 
zomethane (1)' via the corresponding lithium salt 2. 

N 2  N 2  N2 

1 2 3 
R = ( / ' - P r ) 2 N  

From an acetonitrile-benzene solution, 3 recrystallized at room 
temperature as air-stable orange crystals in 85% yield and was 
fully characterized including by X-ray a n a l y ~ i s . ~  Of particular 
interest, the N-N bond length (1.15 A) is slightly longer, and the 
C-N bond distance (1.28 A) is slightly shorter, than those observed 
in diazoalkane~.~ The lower multiplicity of the nitrogen-nitrogen 
bond is confirmed by a low IR frequency (2010 cm-I). 

Photolysis in benzene solution at  300 nm or attempted distil- 
lation of 3 a t  100 OC mmHg) led to phosphaalkene 33 in 
nearly quantitative yield. This rearrangement could either result 
from a concerted migration-nitrogen-loss mechanism or involve 
a phosphinocarbene intermediate 4. In fact, products 6 and 7,3 
obtained by irradiation of 3 in the presence of methanol and 
dimethyl sulfoxide, respectively, clearly demonstrate the inter- 
mediacy of a phosphinocarbene 4 possessing phosphorus-carbon 
multiple-bond character (Scheme I). Note that the trapping 
agents do not react with 3 in the absence of UV light. 

Addition of the lithium salt 2 to acyl chlorides led after workup 
to a mixture of acetylenic derivatives lo3 and 1,3,4-oxadiazoles 
93 that were fully characterized, including an X-ray analysis for 
9b.4 However, when trimethylacetyl chloride was used, phosphino 
diazo ketone 8a was observed in solution at 0 O C  by NMR (6 3'P 
+70.6) and IR (v(CN2) 2045, v(C0) 1640 cm-I) spectroscopy. 
Products 10 can also be obtained in one step by heating the 
silylated diazophosphine 11l with acyl chlorides (Scheme 11). 

In contrast with 3, no 1-2 shift, which would have led to 
phosphaalkenes 13 or phosphinoketenes 14, was observed. It seems 
quite reasonable to postulate that 10 results from an intramolecular 
Wittig-like reaction involving a phosphorus vinyl ylide 12b 
(Scheme 111). 

These results, as a whole, support theoretical calculations that 
predict, for the parent compound H,PCH, a phosphinocarbene 
phosphorus vinyl ylide separation of only 4 kcal/mo16 and a small 
energy barrier for the rearrangement to the more thermodynam- 
ically favored phosphaalkene structure. Moreover, it is clear that 
although a-dicarbenoid species of the first-row elements always 
behave as triple-bonded compounds;' in contrast, when a second 

(2) Other unstable wdiazophosphines have recently been prepared: Keller, 

(3) Microanalytical, mass spectral, IR, and NMR data for each new 

(4) Full details of X-ray crystal structures will be published elsewhere. 
( 5 )  Patai, S.  The Chemistry of Diazonium and Diazo Groups; Wiley: New 

( 6 )  Nguyen, M. T.; McGinn, M. A,; Hegarty, A. F. Inorg. Chem. 1986, 

H.; Maas, G.; Regitz, M. Tetrahedron Left. 1986, 27, 1903. 

compound isolated are given in the supplementary material. 

York, 1978. 

25, 2185. 
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Scheme 11 Scheme I 
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row element is involved, the carbenoid character is competitive, 
as recently shown for -S-N,8 -C-SF3,g and even -Si-Si-Io de- 
rivatives. 
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[160,1sO]Thiophosphate (1) and [160,170,180]pho~phate (2) 
esters have been utilized extensively to determine the stereo- 
chemical course of many enzyme-catalyzed thiophosphoryl-' and 
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phosphoryl-transfer2 reactions. Although the stereochemical 
~~ ~~~ 
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courses of some simple chemical phosphoryl-transfer reactions 
have recently been determined,3,4 hitherto simple thio- 
phosphoryl-transfer reactions have not been studied. With existing 
methods these would in fact be difficult to determine. Such studies 
would be of interest since (i) the stereochemical course of en- 
zyme-catalyzed thiophosphoryl-transfer reactions has frequently 
been assumed to be the same as for the natural phosphoryl-transfer 
reaction and it would be pertinent to determine whether these 
reactions are indeed stereochemically equivalent5 and (ii) thio- 
phosphate monoesters have been reported to react more rapidly 
via a dissociative reaction than the corresponding phosphate esters: 
We report here the first simple chemical configurational analysis 
of structures such as 1 (R = alkyl or aryl)' together with general 
synthetic routes to simple [160,180]thiopho~phate monoesters (1).8 

Our two general routes to isotopically chiral [160,'80(or 
170)]thiophosphate monoesters of either the RP or Sp absolute 
configuration are shown in Scheme I. By analogy with the 
previously published route(s) to [160,170,180]pho~phate  ester^,^ 
~ ~~ 

(3) Buchwald, S .  L.; Knowles, J. R. J .  Am. Chem. SOC. 1982, 104, 1438. 
Buchwald, S .  L.; Friedman, J. M.; Knowles, J. R. J .  Am. Chem. SOC. 1984, 
106, 4911. Friedman, J. M.; Knowles, J. R. J .  Am. Chem. SOC. 1985, 107, 
6126. 

(4) Cullis, P. M.; Rous, A. J .  J .  Am. Chem. SOC. 1985, 107, 6721. Cullis, 
P. M.; Rous, A. J .  J .  Am. Chem. Sac. 1986, 108, 1298. 

(5) The demonstration for a number of enzymes that phosphoryl and 
thiophosphoryl transfer proceed with the same stereochemical course (see ref 
1 and 2) would suggest that within the constraints of the enzyme active site 
these two reactions are equivalent. 

(6) Breslow, R.; Katz, I .  J .  Am. Chem. Sac. 1968, 90, 7376. 
(7) Two configurational analyses have been reported for AMPS "0 and 

other nucleoside [lsO]thiophosphates: the first relies on the stereospecific 
enzyme-catalyzed phosphorylation of the pro-R/S oxygen as the key step 
(Sheu, K.-F. R.; Frey, P. A. J .  Biol. Chem. 1977, 252, 4445); the second 
method has assigned the absolute configurations of the 0,s-dimethyl nu- 
cleoside triesters by relating these to the 0-methyl nucleoside diesters which 
have been assigned on the basis of the known stereoselectivity of snake venom 
phosphodiesterase (Cummins, J. H.; Potter, B. V. L. J .  Chem. Sac., Chem. 
Commun. 1985, 851). Neither method was suitable for our proposed study. 

(8) Previous syntheses of isotopically chiral thiophosphate monoesters 
based on the meso-hydrobenzoin route (Cullis, P. M.; Lowe, G. J .  Chem. Sac., 
Perkin Trans. 1 1981, 2317. Jarvest, R. L.; Lowe, G. J .  Chem. Sac., Chem. 
Commun. 1979, 364) have been reported but not extensively applied. Simi- 
larly [y-160,'80,S]ATP and ['sO]AMPS have been synthesized by routes that 
would not easily be extendible to simple thiophosphate esters. 
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